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Preface

The study of the flow field produced by the moving surface in a quiescent fluid is relevant to

several practical applications in the field of metallurgy and chemical engineering. The stretch-

ing causes the entrainment of the adjacent fluid, which in turn affects the resistance and the

solidification of the extruded material. The properties of the final product depend to a great

extent on the stretching and rate of cooling which governed by the structure of the boundary

layer near the moving strips. It is therefore, the basic objective of this dissertation is to study of

boundary layer flows over a geometry of stretching cylinder in this dissertation. We analyzed

the effects of stretching cylinder as hyperbolic function with entropy generation, unsteady os-

cillatory wall temperature with mixed convection over a stretching cylinder, Casson fluid with

partial slip and prescribed surface heat flux over a stretching cylinder, hydromagnetic heat

transfer analysis of stagnation point flow of Walters-B fluid over a stretching cylinder, Soret

and Dufour effects over second grade fluid flow over a stretching cylinder with linear radiation

and finally the non-linear radiation effects on Maxwell fluid flow over a stretching cylinder

with heat generation/absorption. The governing non-linear partial/ordinary differential equa-

tions are solved by means of very efficient numerical techniques such as Keller box method,

spectral method and shooting method.

Chapter 1, includes some basic knowledge about the fluid flows, fundamental laws of fluid

dynamics, relevant mathematical models, a comprehensive literature survey and numerical

methods which are used in this dissertation.

In chapter 2, a comprehensive study of entropy generation over hyperbolic stretching cylin-

der is performed. The numerical results are obtained for the partial differential equations by

an implicit finite difference scheme known as Keller box method. The influence of emerging

parameters namely: curvature parameter and Prandtl number on velocity and temperature pro-

files, skin friction coefficient and the Nusselt number are presented through graphs. Moreover,

the effects of different physical parameters on entropy generation number and Bejan number

are also drawn graphically. The contents of this chapter are published in Alexandria Engi-

neering Journal (2016) 55, 1333−1339.

In chapter 3, heat transfer analysis is presented for mixed convection stagnation point flow

over a vertical stretching cylinder with sinusoidal wall temperature. The governing partial

differential equations are converted into dimensionless form by using suitable transforma-

tions. For the numerical solution of the reduced dimensionless partial differential equations,

ix



the Keller Box method is applied. To show the accuracy and authenticity of our results, a com-

parison is made with literature for some special cases. The skin friction and Nusselt number

are plotted against unsteadiness parameter and amplitude of surface temperature oscillations

against time. It is appeared that as the values of amplitude of surface temperature oscilla-

tions drop, the amplitude of oscillations in skin friction and Nusselt number also drops. These

observations are published in Revista Mexicana de Fisica 62 (2016) 290−298.

Chapter 4 is focused to analyze the combine effects of partial slip and prescribed surface

heat flux when the fluid is moving due to stretching cylinder. A very moderate and power-

ful technique namely Chebyshev Spectral Newton Iterative Scheme is used to determine the

solution of the present mathematical model. The accuracy and convergence of the method is

ensure through comparison of its computed results with that of Keller box method through

tables. The CPU time is calculated for both schemes. It is observed that CSNIS is efficient,

less time consuming, stable and rapid convergent. Involved physical parameters, namely: the

slip parameter, Casson fluid parameter, curvature parameter and Prandtl number are utilized

to control the fluid movement and temperature distribution. The results show that the fluid

velocity and the skin friction coefficient on the stretching cylinder are strongly influenced by

the slip parameter. These results are published in Alexandria Engineering Journal (2015)

54, 1029−1036.

In chapter 5, heat transfer analysis of two dimensional hydromagnetic flow of Walters-

B fluid towards stagnation point region over a stretching cylinder is discussed. Importantly,

the Walters-B model is transformed into cylindrical coordinates and then solved by Spec-

tral Quasi Linearization Method (SQLM). The flow and heat transfer characteristics are an-

alyzed through governing parameters representing curvature of cylinder, velocity ratio pa-

rameter, magnetic parameter and Weissenberg number. It is noticed that the curvature of the

cylinder has significant impact on the velocity and temperature. Magnetic field applied ex-

ternally suppress the bulk motion and alters the momentum boundary layer thickness. The

drag and heat transfer rate on the surface of cylinder are examined through skin friction and

heat transfer coefficients. Furthermore, streamlines are drawn to see the flow pattern. The

contents of this chapter are published in Canadian Journal of Physics. 94: 1-9 (2016)

dx.doi.org/10.1139/cjp−2015−0511.

Chapter 6 presents the analysis of Soret and Dufour effects on two dimensional flow of

second grade fluid due to stretching cylinder. It is further assumed that the flow is subjected to

x



thermal radiation, which is another aspect of the study. Mathematical model for second grade

fluid in cylindrical coordinate system is developed in terms of nonlinear partial differential

equations and solved numerically. It is predicted that the simultaneous increase in Dufour and

Soret numbers help to enhance both the temperature and concentration in the boundary layer

region around the cylinder. Also concurrent occurring of increasing Dufour and decreasing

Soret numbers on heat transfer and mass transfer rates have opposite effects. Moreover, the ra-

diation effects are elaborated through the variation of effective Prandtl number. The increase in

effective Prandtl number results in decrease of the temperature of the fluid. These observations

are published in Journal of Molecular Liquids 221 (2016) 878−884.

In chapter 7, we presented the combined effects of linear and non-linear Rosseland thermal

radiations on Maxwell nanofluid flow due to stretching cylinder. Notable difference in the heat

transfer enhancement can be observed through temperature profiles and tables of Nusselt num-

ber. From the computation, it is concluded that the nonlinear radiation enhances significant

heat transfer rate at the surface of cylinder as compared to the linear or in the case of absence

of radiation effects. The presented results are submitted for possible publication in Canadian

Journal of Physics.

xi
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Nomenclature 

𝑎, 𝑐           Dimensionless constants 

𝑎/𝑐          Velocity ratio parameter 

𝐴∗             Coefficient of space dependent heat source/sink 

𝐵∗             Coefficient of temperature dependent heat source/sink 

𝐵              Velocity slip parameter 

𝐶               Concentration of fluid 

𝐵0             Magnetic field strength 

𝐵𝑒             Bejan number 

𝐵𝑒Ω∗−1     Group parameter 

𝑏               Body force   

𝑐𝑝              Specific heat at constant pressure 

𝐶𝑓              Skin friction coefficient 

𝐷𝐵             Brownian diffusion coefficient 

𝐷𝑒             Maxwell fluid parameter, Deborah number 

𝐷𝑇             Thermophoretic diffusion coefficient 

𝐸0             Characteristic entropy generation 

𝐸𝐺              Local volumetric rate of entropy generation 

𝑓               Dimensionless stream function 

𝑘               Thermal conductivity of fluid 

𝐾              Viscoelastic parameter 

𝑙                Reference length 

𝑀              Magnetic parameter 

𝑁𝑏             Brownian motion parameter 

𝑁𝐸
∗             Entropy generation number 

𝑁𝑡             Thermophoresis parameter 

𝑛∗             Temperature index or exponent 

𝑁𝑢𝑧          Local Nusselt number 

𝑝               Pressure 

𝑃𝑟             Prandtl number 

𝑞′′′            Non-uniform heat sink/source 
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𝑞𝑟             Radiative heat flux 

𝑞𝑤                   Surface heat flux 

𝑟               Radial coordinate 

𝑅∗             Radius of cylinder 

𝑅𝑒𝜉 , 𝑅𝑒𝑧     Local Reynolds number 

𝑅𝑑            Radiation parameter 

𝑆               Suction/injection parameter 

𝑆𝑐             Schmidt number 

𝑇               Fluid temperature  

𝑡̅               Time 

𝑇𝑤            Temperature at the surface of cylinder 

𝑇∞            Ambient fluid temperature 

𝑢𝑤            Mass flux velocity 

𝑢               Radial velocity component 

𝑣               Axial velocity component 

𝐕               Velocity vector 

𝑉𝑒              Free stream velocity 

𝑉𝑤             Stretching velocity of cylinder 

𝑊𝑒           Weissenberg number 

𝑧               Axial coordinate 

Greek symbols 

𝛼              Thermal diffusivity 

𝛽              Unsteady parameter 

𝛽∗            Casson parameter 

𝛽𝑡             Thermal expansion coefficient 

𝛾              Curvature parameter 

𝜖              Amplitude of temperature oscillations 

𝜂              Similarity variable 

𝜃              Dimensionless temperature 

𝜃𝑤            Surface heating parameter 

𝜆              Mixed convection parameter 

𝜆1            Material relaxation time 



5 

 

  

𝜇              Dynamic viscosity 

𝜈              Kinematic viscosity 

𝜌              Density  

𝜎              Electrical conductivity 

𝜏𝑤            Surface shear stress 

𝜙             Dimensionless concentration 

𝜓             Stream function 

Ω∗            Irreversibility ratio 

Subscripts 

𝑤             Condition at the surface 

∞             Condition at the Infinity 

𝜂              Differentiation 

Superscripts      

′               Differentiation w.r.t 𝜂 
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Chapter 1 

Introduction 

In this chapter, the preliminaries of fluid mechanics and its fundamental laws (White 2006), 

some mathematical fluid models (Harris 1977), numerical methods (Na 1979; Cebeci and 

Bradshaw 1985) which are directly related to present research and a comprehensive 

literature survey beginning from stretching sheet to stretching cylinder is presented for 

knowledge and understanding of readers. For this purpose, current chapter is arranged as 

follows:  

 

1.1 Fluid mechanics 

Fluid mechanics deals with transport processes in the molecule–dependent motion of fluids 

(fluid dynamics) or the fluids at rest (fluid statics). Fluid mechanics is a special branch of 

continuous mechanics which deals with the relationship between forces, motion and statics 

conditions in a continuous material. In fact, fluid mechanics exists everywhere in our life 

both in natural or practical environment and we all as a human being observer that this 

branch of science has significant importance. Life is not possible on earth without flows of 

fluids and even natural and technical growth would not be possible. Therefore, flows have 

vital importance like blood in the vessels which transport the essential nutrients to the cells 

by mass flows, where chemical reactions take place and produces energy for the body, flows 

of the food chain in flora and fauna, flows into lakes, rivers, and seas, transport of clouds 

through winds, and a multitude of other examples in natural and technological environments 

 

1.2 Governing Equations 

All the physical phenomena are in some way related to the laws of fluid mechanics. 

Application of these laws to fluid flow problems in terms of mathematics, results in the form 

of partial differential equations such as continuity equation, the equations of motion or the 

Navier-Stokes equations, the energy equation and concentration equation. For 

incompressible fluid flow these laws are given as below: 

Continuity equation: 

∇.𝐕 = 0, (1.1) 
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Momentum equation: 

𝜌
𝑑𝑽

𝑑𝑡
= 𝛁. 𝝉 + 𝜌𝐟, (1.2) 

Energy equation: 

𝜌𝑐𝑝
𝑑𝑇

𝑑𝑡
= 𝛁. (𝑘𝛁𝑇) + 𝝉: ∇𝑽, (1.3) 

Concentration equation: 

𝜌𝑐𝑝
𝑑𝐶

𝑑𝑡
= 𝛁. (𝐷𝑚𝛁𝐶). (1.4) 

The above equations are in general form where, 𝝉 is the Cauchy stress tensor and 𝐒 is called 

as the extra stress tensor which represents characteristics and rheological behavior of the 

considered fluid. 𝑑/𝑑𝑡 represents material derivative, 𝜌 is the density of the fluid, 𝐕 

represents the velocity field, ∇ is the gradient operator, 𝐟 represents the body forces,  𝑐𝑝 

represents the specific heat, 𝑇 represents the fluid temperature, 𝑘 represents the thermal 

conductivity of the fluid, 𝐶 represents the species concentration for mass transfer, 𝝉: 𝛁𝐕 

represents the scalar viscous dissipation, 𝐷𝑚 represents mass diffusivity in species 

concentration. In cylindrical coordinate system 

𝛁 = 𝑟̂
𝜕

𝜕𝑟
+ 𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝑧̂

𝜕

𝜕𝑧
 

𝐷

𝐷𝑡
=
𝜕

𝜕𝑡
+ 𝑢𝑟

𝜕

𝜕𝑟
+ 𝑢𝜃

1

𝑟

𝜕

𝜕𝜃
+ 𝑢𝑧

𝜕

𝜕𝑧
 

(1.5) 

 

1.2.1 Newtonian fluids 

Fluids in which shear stress is proportional to strain rate (or velocity gradient) are commonly 

categorized as Newtonian fluids. Mathematically for unidirectional flow it can be written as 

𝝉 ∝
𝑑𝑢

𝑑𝑦
, (1.6) 

or 

𝝉 = 𝜇
𝑑𝑢

𝑑𝑦
, (1.7) 

where 𝜇 is the constant of proportionality know as dynamic viscosity. For Newtonian fluid, 

stress tensor is given by  

𝝉 = −𝑝𝐈 + 𝐒, (1.8) 

in which 𝑝 represents the pressure, I is the unite tensor and the extra stress tensor 𝐒 has the 

following form 
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𝐒 = μ 𝐀𝟏, (1.9) 

where 𝐀𝟏 represents the first Rivlin-Ericksen tensor and is defined as 

𝐀𝟏 = 𝛁𝐕 + (𝛁𝐕)
𝑡𝑟𝑎𝑛𝑝𝑜𝑠𝑒 

𝐀𝟏 =

(

 
 
 

𝜕𝑢𝑟
𝜕𝑟

𝜕𝑢𝜃
𝜕𝑟

𝜕𝑢𝑧
𝜕𝑟

1

𝑟

𝜕𝑢𝑟
𝜕𝜃

−
𝑢𝜃
𝑟

1

𝑟

𝜕𝑢𝜃
𝜕𝜃

+
𝑢𝑟
𝑟

1

𝑟

𝜕𝑢𝑧
𝜕𝜃

𝜕𝑢𝑟
𝜕𝑧

𝜕𝑢𝜃
𝜕𝑧

𝜕𝑢𝑧
𝜕𝑧 )

 
 
 

+

(

 
 
 

𝜕𝑢𝑟
𝜕𝑟

𝜕𝑢𝜃
𝜕𝑟

𝜕𝑢𝑧
𝜕𝑟

1

𝑟

𝜕𝑢𝑟
𝜕𝜃

−
𝑢𝜃
𝑟

1

𝑟

𝜕𝑢𝜃
𝜕𝜃

+
𝑢𝑟
𝑟

1

𝑟

𝜕𝑢𝑧
𝜕𝜃

𝜕𝑢𝑟
𝜕𝑧

𝜕𝑢𝜃
𝜕𝑧

𝜕𝑢𝑧
𝜕𝑧 )

 
 
 

𝑡𝑟𝑎𝑛𝑝𝑜𝑠𝑒

 

=

(

 
 
 

2
𝜕𝑢𝑟
𝜕𝑟

𝜕𝑢𝜃
𝜕𝑟

+
1

𝑟

𝜕𝑢𝑟
𝜕𝜃

−
𝑢𝜃
𝑟

𝜕𝑢𝑧
𝜕𝑟

+
𝜕𝑢𝑟
𝜕𝑧

𝜕𝑢𝜃
𝜕𝑟

+
1

𝑟

𝜕𝑢𝑟
𝜕𝜃

−
𝑢𝜃
𝑟

2 (
1

𝑟

𝜕𝑢𝜃
𝜕𝜃

+
𝑢𝑟
𝑟
)

1

𝑟

𝜕𝑢𝑧
𝜕𝜃

+
𝜕𝑢𝜃
𝜕𝑧

𝜕𝑢𝑧
𝜕𝑟

+
𝜕𝑢𝑟
𝜕𝑧

1

𝑟

𝜕𝑢𝑧
𝜕𝜃

+
𝜕𝑢𝜃
𝜕𝑧

2
𝜕𝑢𝑧
𝜕𝑧 )

 
 
 

 

 

 

 

 

 

 

 

 

 

 

(1.10) 

 

1.2.2 Non-Newtonian fluid 

In non-Newtonian fluids, shear stress and deformation rate are not linearly proportional to 

each other. In practice, most of the fluids behave like a non-Newtonian fluid. These fluids 

have numerous important industrial applications in chemical, civil, metallurgical 

engineering, and mining. The common examples of non-Newtonian fluids in our daily life 

are toothpaste, paints, honey, blood etc. Many mathematical models have been proposed to 

exhibit the nature of fluids in different circumstances till to date. Some of them which are 

related to the work in this thesis are as follows 

  

Casson fluid model 

The constitutive equation of a Casson fluid model may be defined in simplified form as  

√𝜏∗ = (𝜇𝛾̇∗)
1
2 +√𝜏0

∗         for 𝜏∗ ≥ 𝜏0
∗ 

𝛾̇∗ = 0, for  𝜏∗ ≤ 𝜏0
∗, 

(1.11) 

where 𝜏∗ is the shear stress, 𝜇 is the viscosity coefficient of Casson fluid, 𝛾̇∗ is the rate of 

shear strain and 𝜏0
∗ is the yield stress. 



9 

 

Walters-B fluid model 

The constitutive equation for Walters-B fluid is given by  

𝐒 = 2𝜂0𝐀1 − 2𝑘0
𝐷𝐀1
𝐷𝑡

. (1.12) 

Here 𝜂0 is the viscosity at zero shear rate, 𝑘0 is the elasticity of the fluid and 𝐷𝐀𝟏/𝐷𝑡 is 

defined as 

𝐷𝐀1
𝐷𝑡

=
𝜕𝐀𝟏
𝜕𝑡

+ (𝐕. 𝛁)𝐀𝟏 − 𝐀𝟏. (𝛁𝐕) − (𝛁𝐕)
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 . 𝐀𝟏 (1.13) 

 

Second grade fluid model 

The equation which exhibits the rheological behavior of second grade fluid model is as 

follows 

𝐒 = 𝜇𝐀1 + 𝛼1𝐀𝟐 + 𝛼2𝐀𝟏
2 , (1.14) 

where 𝐀𝟐 is the second Rivilin-Erickson tensor which has the following relation  

𝐀𝟐 =
𝑑𝐀𝟏
𝑑𝑡

+ 𝐀𝟏. (𝛁𝐕) + (𝛁𝐕)
𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 . 𝐀𝟏. (1.15) 

The thermodynamic constraints for stable second grade fluid model are 

𝜇 ≥  0, 𝛼1 > 0, 𝛼1 + 𝛼2 = 0. (1.16) 

 

Maxwell fluid model 

The Maxwell fluid model obeys the following constitutive equation  

𝐒 + 𝜆1
𝐷𝐒

𝐷𝑡
= 𝜇𝐀𝟏, (1.17) 

where, 𝜆1 represent the time relaxation of the material, which is duration of the time over 

which significant stress persists after termination of deformation. The derivative 𝐷/𝐷𝑡 for 

the vector and tensor can be define in the following forms: 

For a contravariant vector: 

𝐷𝐒

𝐷𝑡
=
𝑑𝐒

𝑑𝑡
− (𝐕𝛁)𝐒 (1.18) 

 

For a contravariant tensor of rank 2: 

𝐷𝐒

𝐷𝑡
=
𝑑𝐒

𝑑𝑡
− (𝐕𝛁)𝐒 − 𝐒(𝐕𝛁)𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 (1.19) 
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1.2.3 Buongiorno nanofluid model 

In the present investigation, Buongiorno model is utilized to study the Brownian motion and 

thermophoresis effects in the fluid flow. The energy and transport equations of nano-

particles which represent the Buongiorno nanofluid model is as follows 

𝐷𝑇

𝐷𝑡
= 𝛼 𝛁2𝑇 + 𝜏∗ (𝐷𝐵𝛁𝐶. 𝛁𝑇 + 𝐷𝑇

𝛁𝑇. 𝛁𝑇

𝑇∞
) 

and 

𝐷𝐶

𝐷𝑡
= 𝐷𝐵𝛁

2𝐶 + (
𝐷𝑇
𝑇∞
)𝛁2𝑇. 

(1.20) 

Here 𝜏∗ = (𝜌𝑐)𝑝/(𝜌𝑐)𝑓 is the ratio of effective heat capacity of nanoparticle material and 

the base fluid, 𝐷𝐵 and 𝐷𝑇 are the Brownian and thermophoretic diffusion coefficients and 

𝑇∞ is the ambient temperature of the fluid. 

 

1.3 Literature Survey 

The study of boundary layer flow and heat transfer over stretching surfaces received 

remarkable attentions due to its numerous applications in modern industrial and engineering 

practices. The attributes of the end product are greatly reliant on stretching and the rate of 

heat transfer at the final stage of processing. Due to this real-world importance, interest 

developed among scientists and engineers to comprehend this phenomenon. Common 

examples are the extrusion of metals in cooling liquids, food, plastic products, the 

reprocessing of material in the molten state under high temperature. During the phase of the 

manufacturing process, the material undergoes elongation (stretching) with cooling process. 

Such types of processes are very handy in the production of plastic and metallic made 

apparatus, such as cutting hardware tools, electronic components in computers, rolling and 

annealing of copper wires, etc. In many engineering and industrial applications, the cooling 

of a solid surface is a primary tool for minimizing the boundary layer. Due to these useful 

and realistic impacts, the problem of cooling of solid moving surfaces has turned out to be 

an area of concern for scientists and engineers. The dynamics of the boundary layer flow 

over a stretching surface started from the pioneering work of Crane (1970). He solved a 

primary problem of two-dimensional boundary layer flow of stretching sheet which is 

extensively used in polymer extrusion industry and assumed that sheet is linearly stretching 

with a distance from a fixed point. Some representative studies over stretching sheet were 

presented by Gupta and Gupta (1977), Chakrabarti and Gupta (1979), Dutta and Roy (1985), 
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Chen and Char (1988), Anderson et al. (1992). They provided their analysis by introducing 

suction and blowing, heat transfer with uniform heat flux, heat transfer with suction and 

blowing, MHD and heat transfer, analysis of power-law fluids, respectively. Abundant of 

literature is available over stretching sheet problem with different geometries, physical 

situations, fluid models and boundary conditions and will be discussed in proceeding 

paragraphs where necessary.   

For last several years, the analysis of fluid flow and heat transfer over elongating surfaces 

has gained growing interest of engineers and scientists due to its wide application in industry 

like wire drawing, cooling of metallic sheets, piping and casting system as well as metal 

spinning and many others. In this context, Wang (1988) was the first who considered the 

steady flow caused by elongating cylinder immersed in fluid. After a long time, Ishak et al. 

(2008, 2009) reestablish the pioneering work of Wang (1988). They produced a numerical 

solution of laminar boundary layer flow, uniform suction blowing and MHD effects over 

stretching cylinder in an ambient fluid. Heat transfer in magnetohydrodynamics flow due to 

a stretching cylinder is analytically tackled by Joneidi et al. (2010) using HAM. Bachok and 

Ishak (2010) studied the effects of prescribed heat flux at the surface of stretching cylinder. 

They reported that the heat transfer rate is enhanced over a curved surface as compared to 

that of flat surface. Time dependent flow over an expanding stretching cylinder is 

investigated by Fang et al. (2011) and they declared that the reverse flow phenomenon exists 

due to expansion of cylinder. Munawar et al. (2012) presented thermal analysis over an 

oscillatory stretching cylinder and they concluded that entropy generation magnifies due to 

oscillatory motion of cylinder. The effect of magnetic field over horizontal stretching 

cylinder in the presence of source/sink with suction/injection is studied by Elbashbeshy 

(2012). Abbas et al. (2013) explained the MHD radiation effects with porous medium over 

a stretching cylinder. Especially in last few years a lot of research problems have been 

modeled on the analysis of flow and heat transfer over stretching cylinder. Mukhopadhyay 

(2011, 2012); Mukhopadhyay and Gorla (2013) and Mukhopadhyay (2013) considered a 

chemical solute transfer, mixed convection in porous media, and MHD slip flow along a 

stretching cylinder respectively. Fang and Yao (2011); Vajravelu et al. (2012); Wang 2012; 

Lok et al. (2012); Butt and Ali (2014) have considered viscous swirling flow, axisymmetric 

MHD flow, natural convection flow, axisymmetric mixed connection stagnation point flow, 

and entropy analysis of magnetohydrodynamics flow over stretching cylinder, respectively.  

Entropy generation is the quantification of thermodynamics irreversibility which exists in 

all types of heat transfer phenomenon and therefore suffer an efficiency loss. It is need of 
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the hour to calculate the extent of irreversibility occurring in the dynamical system. Also 

search is on for finding the ways to minimize the rate of entropy generation so that maximum 

utilization of available energy is possible. Due to this fundamental importance, Chapter 2 

of the thesis is optimized with the inclusion of entropy generation analysis. In this context, 

the studies (Matin et al. 2012; Butt et al. 2013; Noghrehabadi et al 2013; Rashidi et al. 2014; 

Dalir et al. 2015) are quite useful to explore many aspects of entropy generation. 

The stagnation point encounters highest pressure, enhancement of heat transfer and rate of 

mass deposition. Some practical examples are cooling of electronic devices by fans, the 

aerodynamics of plastic sheets, cooling of nuclear reactors during emergency shutdown, 

heat exchangers placed in a low velocity environment, solar central receivers exposed to 

wind current and many others (Burde 1995). Due to these aspects, the study of stagnation 

point flow and heat transfer has attracted many researchers and engineers. Hiemenz (1911) 

initiated the study of two-dimensional stagnation point flow over a stationary flat plate. He 

transformed the Navier-Stokes equations into ordinary differential equations by using 

similarity transformations and provided the exact solution of the nonlinear differential 

equations. Homann (1936) extended this work to three-dimensional problem of 

axisymmetric stagnation-point flow. Schlichting and Bussmann (1943) provided numerical 

solution of Hiemenz problem. Eckert (1942) also extended the Heimenz flow by 

incorporating heat transfer rate in the stagnation point flow. Ariel (1994) obtained the 

analytical solution by introducing suction in flow field. Stagnation point flow over moving 

surfaces is also significant in practical purposes including paper production, the spinning of 

fibres, glass blowing, continuous metal casting, manufacturing of sheeting material through 

extrusion process especially in the polymer extrusion in a melt spinning process, 

aerodynamic extrusion of plastic sheets etc. Chiam (1994) investigated the two-dimensional 

stagnation point flow of a viscous fluid over a linear stretching surface. He considered the 

situation where stretching velocity is equal to straining (free stream) velocity and concluded 

that no boundary layer exists in this case. Contrary to the Chiam (1994), Mahapatra and 

Gupta (2001, 2002) analysed the effects of Magnetohydrodynamics and heat transfer 

respectively, in the region of stagnation point flow towards a stretching surface. They show 

that the boundary layer is formed when 𝑎/𝑐 > 1 (ratio of straining to stretching velocity) 

and inverted boundary layer is emerging when 𝑎/𝑐 < 1. Unsteady analysis of flow over a 

stretching sheet is reported by Nazar et al. (2004). Recently, (Mustafa et al. 2011; Sharma 

and Singh 2009; Javed et al. 2015) reported the investigations on the stagnation point flow 

over linear and non-linear stretching sheets in different aspects. In all aforementioned 
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studies, the investigations on stagnation point flow are carried out with temporally constant 

surface condition and the transient development of flow and heat transfer over stretching 

cylinder is not extensively studied. Merkin and Pop (2000) stated that the value of surface 

temperature does not remains constant, it often fluctuates about some mean value. The 

influence of time dependent oscillations in surface conditions has received very little 

attention to date. Therefore, Chapter 3 is aimed to study the unsteady mixed convection 

stagnation point flow over a stretching cylinder with sinusoidal time dependent wall 

temperature. 

In literature survey, it is discovered that in general the flow field obeys the no-slip condition. 

However, certain physical situations exist which do not cope with the said conditions. That 

is why, the replacement of no-slip boundary condition with slip boundary condition is highly 

essential. The role of the slip condition is vital in shear skin, hysteresis effects and spurts. 

Slips comes into existence when the fluid is a rarefied gas (Sharipov and Seleznev 1998), 

or in the case when it is particulate like blood, foam, emulsion or suspension (Yoshimura 

and Prud'homme 1988). Slip also arises on hydrophobic surfaces, especially in micro and 

nano-fluidics (Eijkel 2007). Recently, Mukhopadhyay (2011, 2013), Mukhopadhyay and 

Gorla (2013) studied the effects of partial slip with MHD, chemically reactive solute 

transfer, and slip effects with heat transfer over a stretching cylinder respectively. Hayat et 

al. (2014) have investigated the effect of heat and mass transfer in flow along a vertical 

stretching cylinder with slip condition. A rheological model of Casson fluid pronounces the 

properties of many polymers over a wide range of shear rates. Various experimental studies 

on blood flow with varying haematocrits, anticoagulants, temperature, etc. offer the 

behavior of blood as a Casson fluid. Recently, in this connection some useful research 

achievements are made for Casson fluid flow over a stretching cylinder (Hayat et al. 2014, 

2015; Hussain et al. 2015). Following this trend in Chapter 4, we present the analysis over 

stretching cylinder considering non-Newtonian Casson model with partial slip and 

prescribed heat flux using the Chebyshev Spectral Newton Iterative Scheme (CSNIS). 

The study of non-Newtonian fluid flow has gained significant attention of researchers in 

past few decades, due to extensive applications in polymer processing industry, developing 

process of artificial film, artificial fibres, discharge of industrial waste, drawing of plastic 

film and wire, thermal oil recovery, glass fibre and paper production, food processing, 

crystal growing and liquid films in condensation process. Recently, some non-Newtonian 

fluid models namely Viscoelastic, Jaffrey and Powel-Eyring are formulated in cylindrical 

coordinates by Hayat et al. (2015).  Keeping an eye on previous literature, many non-
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Newtonian fluid models are still to be discussed with geometry of stretching cylinder. 

Among these, the behavior of Walter-B fluid model for a stretching cylinder has not been 

disclosed yet. Walters and Beard (1964) have presented this viscoelastic fluid model which 

predicts the flow behavior of various polymer solutions including hydrocarbons, industrial 

liquids like paints and several others. Therefore, in Chapter 5, the study of 

magnetohydrodynamics flow of Walters-B fluid near a stagnation point over a stretching 

cylinder is presented. The interest for considering the Walters- B fluid stem from its physical 

and mathematical significance. The Walters-B fluid model is a subclass of viscoelastic 

fluids, which can predict the memory effects and secondly, considering it electrically 

conducting fluid ensures the control of both velocity and boundary layer thickness. It is 

widely applicable to estimate the flow situations in biotechnology and chemical industrial 

problems. From a mathematical perspective, its constitutive equation of motion generates 

one order higher equation than that of Newtonian and others non-Newtonian fluids with no 

extra boundary conditions available. Secondly, it contains singularity at the starting point of 

the domain. Therefore, when fluid is slightly viscoelastic, there is no possibility of obtaining 

a numerical solution by any standard integration scheme like Runge-Kutta method etc. Due 

to these reasons, we focus our attention to discuss the flow of a Walters B fluid over a 

stretching cylinder.  

In many chemical processes, it is frequently happening that the transport of heat in the flow 

cannot be coupled with the transport of mass in the system. The simultaneous occurrence of 

coupled heat and mass transfer in moving fluid generates cross diffusion. As a result, the 

concentration of one species undergoes a constant change to other species in the chemical 

process. These changes in heat and mass transfer can be termed as Dufour effects: heat flux 

incorporated by concentration gradients or diffusion-thermo and Soret effects: mass flux 

produced by temperature gradient or thermal-diffusion (Soret 1880). Soret and Dufour 

effects have their importance in physical situations like reactions in reactors, hydrology, 

petrology and geosciences (Benano-Melly et al. 2001). In this context, the main 

contributions in many fields were carried out by many researchers including Eckert and 

Drake (1972), Dursunkaya and Worek (1992), Kafoussias and Williams (1995), Postelnicu 

(2007, 2010) etc. In last decade, Tsai and Huang (2009) considered the Hiemenz flow to 

observe the Soret and Dufour effects over a stretching surface through an isotropic porous 

medium. Their analysis is based on percentage differences of effects on emerging 

parameters which makes the readers understand their findings quite comfortably. Diffusion-

thermo and thermo-diffusion effects are examined by Hayat et al. (2014) on peristaltic 
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motion of nanofluid. They also outlined the thermophoresis effects and Brownian motion 

of nanoparticles The computations were carried out by NDSolve command through 

Mathematica software in the study. Mahdy and Ahmed (2015) modelled the hydromagnetic 

Marangoni boundary layer flow problem and numerically simulated. For this purpose, they 

used R-K scheme to solve the reduced first order differential equations and missing initial 

conditions were calculated by means of Newton’s iterative method. In their study, the 

coupled effects of Soret on mass transfer and Dufour on heat transfer were observed. The 

study of Soret and Dufour effects on stretching cylinder was encountered by Ramazan et al. 

(2015). Some other physical phenomenon like chemical reaction, heat generation/absorption 

and magnetic field effects were also investigated by them in the study. The physical model 

was converted into ODE’s and then solved by a semi analytical method commonly known 

as a homotopy analysis method. Mahdy (2015) investigated the diffusion-thermo and 

thermo-diffusion effects on the Casson fluid flow over the porous stretching cylinder. He 

found the numerical solution of the modelled problem by shooting algorithm. Ali et al. 

(2016) simulated the Soret and Dufour influence over an oscillatory stretching sheet. They 

assumed the flow of electrically conducting fluid under orthogonally imposed magnetic 

field over the porous sheet. They predicted that the larger values of Soret number results in 

higher concentrations. Reddy and Chamkha (2016) considered the hydromagnetic flow and 

heat transfer in nanofluid with Soret and Dufour effects. In addition, thermal radiation, 

chemical reaction and heat generation/absorption were also discussed in the study. They 

used finite element method for the sake of highly convergent solution. For this purpose, 

firstly, they transformed the whole domain into finite subintervals and the solution is 

computed on each subinterval. Secondly, these intervals were connected to find the global 

solution for the whole domain. 

In manufacturing processes at high temperature, the mode of heat transfer like thermal 

radiation plays a vital role and become essentially important and therefore cannot be 

ignored. These situations include re-entry of vehicles, internal combustion engine, and gas 

cooled nuclear reactors pointed to the radiation transfer in these processes. Hossain and 

Takhar (1996) explored the radiation effects on the flow along vertical surface. They 

reduced the governing equation into dimensionless non-similar form and used finite 

difference scheme to obtain the results in the form of local Nusselt and Local shear stresses. 

Hossain et al. (1999) also considered the free convective radiative flow along a permeable 

vertical plate. The reduced dimensionless non-similar equations are solved analytically and 

numerically by using justified techniques. Raptis et al. (2004) numerically computed the 
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influence of radiation on electrically conducting fluid. Mahmoud (2007) discussed the 

radiation effects on micropolar fluid flowing due to stretching sheet and especially 

considered the variable thermal conductivity effects within the fluid. Similarly, few other 

recent studies can be found at (Abbas et al. 2013; Siddiqa et al. 2013; Javed et al. 2015). 

Therefor Chapter 6 is devoted to the study of Soret and Dufour effects of non-Newtonian 

fluid flowing due to stretching cylinder with radiation effects. 

The study of non-Newtonian fluid has got considerable attention due to their elastic, shear 

thinning, shear thickening, thixotropic and Rheopectic behavior. Different non-Newtonian 

fluid models have been developed experimentally to predict such flow behavior of the fluids. 

Maxwell fluid model is one of the non-Newtonian fluid model which predict the elastic 

behavior of the fluid. This fluid model can be explained for large elastic effects. However, 

it does not predict the creep accurately. In last decade, the study on Maxwell fluid model 

has been considered by many researchers. Wenchang and Mingyu (2002) have considered 

the constitutive equations of Maxwell fluid model to study the viscoelastic behavior of the 

fluid. They assumed no slip condition and the fluid near the surface is moving with the 

surface velocity. They found the exact solution by using discrete inverse transform method 

and concluded that for small time, viscoelastic effects are more significant as compared to 

the larger time. Vieru at al. (2008) studied the time dependent flow of fractional Maxwell 

fluid. The flow is considered between two side walls which are perpendicular to the moving 

plat. They found exact solution of obtained differential equations by using Fourier and 

Laplace transform method. Hayat et al. (2008) have considered magnetic effect on the 

Maxwell fluid flow through a porous medium in a rotating frame. They establish the time 

dependent analytical solution by means of Fourier sine transform method for different 

emerging dimensionless parameters. Hayat and Qasim (2010) considered the 

hydromagnetic flow and heat transfer of Maxwell fluid influenced by radiation and joule 

heating. They presented the series solution and estimated the values of local Nusselt and 

Sherwood numbers. The reduction in boundary layer is reported with the increment of 

Deborah number, and velocity is observed as decreasing function of magnetic parameter. 

The time dependent two-dimensional heat transfer analysis of Maxwell fluid flow over a 

stretching surface was studied by Mukhopadhyay (2012). The several other studies of 

Maxwell fluid are reported in the literature and few of them are Hayat et al. (2012), Prasad 

et al. (2012), Javed et al. (2016).  

In the recent era, the development in the field of nanofluid technology have gained the 

attention by the scientists and engineers owing to their vast industrial applications. The 
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enhancement in thermal conductivity of the fluids is always a major issue for the researchers 

and many attempts have been made for enhancement in the thermal conductivity of the 

fluids. Masuda (1993) reported that the saturation of ultra-fine particles in base fluid 

surprisingly enhance the fluid thermal conductivity. In later study, Choi (1995) named these 

fluids as nanofluids. Buongiorno (2006) studied the thermal conductivity of the nanofluids. 

He concluded that two slip mechanisms, Brownian diffusion and thermophoresis are 

important factor in the study of nanofluids. Kuznetsov and Nield (2010) studied the effect 

of nanoparticles on free convection flow using Buongiorno model. In this study, Brownian 

and thermophoresis effects are investigated and they concluded that nanoparticles enhance 

the thermal conductivity of the weak conducting fluids. In another study Kuznetsov and 

Nield (2011) considered double-diffusive convection flow. In this article, temperature and 

nanoparticles concentration at the wall is assumed constant and found that the reduced 

Nusselt number drop due to increase in thermophoresis and Brownian motion parameter. 

More recently, Sheikholeslami (2015) has calculated the effective thermal conductivity and 

viscosity of the nanofluid by Koo–Kleinstreuer–Li (KKL) model and provided the nanofluid 

heat transfer analysis over the cylinder. Dhanai et al. (2016) investigated mixed convection 

nanofluid flow over inclined cylinder. They utilized Buongiorno's model of nanofluid and 

found dual solutions of the problem under thermal slip effects in presence of MHD. Major 

contribution in the area of nanofluid was discussed later by many researchers, few of them 

are Abolbashari et al. (2014), Rashidi et al. (2014), Ghaffari et al. (2015), Garoosi et al. 

(2015), Mustafa et al. (2016). In Chapter 7, the idea of combined effects of linear and non-

linear Rosseland thermal radiations on Maxwell nanofluid flow due to stretching cylinder is 

presented.  

 

1.4 Methodology 

In the present study, attention is given to utilize the numerical techniques like implicit finite 

difference scheme (Keller Box method), Spectral Quasi Linearization Method, Chebyshev 

Spectral Newton Iterative Scheme and Shooting method. Previously, different analytical 

method like homotopy analysis method, and Adomian decomposition method with Pade 

approximations have been vastly used by the researchers. Although these methods are 

efficient but are time consuming. Since, we will be dealing with very complex equations in 

this study; we prefer to use these numerical techniques instead of analytical methods. These 

techniques are briefly summarized in the following paragraphs. 
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1.4.1 Keller Box method 

This finite difference scheme developed by Cebeci and Bradshaw (1984) is very famous 

due to its accuracy and rapid convergence. The steps through which the solution is computed 

are as follows: 

Step-1: The system of nonlinear differential equations are reduced to the system of first 

order differential equations. 

Step-2: Functions and their derivatives are replaced by mean value and central difference   

formula respectively. Which results in a system of nonlinear algebraic difference equation 

for the number of unknown equals to the number of difference equations and number of 

boundary conditions. 

Step-3: The nonlinear terms are linearized by means of Newton's quasi-linearization 

technique. 

Step-4: The obtained system of linear algebraic equations is then solved by block tri-

diagonal scheme. 

We have successfully employed the Keller Box method for the problems in Chapter 2, 3 

and 6. The detailed implementation of this method on PDE’s is given in Chapter 2, 3 and 

on ODE’s is given in Chapter 6.  

 

1.4.2 Spectral Collocation method 

Spectral methods (Canuto et al. 2000) are rated amongst the best methods for the numerical 

simulations of PDE’s. The basic theme of this method is to represent the solution of the 

nonlinear equation as a sum of certain trial/basis functions with unknown coefficients to be 

found subject to satisfy the differential equation at different nodes and boundary condition. 

The main feature of the Spectral methods is to form orthogonal systems of basis function 

(or trial functions) with some weight function. It is noted that every single choice of trial 

functions forms a different Spectral approximation. Like “trigonometric polynomials” are 

chosen for bounded periodic problems, “Legendre and Chebyshev polynomials” are for non-

periodic problems, “Laguerre polynomials” are for problems developed on the half line, and 

“Hermite polynomials” are for problems on the whole line. Spectral methods cannot be 

implemented directly for nonlinear differential equations. To tackle this situation nonlinear 

differential equations are first transformed to linear form by a suitable technique like Quasi-

linearization method, Newton’s iterative scheme or successive linearization scheme etc. In 

this study we utilized the Newton’s iterative scheme and Quasi-linearization method for 
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linearization process. The detail for these schemes can be seen in forthcoming Chapter 4 

and Chapter 5 as Spectral Quasi-Linearization Method and Chebyshev Spectral 

Newton Iterative Scheme. 

 

1.4.3 Shooting method 

The solution of BVP’s related to the fluid flow can be obtained by any numerical technique. 

 Shooting method is one of the oldest efficient numerical techniques in which BVP firstly 

reduced to system of first order IVP. Secondly, the missing initial conditions at initial point 

are assumed as an initial guess. This reduced IVP is then solved by an efficient fourth order 

Runge-Kutta integrator. The accuracy of the obtained solution is then checked by comparing 

the given values at the terminal point.  If the accuracy is not up to the desired level, then we 

repeat the whole process by assuming a new initial guess and continue in this way until 

required level of accuracy is achieved. In spite of randomly choosing the missing condition 

after every iteration, we used Newton Raphson’s technique to calculate the missing 

conditions for speedy process. This procedure is implemented over a particular problem in 

Chapter 7. 
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Chapter 2 

Heat transfer analysis of fluid flow over a hyperbolic 

stretching cylinder 

In this chapter, heat transfer analysis and entropy generation of boundary layer flow of an 

incompressible viscous fluid over a hyperbolic stretching cylinder is presented. The 

governing nonlinear partial differential equations are normalized by using similarity 

transformations. The numerical results are found for the obtained partial differential 

equations by an implicit finite difference scheme known by Keller box method. A 

comparison of the computed results for the flat plate case is given and developed code is 

validated. The influence of emerging parameters namely: curvature parameter and Prandtl 

number on velocity and temperature profiles, skin friction coefficient and the Nusselt 

number are presented through graphs. It is seen that curvature parameter has dominant effect 

on the flow and heat transfer characteristics. The increment in the curvature of the 

hyperbolic stretching cylinder increase both the momentum and thermal boundary layer 

thicknesses. Also skin friction coefficient at the surface of cylinder decreases but Nusselt 

number shows opposite results. Temperature distribution is decreasing by increasing Prandtl 

number. Similarly, the effects of different physical parameters on entropy generation 

number and Bejan number are shown graphically and discussed it detailed in results and 

discussion section.  

 

2.1 Problem formulation 

Let us consider the two-dimensional steady incompressible flow of a Newtonian fluid over 

a hyperbolic stretching circular cylinder of fixed radius 𝑅∗. It is assumed that the cylinder 

is being stretched hyperbolically with the function 𝑐𝑜𝑠ℎ (𝑧/𝑙). The geometry of the problem 

is shown in Figure 2.1 with cylindrical coordinates are taken into account. The basic 

equations which governs the flow and heat transfer phenomena will take the form as 

𝜕(𝑟𝑢)

𝜕𝑟
+
𝜕(𝑟𝑣)

𝜕𝑧
= 0, (2.1) 

𝑢
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𝜕𝑟
+ 𝑣

𝜕𝑣

𝜕𝑧
= 𝜈

𝜕

𝑟𝜕𝑟
(𝑟
𝜕𝑣

𝜕𝑟
), (2.2) 
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𝜕𝑇

𝜕𝑟
), (2.3) 
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Figure 2.1: Geometry of the flow. 

 

where 𝑢 and 𝑣 are the velocity components along 𝑟 and 𝑧 directions, 𝑇 be the temperature 

of the fluid within boundary layer, 𝛼 = 𝑘/𝜌𝑐𝑝 be the thermal diffusivity of the fluid. The 

boundary conditions relevant to velocity and temperature profile are: 

𝑣(𝑟, 𝑧) = 𝑉𝑤(𝑧), 𝑢(𝑟, 𝑧) = 0, 𝑇 = 𝑇𝑤 = 𝑇∞ + 𝐴𝑉𝑤(𝑧)  at  𝑟 = 𝑅
∗,

𝑣(𝑟, 𝑧) → 0, 𝑇 = 𝑇∞  as  𝑟 → ∞,
 (2.4) 

where 𝐴 is a constant. Now introducing the dimensionless transformation 

𝜉 =
𝑧

𝑙
,       𝜂 =

𝑟2 − 𝑅∗2

2𝑅∗𝑧
𝑅𝑒𝑧

1/2
, 𝜓 = 𝜈𝑅∗𝑅𝑒𝑧

1/2
𝑓(𝜂, 𝜉),

𝜃(𝜂, 𝜉) =
𝑇 − 𝑇∞ 

𝑇𝑤 − 𝑇∞ 
 

(2.5) 

Where 𝜉 and 𝜂 are dimensionless variables,  𝑅𝑒𝑧 = 𝑧𝑉𝑤/𝜈 is local Reynolds number, 𝑇𝑤 is 

temperature at surface of cylinder, 𝑇∞ is atmospheric temperature and stream function 𝜓 is 

the non-dimensional function defined through usual relationship as 

  𝑢 = −
𝜕𝜓

𝑟𝜕𝑧
, 𝑣 =

𝜕𝜓

𝑟𝜕𝑟
, (2.6) 

which satisfies the continuity Eq. (2.1). Upon using Eqs. (2.5) and (2.6) into equations (2.2) 

and (2.3), we arrived at following transformed equations 

𝑟2

𝑅∗2
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2𝜉
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𝑓𝑓𝜂𝜂
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𝜕𝑓𝜂
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(2.7) 
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= 𝜉 (𝑓𝜂
𝜕𝜃

𝜕𝜉
− 𝜃𝜂

𝜕𝑓

𝜕𝜉
), 

where 𝑅𝑒𝜉 = 𝜉𝑙𝑉𝑤/𝜈 (local Reynold number) and 𝑃𝑟 = 𝜈/𝛼 (Prandtl number). Using the 

stretching velocity 𝑉𝑤 = 𝑐 cosh 𝜉 in equations (2.7) and (2.8), we get  

(1 + 2𝜂𝛾√
𝜉 

cosh 𝜉
)𝑓𝜂𝜂𝜂 +  2𝛾√

𝜉 

cosh 𝜉
𝑓𝜂𝜂 +

1

2
(1 + 𝜉 tanh 𝜉)𝑓𝑓𝜂𝜂 − 

(𝜉tanh𝜉)𝑓𝜂
2 = 𝜉 (𝑓𝜂

𝜕𝑓𝜂

𝜕𝜉
− 𝑓𝜂𝜂

𝜕𝑓

𝜕𝜉
), 

(2.9) 

1

𝑃𝑟
(1 + 2𝜂𝛾√

𝜉 

cosh 𝜉
)𝜃𝜂𝜂 + 

2𝛾

𝑃𝑟
√

𝜉 

cosh 𝜉
𝜃𝜂 +

1

2
(1 + 𝜉 tanh 𝜉)𝑓𝜃𝜂 − 

𝜉 tanh 𝜉𝜃𝑓𝜂 = 𝜉 (𝑓𝜂
𝜕𝜃

𝜕𝜉
− 𝜃𝜂

𝜕𝑓

𝜕𝜉
). 

(2.10) 

The boundary conditions take the new form as 

𝑓(0, 𝜉) = 0, 𝑓𝜂(0, 𝜉) = 1, 𝜃(0, 𝜉) = 1, 𝑓𝜂(∞, 𝜉) = 0, 𝜃(∞, 𝜉) = 0, (2.11) 

where 𝛾 = 𝜈𝑙/𝑐𝑅∗2 is curvature parameter and subscripts in Eqs. (2.9)−(2.11) indicate the 

differentiation with respect to 𝜂. If we consider 𝜉 → 0 and  𝛾 = 0 then Eq. (2.9) reduces to 

the Sakiadis flow equation (Rees and Pop 1995) given by 

𝑓𝜂𝜂𝜂 +
1

2
𝑓𝑓𝜂𝜂 = 0 

(2.12) 

with boundary conditions 

𝑓(0) = 0,  𝑓𝜂(0) = 1,  𝑓𝜂(∞) = 0. (2.13) 

The formula for skin friction coefficient and heat transfer coefficient (Nusselt number) 

having physical significance are given as 

𝐶𝑓 =
𝜏𝑤

𝜎𝑉𝑤
2 , 𝑁𝑢 =

𝜉𝑞𝑤
𝑘(𝑇𝑤 − 𝑇∞)

, (2.14) 

where 𝜏𝑤 be the wall shear stress and 𝑞𝑤 is the constant heat flux from the surface, which 

are formulated as 

𝜏𝑤 = 𝜇 (
𝜕𝑣

𝜕𝑟
)
𝑟=𝑅∗

 𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑟
)
𝑟=𝑅∗

. (2.15) 

Upon using Eq. (2.15) into Eq. (2.14), the expressions in Eq. (2.14) become  

𝐶𝑓𝑅𝑒𝜉
1/2

= 𝑓𝜂𝜂(0, 𝜉), 𝑁𝑢𝑅𝑒𝜉
−1/2

= −𝜃𝜂(0, 𝜉).  (2.16) 
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2.2 Entropy Generation Analysis 

Using the boundary layer assumptions, the local volumetric rate of entropy generation 𝐸𝐺  

for a Newtonian fluid over a hyperbolic stretching cylinder is defined as:  

𝐸𝐺 =            
𝑘

𝑇∞2
(
𝜕𝑇

𝜕𝑟
)
2

 
⏟      

 +     
𝜇

𝑇∞
(
𝜕𝑣

𝜕𝑟
)
2

⏟      
 (2.17) 

The first component on the R.H.S of the above equation is for entropy effects due to heat 

transfer and remaining component is for entropy effects due to fluid friction. After using 

results of Eq. (2.5) in Eq. (2.17), the following form is obtained  

𝐸𝐺  =        
𝑘𝑟2(𝑇𝑤 − 𝑇∞)

2 (cosh𝜉) (𝜃𝜂(𝜂, 𝜉))
2

𝑙𝑅∗2𝑇∞
2𝜉𝜈

+
𝑟2𝜇(cosh𝜉)3 (𝑓𝜂𝜂(𝜂, 𝜉))

2

𝑙𝑅∗2𝑇∞𝜉𝜈
. (2.18) 

Above equation can be written as 

𝑁𝐸
∗ =

𝐸𝐺
𝐸0
=
(1 + 2𝛾𝜂)𝑅𝑒𝑙 cosh 𝜉

𝜉
[(𝜃𝜂(𝜂, 𝜉))

2

+
𝐵𝑟(cosh 𝜉)2 (𝑓𝜂𝜂(𝜂, 𝜉))

2

Ω∗
], (2.19) 

where 𝑁𝐸
∗ is the entropy generation number which is the ratio of local volumetric rate of 

entropy generation 𝐸𝐺  and characteristic entropy generation rate 𝐸0 = 𝑘(𝑇𝑤 − 𝑇∞)
2/𝑙2𝑇∞

2 , 

𝑅𝑒𝑙 = 𝑐𝑙/𝜈, is the Reynolds number, 𝐵𝑟 = 𝜇𝑐2/𝑘(𝑇𝑤 − 𝑇∞) is the Brinkman number, and 

Ω∗ = (𝑇𝑤 − 𝑇∞)/𝑇∞ is the dimensionless temperature difference and the ratio 𝐵𝑒Ω∗−1 is 

group parameter. The Bejan number 𝐵𝑒 serves as a substitute of entropy generation 

parameter and it represents the ratio between the entropy generation due to heat transfer and 

the total entropy generation due to combined heat transfer and fluid friction. It is defined by  

𝐵𝑒 =
𝑁𝐸𝐻𝑇

𝑁𝐸𝐻𝑇 +𝑁𝐸𝐹𝐹
 . (2.20) 

Here 

𝑁𝐸𝐻𝑇 =
(1 + 2𝛾𝜂)𝑅𝑒𝑙 cosh 𝜉

𝜉
(𝜃𝜂(𝜂, 𝜉))

2

 , (2.21) 

𝑁𝐸𝐹𝐹 =
(1 + 2𝛾𝜂)𝑅𝑒𝑙 cosh

3 𝜉

𝜉
𝐵𝑒Ω∗−1 (𝑓𝜂𝜂(𝜂, 𝜉))

2

, (2.22) 

where the subscripts 𝐸𝐻𝑇 and 𝐸𝐹𝐹 stands for entropy due to heat transfer and entropy due 

to fluid friction. Bejan number 𝐵𝑒 can also be presented as 𝐵𝑒 = 1/(1 + Ω∗), where Ω∗ =

𝑁𝐸𝐹𝐹/𝑁𝐸𝐻𝑇 is called irreversibility ratio. 
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2.3 Solution Methodology 

To solve nonlinear system of partial differential equations (2.9) and (2.10) subject to the set 

of boundary conditions (2.11), we employed a very accurate and efficient implicit finite 

difference method commonly known as Keller box method (Cebeci and Bradshaw 1984). 

For present problem, the solution is obtained through following procedure. 

The Eqs. (2.9) and (2.10) are written in terms of system of first order differential equations.  

Setting  

𝑓𝜂 = 𝑝, 𝑝𝜂  = 𝑞, 𝜃𝜂 = 𝑈 (2.23) 

in differential equations (2.9, 2.10) and boundary conditions (2.11) results as: 

(1 + 2𝜂𝛾√
𝜉

𝑐𝑜𝑠ℎ𝜉
) 𝑞𝜂 + 2𝛾√

𝜉

𝑐𝑜𝑠ℎ𝜉
 𝑞 +

1

2
(1 + 𝜉𝑡𝑎𝑛ℎ𝜉)𝑓𝑞 − (𝜉𝑡𝑎𝑛ℎ𝜉)𝑝2

= 𝜉 (𝑝
𝜕𝑝

𝜕𝜉
− 𝑞

𝜕𝑓

𝜕𝜉
), 

(2.24) 

1

𝑃𝑟
(1 + 2𝜂𝛾√

𝜉 

cosh 𝜉
)𝑈𝜂 + 

2𝛾

𝑃𝑟
√

𝜉 

cosh 𝜉
𝑈 +

1

2
(1 + 𝜉 tanh 𝜉)𝑓𝑈

− 𝜉 (tanh 𝜉)𝜃𝑝 = 𝜉 (𝑓𝜂
𝜕𝑠

𝜕𝜉
− 𝑈

𝜕𝑓

𝜕𝜉
), 

(2.25) 

and new form of boundary conditions will be   

𝑓(0, 𝜉) = 0, 𝑝(0, 𝜉) = 1, 𝜃(0, 𝜉) = 1 

𝑓(∞, 𝜉) = 0,    𝜃(∞, 𝜉) = 0. 
(2.26) 

A net on the plane (𝜉, 𝜂) is defined as 

𝜂0 = 0, 𝜂𝑗 = 𝜂𝑗−1 + ∆𝜂, 𝜂𝑗 = 𝜂∞, 𝑗 = 1,2, … , 𝐽 − 1, 

𝜉0 = 0, 𝜉𝑛 = 𝜉𝑛−1 + ∆𝜉, 𝑛 = 1,2, …, 
(2.27) 

where 𝑛 and 𝑗 are positive integers, ∆𝜂 and ∆𝜉 are widths of meshing variables on (𝜉, 𝜂) 

plane. The approximate quantities of functions 𝑓, 𝑝, 𝑞, 𝜃, and 𝑈 at the net point (𝜉𝑛, 𝜂𝑗) are 

known as net functions whose derivatives in 𝜂 and 𝜉-directions are replaced by the central 

difference formulae and functions itself are replaced by average centered at the midpoint 

(𝜉𝑛−1/2, 𝜂𝑗−1/2) defined as 

𝜕

𝜕𝜉
( )|

𝑗

𝑛−1/2

=
1

∆𝜉
(𝑓𝑗

𝑛 − 𝑓𝑗
𝑛−1),   

𝜕

𝜕𝜂
( )|

𝑗−1/2

𝑛

=
1

∆𝜂
(𝑓𝑗

𝑛 − 𝑓𝑗−1
𝑛 ),   

and 
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𝑓𝑗
𝑛−1/2

=
1

2
(𝑓𝑗

𝑛 + 𝑓𝑗
𝑛−1),   𝑓𝑗−1/2

𝑛 =
1

2
(𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 ). 

After discretization, the system of nonlinear partial differential Eqs. (2.24) and (2.25) are 

converted to the system of difference equations with equal number of unknowns as: 

(

 1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2
)

 
𝑞𝑗
𝑛 − 𝑞𝑗−1

𝑛

Δ𝜂
+ 2𝛾√

𝜉𝑛−
1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2

  
𝑞𝑗
𝑛 + 𝑞𝑗−1

𝑛

2

+
1

8
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (

𝑓𝑗
𝑛 + 𝑓𝑗−1

𝑛

2
)(
𝑞𝑗
𝑛 + 𝑞𝑗−1

𝑛

2
)

−
1

4
(𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 )

2

−
𝜉𝑛−

1
2

4Δ𝜉
{(𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 )

2
− (𝑞𝑗

𝑛 + 𝑞𝑗−1
𝑛 )(𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 )

+ (𝑞𝑗
𝑛 + 𝑞𝑗−1

𝑛 )(𝑓𝑗
𝑛−1 + 𝑓𝑗−1

𝑛−1) − (𝑞𝑗
𝑛−1 + 𝑞𝑗−1

𝑛−1)(𝑓𝑗
𝑛 + 𝑓𝑗−1

𝑛 )}

= 𝑟
𝑗−
1
2

𝑛−1 , 

(2.28) 

1

𝑃𝑟

(

 1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2
)

 
𝑈𝑗
𝑛 +𝑈𝑗−1

𝑛

2
+
𝛾

𝑃𝑟
√

𝜉𝑛−
1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2

  (𝑈𝑗
𝑛 + 𝑈𝑗−1

𝑛 )

+
1

8
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (

𝑓𝑗
𝑛 + 𝑓𝑗−1

𝑛

2
)(
𝑈𝑗
𝑛 + 𝑈𝑗−1

𝑛

2
)

− 𝜉𝑛−
1
2 (𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (

𝜃𝑗
𝑛 + 𝜃𝑗−1

𝑛

2
)(
𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛

2
)

−
𝜉𝑛−

1
2

4Δ𝜉
[(𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 + 𝑝𝑗

𝑛−1 + 𝑝𝑗−1
𝑛−1)(𝑄𝑗

𝑛 + 𝑄𝑗−1
𝑛 )

− (𝑈𝑗
𝑛 +𝑈𝑗−1

𝑛 )(𝑓𝑗
𝑛 + 𝑓𝑗−1

𝑛 − 𝑓𝑗
𝑛−1 − 𝑓𝑗−1

𝑛−1)] = 𝑚
𝑗−
1
2

𝑛−1 . 

(2.29) 

𝑓𝑗
𝑛 − 𝑓𝑗−1

𝑛 =
∆𝜂

2
(𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛 ), (2.30) 

𝑝𝑗
𝑛 − 𝑝𝑗−1

𝑛 =
∆𝜂

2
(𝑞𝑗
𝑛 + 𝑞𝑗−1

𝑛 ), (2.31) 

𝜃𝑗
𝑛 − 𝜃𝑗−1

𝑛 =
∆𝜂

2
(𝑈𝑗

𝑛 + 𝑈𝑗−1
𝑛 ), (2.32) 

where 
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𝑟
𝑗−
1
2

𝑛−1 = −

(

 1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2
)

 (
𝑞𝑗
𝑛−1 − 𝑞𝑗−1

𝑛−1

Δ𝜂
)

+ 2𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2

  (
𝑞𝑗
𝑛−1 + 𝑞𝑗−1

𝑛−1

2
)

+
1

2
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (

𝑓𝑗
𝑛 + 𝑓𝑗−1

𝑛

2
)(
𝑞𝑗
𝑛 + 𝑞𝑗−1

𝑛

2
)

− (𝜉𝑛−
1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (

𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛

2
)

2

+
𝜉𝑛−

1
2

4Δ𝜉
[−(𝑝𝑗

𝑛−1 + 𝑝𝑗−1
𝑛−1)

2
+ (𝑞𝑗

𝑛−1 + 𝑞𝑗−1
𝑛−1)(𝑓𝑗

𝑛−1 + 𝑓𝑗−1
𝑛−1)], 

 

(2.33) 

𝑚
𝑗−
1
2

𝑛−1 = −
1

𝑃𝑟

(

 1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2
)

 (
𝑈𝑗
𝑛−1 + 𝑈𝑗−1

𝑛−1

2
)

−
𝛾

𝑃𝑟
√

𝜉𝑛−
1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2

  (𝑈𝑗
𝑛−1 + 𝑈𝑗−1

𝑛−1)

−
1

8
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑓𝑗

𝑛−1 + 𝑓𝑗−1
𝑛−1)(𝑈𝑗

𝑛−1 + 𝑈𝑗−1
𝑛−1)

+ 𝜉𝑛−
1
2 (𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (

𝜃𝑗
𝑛−1 + 𝜃𝑗−1

𝑛−1

2
)(
𝑝𝑗
𝑛−1 + 𝑝𝑗−1

𝑛−1

2
)

+
𝜉𝑛−

1
2

4Δ𝜉
[−(𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 + 𝑝𝑗

𝑛−1 + 𝑝𝑗−1
𝑛−1)(𝜃𝑗

𝑛−1 + 𝜃𝑗−1
𝑛−1)

− (𝑈𝑗
𝑛−1 +𝑈𝑗−1

𝑛−1)(𝑓𝑗
𝑛 + 𝑓𝑗−1

𝑛 − 𝑓𝑗
𝑛−1 − 𝑓𝑗−1

𝑛−1)], 

(2.34) 

The boundary conditions (2.26) become 

𝑓0
𝑛 = 0, 𝑝0

𝑛 = 1, 𝜃0
𝑛 = 1, 𝑝𝐽

𝑛 = 𝜃𝐽
𝑛 = 0 (2.35) 

The nonlinear algebraic Eqs. (2.28) and (2.29) are linearized by using Newton method by 

introducing (𝑖 + 1)𝑡ℎ iterates as  

(𝑓𝑗
𝑛)
(𝑖+1)

= (𝑓𝑗
𝑛)
(𝑖)
+ (𝛿𝑓𝑗

𝑛)
(𝑖)

 (2.36) 
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and similarly for all other dependent (unknown) variables. Here (𝑓𝑗
𝑛)
(𝑖)

 is known for 0 <

𝑗 ≤ 𝐽 as an initial guess and (𝛿𝑓𝑗
𝑛)
(𝑖)

is unknown. After using the Newton linearization 

process and neglecting the terms containing square and higher order of 

(𝛿𝑓𝑗
𝑛)
(𝑖)
, (𝛿𝑝𝑗

𝑛)
(𝑖)
, (𝛿𝑞𝑗

𝑛)
(𝑖)
, (𝛿𝜃𝑗

𝑛)
(𝑖)

 and (𝛿𝑈𝑗
𝑛)
(𝑖)

, the system of linear algebraic equations 

is obtained which are as follows:  

𝛿𝑓𝑗
𝑛 − 𝛿𝑓𝑗−1

𝑛 −
Δ𝜂

2
(𝛿𝑝𝑗

𝑛 + 𝛿𝑝𝑗−1
𝑛 ) = (𝑟1)𝑗, 

(𝑎1)𝑗𝛿𝑓𝑗−1
𝑛 + (𝑎2)𝑗𝛿𝑓𝑗

𝑛 + (𝑎3)𝑗𝛿𝑝𝑗−1
𝑛 + (𝑎4)𝑗𝛿𝑝𝑗

𝑛 + (𝑎5)𝑗𝛿𝑞𝑗−1
𝑛 + (𝑎6)𝑗𝛿𝑞𝑗

𝑛 = (𝑟2)𝑗, 

(𝑎7)𝑗𝛿𝜃𝑗−1
𝑛 + (𝑎8)𝑗𝛿𝜃𝑗

𝑛 + (𝑎9)𝑗𝛿𝑈𝑗−1
𝑛 + (𝑎10)𝑗𝛿𝑈𝑗

𝑛 = (𝑟3)𝑗, 

𝛿𝑝𝑗
𝑛 − 𝛿𝑝𝑗−1

𝑛 −
∆𝜂

2
(𝛿𝑞𝑗

𝑛 + 𝛿𝑞𝑗−1
𝑛 ) = (𝑟4)𝑗, 

𝛿𝜃𝑗
𝑛 − 𝛿𝜃𝑗−1

𝑛 −
∆𝜂

2
(𝛿𝑈𝑗

𝑛 + 𝛿𝑈𝑗−1
𝑛
) = (𝑟5)𝑗, 

The boundary conditions (2.35) take the form as  

𝛿𝑓0
𝑛 = 0, 𝛿𝑝0

𝑛 = 1, 𝛿𝜃0
𝑛 = 1, 𝛿𝑝𝐽

𝑛 = 𝛿𝜃𝐽
𝑛 = 0. 

Finally, the above system of linear algebraic equations with boundary conditions will be 

written in matrix vector form. The coefficients of unknown functions 𝛿𝑓𝑗
𝑛,  𝛿𝑝𝑗

𝑛, 𝛿𝑞𝑗
𝑛, 𝛿𝜃0

𝑛, 

 𝛿𝑈𝐽
𝑛 in momentum and energy equations and non-homogeneous parts are given as: 

Coefficient of momentum equation 

Coefficient of 𝛿𝑓𝑗−1
𝑛 : 

(𝑎1)𝑗 = 
1

8
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑞𝑗

𝑛 + 𝑞𝑗−1
𝑛 ) +

𝜉𝑛−
1
2

4Δ𝜉
[(𝑞𝑗

𝑛 + 𝑞𝑗−1
𝑛 ) + (𝑞𝑗

𝑛−1 + 𝑞𝑗−1
𝑛−1)] 

Coefficient of 𝛿𝑓𝑗
𝑛: 

(𝑎2)𝑗 = 
1

8
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑞𝑗

𝑛 + 𝑞𝑗−1
𝑛 ) +

𝜉𝑛−
1
2

4Δ𝜉
[𝑞𝑗
𝑛 + 𝑞𝑗−1

𝑛 + 𝑞𝑗
𝑛−1 + 𝑞𝑗−1

𝑛−1] 

Coefficient of 𝛿𝑝𝑗−1
𝑛 : 

(𝑎3)𝑗 = −
1

2
(𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 ) −

𝜉𝑛−
1
2

2Δ𝜉
(𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛 ) 

Coefficient of 𝛿𝑝𝑗
𝑛: 

(𝑎4)𝑗 = −
1

2
(𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 ) −

𝜉𝑛−
1
2

2Δ𝜉
(𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛 ) 

Coefficient of 𝛿𝑞𝑗−1
𝑛 : 
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(𝑎5)𝑗 = −
1

∆𝜂
[
 
 
 

1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2
]
 
 
 

+ 𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2

+
1

8
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 )

+
𝜉𝑛−

1
2

2Δ𝜉
[(𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 ) + (𝑓𝑗

𝑛−1 + 𝑓𝑗−1
𝑛−1)] 

Coefficient of 𝛿𝑞𝑗
𝑛: 

(𝑎6)𝑗 =
1

∆𝜂

[
 
 
 

1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2
]
 
 
 

+ 𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2

+
1

8
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 ) 

+
𝜉𝑛−

1
2

2Δ𝜉
[(𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 ) + (𝑓𝑗

𝑛−1 + 𝑓𝑗−1
𝑛−1)] 

Coefficient of energy equation 

Coefficient of 𝛿𝜃𝑗−1
𝑛 : 

(𝑎7)𝑗 = −
1

4
𝜉𝑛−

1
2 (𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 ) −

𝜉𝑛−
1
2

4Δ𝜉
[𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛 + 𝑝𝑗
𝑛−1 + 𝑝𝑗−1

𝑛−1] 

Coefficient of 𝛿𝜃𝑗
𝑛: 

(𝑎8)𝑗 = −
1

4
𝜉𝑛−

1
2 (𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 ) −

𝜉𝑛−
1
2

4Δ𝜉
[𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛 + 𝑝𝑗
𝑛−1 + 𝑝𝑗−1

𝑛−1] 

Coefficient of 𝛿𝑈𝑗−1
𝑛 : 

(𝑎9)𝑗 =
1

𝑃𝑟

(

 1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2
)

 +
𝛾

𝑃𝑟
√

𝜉𝑛−
1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2

+
1

8
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 ) 

Coefficient of 𝛿𝑈𝑗
𝑛: 

(𝑎10)𝑗 =
1

𝑃𝑟

(

 1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2
)

 +
𝛾

𝑃𝑟
√

𝜉𝑛−
1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2

+ 
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1

8
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 ) 

Non-homogeneous terms 

(𝑟𝟏)𝒋 = (𝑓𝑗−1
𝑛 − 𝑓𝑗

𝑛) +
Δ𝜂

2
 (𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 ), 

(𝑟𝟐)𝒋 = −

[
 
 
 

1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2
]
 
 
 

(
𝑞𝑗
𝑛−1 − 𝑞𝑗−1

𝑛−1

2
)

− 2𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2

 (
𝑞𝑗
𝑛−1 + 𝑞𝑗−1

𝑛−1

2
)

−
1

8
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑓𝑗

𝑛−1 + 𝑓𝑗−1
𝑛−1)(𝑞𝑗

𝑛−1 + 𝑞𝑗−1
𝑛−1)

+ (𝜉𝑛−
1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (

𝑝𝑗
𝑛−1 + 𝑝𝑗−1

𝑛−1

2
)

2

 

+
𝜉𝑛−

1
2

4Δ𝜉
[−(𝑝𝑗

𝑛−1 + 𝑝𝑗−1
𝑛−1)

2
+ (𝑞𝑗

𝑛−1 + 𝑞𝑗−1
𝑛−1)(𝑓𝑗

𝑛−1 + 𝑓𝑗−1
𝑛−1)]

−

[
 
 
 

1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2
]
 
 
 

(
𝑞𝑗
𝑛 − 𝑞𝑗−1

𝑛

Δη
)

− 𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2

 (𝑞𝑗
𝑛 + 𝑞𝑗−1

𝑛 ) 

−
1

8
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 )(𝑞𝑗

𝑛 + 𝑞𝑗−1
𝑛 ) +

1

4
(𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) × 

(𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛 )
2
+
𝜉𝑛−

1
2

4Δ𝜉
{(𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 )

2
− (𝑞𝑗

𝑛 + 𝑞𝑗−1
𝑛 )(𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 )

+ (𝑞𝑗
𝑛 + 𝑞𝑗−1

𝑛 )(𝑓𝑗
𝑛−1 + 𝑓𝑗−1

𝑛−1) − (𝑞𝑗
𝑛−1 + 𝑞𝑗−1

𝑛−1)(𝑓𝑗
𝑛 + 𝑓𝑗−1

𝑛 )}, 

(𝑟𝟑)𝒋 = −
1

𝑃𝑟
[
 
 
 

1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2
]
 
 
 

(
𝑈𝑗
𝑛−1 − 𝑈𝑗−1

𝑛−1

2
) 
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−
𝛾

𝑃𝑟
√

𝜉𝑛−
1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2

 (
𝑈𝑗
𝑛−1 + 𝑈𝑗−1

𝑛−1

2
)

−
1

8
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑓𝑗

𝑛−1 + 𝑓𝑗−1
𝑛−1)(𝑈𝑗

𝑛−1 + 𝑈𝑗−1
𝑛−1)

+ 𝜉𝑛−
1
2 (𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (

𝜃𝑗
𝑛−1 + 𝜃𝑗−1

𝑛−1

2
)(
𝑝𝑗
𝑛−1 + 𝑝𝑗−1

𝑛−1

2
) 

−
1

𝑃𝑟
[
 
 
 

1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾√
𝜉𝑛−

1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2
]
 
 
 

(
𝑈𝑗
𝑛 − 𝑈𝑗−1

𝑛

2
) −

𝛾

𝑃𝑟
√

𝜉𝑛−
1
2

𝑐𝑜𝑠ℎ𝜉𝑛−
1
2

 (𝑈𝑗
𝑛 + 𝑈𝑗−1

𝑛 ) 

−
1

8
(1 + 𝜉𝑛−

1
2𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 )(𝑈𝑗

𝑛 + 𝑈𝑗−1
𝑛 )

+
𝜉𝑛−

1
2

4
(𝑡𝑎𝑛ℎ𝜉𝑛−

1
2) (𝜃𝑗

𝑛 + 𝜃𝑗−1
𝑛 )(𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 ) 

+
𝜉𝑛−

1
2

4Δ𝜉
[(𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 + 𝑝𝑗

𝑛−1 + 𝑝𝑗−1
𝑛−1)(𝜃𝑗

𝑛 + 𝜃𝑗−1
𝑛 − 𝜃𝑗

𝑛−1 − 𝜃𝑗−1
𝑛−1)

− (𝑈𝑗
𝑛 + 𝑈𝑗−1

𝑛 + 𝑈𝑗
𝑛−1 + 𝑈𝑗−1

𝑛−1)(𝑓𝑗
𝑛 + 𝑓𝑗−1

𝑛 − 𝑓𝑗
𝑛−1 − 𝑓𝑗−1

𝑛−1)], 

(𝑟4)𝒋 = (𝑝𝑗−1
𝑛 − 𝑝𝑗

𝑛) +
Δ𝜂

2
 (𝑞𝑗

𝑛 + 𝑞𝑗−1
𝑛 ), 

(𝑟5)𝒋 = (𝜃𝑗−1
𝑛 − 𝜃𝑗

𝑛) +
Δ𝜂

2
 (𝑈𝑗

𝑛 + 𝑈𝑗−1
𝑛 ). 

In matrix form 

𝐴̅𝛿̅ = 𝑟̅  

Where 

𝐴̅ =

[
 
 
 
 
 
 
 
 
𝐷0 𝑀0
𝐿1 𝐷1 𝑀1

𝐿2 𝐷2 𝑀2
⋱ ⋱ ⋱

⋱ ⋱ ⋱
⋱ ⋱ ⋱

𝐿𝐽−1 𝐷𝐽−1 𝑀𝐽−1
𝐿𝐽 𝐷𝐽 ]

 
 
 
 
 
 
 
 

, 𝛿̅ =

[
 
 
 
 
 
 
 
 
𝛿0
𝛿1
𝛿2
⋮
⋮
⋮

𝛿𝐽−1
𝛿𝐽 ]
 
 
 
 
 
 
 
 

, 𝑟̅ =

[
 
 
 
 
 
 
 
𝑟0
𝑟1
𝑟2
⋮
⋮
⋮
𝑟𝐽−1
𝑟𝐽 ]
 
 
 
 
 
 
 

 (2.37) 

and 
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𝐷0 =

[
 
 
 
 
 
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0

0 −1 −
ℎ

2
0 0

0 0 0 −1 −
ℎ

2]
 
 
 
 
 

, 𝑀𝑗 =

[
 
 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 1 −
ℎ

2
0 0

0 0 0 1 −
ℎ

2]
 
 
 
 
 

;    𝑗 = 0,1, … 𝐽 − 1 

𝐿𝑗 =

[
 
 
 
 
 −1 −

ℎ

2
0 0 0

 (𝑎1)𝑗 (𝑎3)𝑗 (𝑎5)𝑗 0 0

0 0 0 (𝑎7)𝑗 (𝑎9)𝑗
0 0 0 0 0
0 0 0 0 0 ]

 
 
 
 
 

;    𝑗 = 1,2, … 𝐽 

𝐷𝑗 =

[
 
 
 
 
 
 
 
 1 −

ℎ

2
0 0 0

 (𝑎2)𝑗 (𝑎4)𝑗 (𝑎6)𝑗 0 0

0 0 0 (𝑎8)𝑗 (𝑎10)𝑗

0 −1 −
ℎ

2
0 0

0 0 0 −1 −
ℎ

2 ]
 
 
 
 
 
 
 
 

;    𝑗 = 1,2, … 𝐽 − 1 

𝐷𝐽 =

[
 
 
 
 
 1 −

ℎ

2
0 0 0

 (𝑎2)𝑗 (𝑎4)𝑗 (𝑎6)𝑗 0 0

0 0 0 (𝑎8)𝑗 (𝑎10)𝑗
0 1 0 0 0
0 0 0 1 0 ]

 
 
 
 
 

  

 𝑟0 =

[
 
 
 
 
0
0
0

(𝑟4)1
(𝑟5)1]

 
 
 
 

 , 𝑟𝑗 =

[
 
 
 
 
 
(𝑟1)𝑗
(𝑟2)𝑗
(𝑟3)𝑗
(𝑟4)𝑗+1
(𝑟5)𝑗+1]

 
 
 
 
 

  ,  𝑟𝐽 =

[
 
 
 
 
(𝑟1)𝐽
(𝑟2)𝐽
(𝑟3)𝐽
0
0 ]
 
 
 
 

, 𝛿𝑗 =

[
 
 
 
 
 
𝛿𝑓𝑗

𝑛

𝛿𝑝𝑗
𝑛

𝛿𝑞𝑗
𝑛

𝛿𝜃𝑗
𝑛

𝛿𝑈𝑗
𝑛
]
 
 
 
 
 

;  𝑗 = 0,1,2, … , 𝑗; 𝑛 = 0,1, … , 𝑁. 

The resulting matrix vector form is solved by using block-tridiagonal elimination technique, 

which consists of two sweeps namely forward sweep and backward sweep. The edge of the 

boundary layer 𝜂∞ and step sizes ∆𝜂 and ∆𝜉 in 𝜂 and 𝜉 respectively are set for different 

range of parameters involved in the problem. The accuracy of the employed numerical 

scheme has been established through comparison with the known results obtained by Rees 

and Pop (1995) for flat plate (𝜉 = 0) as shown in Table 2.1. This comparison gives us 

confidence that the developed code is correct and has achieved the desired level of accuracy. 

Moreover, the values of 𝐶𝑓𝑅𝑒𝜉
1/2

 and 𝑁𝑢𝑅𝑒𝜉
−1/2

 against different values of parameters 𝛾 

are given in Table 2.2. 
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Table 2.1: Comparison with Rees and Pop (1995) 

𝜉 = 0  𝐶𝑓𝑅𝑒𝜉
1/2

 𝑁𝑢𝑅𝑒𝜉
−1/2

 

Ref. (1995) −0.4439 −0.3509 

Present −0.4439 −0.3509 

 

Table 2.2: Numerical results for 𝐶𝑓𝑅𝑒𝜉
1/2

and 𝑁𝑢𝑅𝑒𝜉
−1/2

 at different 𝛾 when 𝑃𝑟 = 0.7 at 

𝜉 = 0.5. 

𝛾 𝐶𝑓𝑅𝑒𝜉
1/2

 𝑁𝑢𝑅𝑒𝜉
−1/2

 

0 −0.55387 0.41012 

0.5 −0.71911 0.60043 

1 −0.88994 0.78894 

1.5 −1.05690 0.96676 

 

2.4 Results and Discussion 

The governing partial differential equations indicates the presence of two emerging 

parameters: (a) the curvature parameter 𝛾, (b) and the Prandtl number 𝑃𝑟. 

The effects of these parameters are discussed in the forthcoming figures. In Figures 2.2 and 

2.3, effects of 𝛾 on velocity and temperature profile are plotted. It is observed that curvature 

has significant effects on velocity and temperature profiles. In Figure 2.2, the trend for 

velocity profile is rapidly decreasing in the region (0 < 𝜂 < 0.42) and then increasing after 

𝜂 = 0.42 for increasing values of curvature parameter 𝛾 and consequently the boundary 

layer thickness increases with the increase in curvature of the cylinder. Since the curvature 

𝛾 and radius of cylinder have reciprocal relationship i.e., increase in 𝛾 tends to decrease in 

radius of cylinder, therefore, due to lesser surface area of the cylinder, the increase in 

velocity gradient at the surface is produced and consequently enhances the shear stress per 

unit area. Figure 2.2 also depicts that an increase in the curvature of the cylinder leads to 

augment in boundary layer thickness, as compared to that of flat plate case (𝛾 = 0). In 

Figure 2.3, it is seen that the temperature profiles decrease near the surface of the cylinder 

as 𝛾 increases, and afterwards rise significantly and the thermal boundary-layer thickness 

increases. This variation of the temperature profile is due to the reason that as the curvature 

increases, the radius of cylinder reduces so the surface area which is intact with the fluid 
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also decreases. It is also important to mention that heat is transferred into the fluid in modes: 

conduction at the cylinder surface and convection for the region 𝜂 > 0. Now, as the area of 

surface of the cylinder decreases, a slender reduction in the temperature profile occurs close 

to the surface of the cylinder owing to the fact that a smaller amount of heat energy is 

transferred from the surface to the fluid through conduction phenomena. On the other hand, 

the thermal boundary-layer thickness increases, because of the heat transport in the fluid 

due to enhanced convection process all around the cylinder, which is evident from Figure 

2.3. Figure 2.4 is plotted to observe the consequence of curvature parameter 𝛾 on the 

coefficient of skin friction 𝐶𝑓𝑅𝑒𝜉
1/2

. It is noticed that as 𝛾 increases, 𝐶𝑓𝑅𝑒𝜉
1/2

 decreases. This 

is due to the reason that for larger curvature of the cylinder, the velocity gradient at the 

surface become increase rapidly and skin friction coefficient decreases as compared to that 

of flat plate (𝛾 = 0). Figure 2.5 is plotted to observe the consequence of curvature parameter 

𝛾 on the Nusselt number 𝑁𝑢𝑅𝑒𝜉
−1/2

. It is noticed that as 𝛾 increases the Nusselt number 

𝑁𝑢𝑅𝑒𝜉
−1/2

 also increases. It is observed from Figures 2.6 and 2.7 that both velocity and 

temperature boundary layer thickness decreases by increasing the value of  𝜉. The effects of 

different values of 𝑃𝑟 on temperature profile have been discussed in Figure 2.8.  

 

 

Figure 2.2: Effects on velocity profile due to different values of 𝛾 at  𝜉 = 3. 
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Figure 2.3: Effects of 𝛾 on temperature profile while 𝑃𝑟 = 0.7, 𝐸𝑐 = 0.5 and 𝜉 = 3. 

 

 

Figure 2.4: Effects on 𝐶𝑓𝑅𝑒𝜉
1/2

 for different 𝛾 against 𝜉. 
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Figure 2.5: Effects on 𝑁𝑢𝑅𝑒𝜉
−1/2

 for different 𝛾 against 𝜉 while 𝑃𝑟 = 0.7. 

 

 

 

Figure 2.6: Velocity profile at 𝜉 = 0.5, 1, 1.5, 3 when 𝛾 = 0.5. 
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Figure 2.7: Temperature profile at 𝜉 = 0.5, 1, 1.5, 3 when 𝛾 = 0.5.and 𝑃𝑟 = 0.7. 

 

 

 

Figure 2.8: Temperature profile at 𝑃𝑟 = 0.025, 0.7, 2, 3.6, 5.5 when 𝜉 = 3. 

 



37 

 

 

 

Figure 2.9: Influence on 𝑁𝑢𝑅𝑒𝜉
−1/2

 for different Pr  against 𝜉. 

 

 

 

Figure 2.10: Influence of 𝑃𝑟 on 𝑁𝐸
∗ when 𝛾 = 0.5, 𝑅𝑒𝑙 = 2, 𝐵𝑟Ω

∗−1 = 1 at 𝜉 = 0.2. 
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Figure 2.11: Influence of 𝑃𝑟 on 𝐵𝑒 when 𝛾 = 0.5, 𝑅𝑒𝑙 = 2, 𝐵𝑟Ω
∗−1 = 1 at 𝜉 = 0.2. 

 

 

 

Figure 2.12: Effects of 𝛾 on 𝑁𝐸
∗ when 𝑅𝑒𝑙 = 2, 𝐵𝑟𝛺

∗−1 = 1, 𝑃𝑟 = 7 at. 𝜉 = 0.2. 
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Figure 2.13: Effects of 𝛾 on 𝐵𝑒 when  𝐵𝑟𝛺∗−1 = 1, 𝑃𝑟 = 7 at 𝜉 = 0.2. 

 

 

 

Figure 2.14: Effects of 𝐵𝑟Ω∗−1 on 𝑁𝐸
∗ when 𝑅𝑒𝑙 = 2, 𝛾 = 0.5, 𝑃𝑟 = 7 at 𝜉 = 0.2. 
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Figure 2.15: Effects of 𝐵𝑟Ω∗−1 on 𝐵𝑒 when 𝛾 = 0.5, 𝑅𝑒𝑙 = 2, 𝑃𝑟 = 7 at 𝜉 = 0.2. 

 

 

 

Figure 2.16: Effects of 𝑅𝑒𝑙 on 𝑁𝐸
∗ when 𝛾 = 0.5, 𝑃𝑟 = 7, 𝐵𝑟Ω∗−1 = 1 at 𝜉 = 0.2. 
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It is observed that temperature and thermal boundary layer thickness decreases with 

increasing 𝑃𝑟. It is obvious from the graph that fluids with low values of 𝑃𝑟 slow down the 

cooling process, and fluids with high Prandtl number expedite the cooling process. Hence 

this behavior of temperature profile shows that the fluids with high Prandtl number such as 

oil and lubricants can be used to enhance the cooling process. Figure 2.9 shows that Nusselt 

number 𝑁𝑢𝑅𝑒𝜉
−1/2

 increases along the surface of cylinder and against the increase of 𝑃𝑟. 

This is because of fact that by increasing the value of 𝑃𝑟 thermal boundary layer decreases 

and heat transfer rate enhances. This finding is also visible from the results shown in Figure 

2.8. Figures 2.10-2.16 are drawn to discuss the influence of Prandtl number 𝑃𝑟, curvature 

parameter 𝛾, group parameter 𝐵𝑟Ω∗−1 and Reynolds number 𝑅𝑒𝑙 on entropy generation 

number 𝑁𝐸
∗ and Bejan number 𝐵𝑒. In Figures 2.10 and 2.11, it is seen that Prandtl number 

𝑃𝑟 is helpful in enhancing the entropy generation 𝑁𝐸
∗ and Bejan number 𝐵𝑒. This is because 

the temperature gradient increases with the larger values of 𝑃𝑟. It is also noted that when 

𝑃𝑟 < 1, a small variation in values of 𝐵𝑒 near the surface of the cylinder is observed and it 

increases for larger   and attains maximum value i.e., 𝐵𝑒 → 1. On the other hand, for the 

case 𝑃𝑟 > 1, large values of 𝐵𝑒 at surface of the cylinder is reported and later start 

decreasing with 𝐵𝑒 → 0 far away from the surface. Figures 2.12 and 2.13 are plotted to see 

the effects of curvature parameter 𝛾 on 𝑁𝐸
∗ and 𝐵𝑒. Both figures depict that entropy 

generation is more dominant for stretching cylinder case 𝛾 > 0 in comparison with that of 

flat plat case 𝛾 = 0. In Figure 2.13, 𝐵𝑒 decrease at the surface of the stretching cylinder 

(𝜂 = 0) and reverse behavior is observed far away from the surface. The variations of group 

parameter 𝐵𝑟Ω∗−1 on 𝑁𝐸
∗ and 𝐵𝑒 are depicted in Figures 2.14 and 2.15. The enhancement 

in 𝐵𝑟Ω∗−1 results in augmentation of 𝑁𝐸
∗ and these effects are opposite on 𝐵𝑒. The values 

of 𝐵𝑒 are decreasing with increase in 𝐵𝑟Ω∗−1 because the fluid friction dominates when 

𝐵𝑟Ω∗−1 increases and this results in decrement of  𝐵𝑒. The effects of 𝑅𝑒𝑙 on entropy 

generation number are expressed in Figure 2.16. The figure reveals that the entropy 

generation number has gained an increasing trend with increase in 𝑅𝑒𝑙. 
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2.5 Conclusions 

In this chapter we presented the characteristics of flow and heat transfer over a nonlinear 

stretching cylinder. The nonlinear stretching velocity is considered as hyperbolic function. 

An analysis of entropy generation is also presented and results are computed numerically 

with Keller box method. From above study it is perceived that the rise in the values of 

curvature parameter 𝛾 causes increase in velocity and temperature distribution in the 

boundary layer region. The value of 𝐶𝑓𝑅𝑒𝜉
1/2

 reduces and 𝑁𝑢𝑅𝑒𝜉
−1/2

 enhances with an 

increase in curvature parameter 𝛾. However, Prandtl number 𝑃𝑟 is responsible to reduce the 

temperature in the boundary layer, and in consequence 𝑁𝑢𝑅𝑒𝜉
−1/2

 enhances. Increasing 

trend in the values of curvature parameter 𝛾, group parameter 𝐵𝑟Ω∗−1 and Prandtl number 

𝑃𝑟 results in enhancement of entropy generation. 
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Chapter 3 

Mixed convection stagnation point flow over a stretching 

cylinder  

In this chapter the analysis of two-dimensional mixed convection flow near the stagnation 

point over a vertical stretching cylinder is presented. The surface of the cylinder is assumed 

with temperature as sinusoidal function of time. The governing partial differential equations 

are converted into dimensionless form by using suitable transformations. The numerical 

solution of dimensionless partial differential equations is computed with the help of Keller 

Box method. The details of the method are also given for better implementation and 

understanding of the readers. To show the accuracy and validity of our results a comparison 

is also shown as a limiting case with previous studies in the literature. Graphs of velocity 

and temperature profiles are plotted for assisting and opposing flow cases at different value 

of time. The assisting buoyant flow augment the momentum boundary layer while opposing 

buoyant flow controls the momentum boundary layer. The thermal boundary layer thickness 

grows with the passage of time. Skin friction and Nusselt number are plotted against 

unsteadiness parameter. The amplitude of surface temperature oscillations is plotted against 

time. It is apparent that for the small value of surface temperature, the amplitude of 

oscillations in skin friction and Nusselt number also drops. Furthermore, isotherms are 

drawn to exhibit the influence of amplitude of surface temperature oscillations on curvature 

parameter with time. 

  

3.1 Problem formulation 

Let us the consider two-dimensional laminar boundary layer fluid flow near the stagnation 

point over a vertically inclined cylinder as shown in Figure 3.1. The cylinder is of fixed 

radius 𝑅∗ is assumed permeable and is being continuously stretching with velocity 𝑉𝑤(𝑧) 

along its own axis. To perform this analysis, the cylindrical coordinate system is considered 

as such that the 𝑧-axis is taken along the axis of the cylinder and the 𝑟-axis is in the radial 

direction with stagnation point at the origin. It is assumed that the stretching (𝑉𝑤) and 

straining (𝑉𝑒) velocities are proportional to distance 𝑧 from the stagnation point i.e., 𝑉𝑤 =

𝑐𝑧/𝑙 and 𝑉𝑒 = 𝑎𝑧/𝑙. The temperature (𝑇𝑤) at the surface of cylinder is considered to be  
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Figure 3.1: Geometry of the problem. 

 

sinusoidal function of time and the ambient fluid temperature is 𝑇∞. For the present problem, 

continuity and energy equations are same as described in Eqs. (2.1) and (2.3) while the 

boundary layer momentum equation with Boussinesq approximation is given by  

𝜕𝑣

𝜕𝑡̅
+ 𝑢

𝜕𝑣

𝜕𝑟
+ 𝑣

𝜕𝑣

𝜕𝑧
= 𝑉𝑒

𝜕𝑉𝑒
𝜕𝑧
+ 𝑣

𝜕

𝑟𝜕𝑟
(𝑟
𝜕𝑣

𝜕𝑟
) + 𝑔𝛽𝑡(𝑇 − 𝑇∞). (3.1) 

The boundary conditions of the assumed flow are 

𝑣 = 𝑉𝑤(𝑧) =
𝑐𝑧

𝑙
, 𝑢(𝑟, 𝑧) = 𝑢𝑤,

 𝑇 = 𝑇𝑤(𝑧) = 𝑇∞ + 𝑇0 (
𝑧

𝑙
) (1 + 𝜖𝑠𝑖𝑛𝜔𝑡̅)  at  𝑟 = 𝑅∗

𝑣 → 𝑉𝑒(𝑧) =
𝑎𝑧

𝑙
, 𝑇 → 𝑇∞  as  𝑟 → ∞ }

 
 

 
 

 (3.2) 

where 𝑔 is the acceleration due to gravity acting downward, 𝛽𝑡 is the thermal expansion 

coefficient, 𝑢𝑤 is the mass flux velocity, 𝑇0 is some temperature scale, 𝑡̅ is the time, 𝜖 is the 

amplitude of surface temperature oscillation and 𝜔 is the frequency of the oscillation. 

Introducing the following non-dimensional variables: 

𝜂 =
𝑟2 − 𝑅∗2

2𝑅∗𝑧
√
𝑐

𝜈𝑙
, 𝜓 = √

𝜈𝑐

𝑙
𝑧𝑅∗𝑓(𝜂, 𝑡), 𝜏 = 𝜔𝑡̅, 𝑇 = 𝑇∞ + 𝑇0 (

𝑧

𝑙
) 𝜃(𝜂, 𝑡), (3.3) 

here 𝑓(𝜂, 𝑡) is the dimensionless function and 𝜃(𝜂, 𝑡) is the dimensionless temperature field. 

From relation (2.6), we obtain  
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𝑢 = −
𝑅∗

𝑟
√
𝜈𝑐

𝑙
𝑓(𝜂, 𝑡)  and  𝑣 =

𝑐𝑧

𝑙
𝑓𝜂(𝜂, 𝑡) (3.4) 

Substituting Eqs. (3.3) and (3.4) into Eqs. (3.1) and (2.3), we get the following 

dimensionless system of partial differential equations 

(1 + 2𝛾𝜂)𝑓𝜂𝜂𝜂 +  2𝛾𝑓𝜂𝜂 + 𝑓𝑓𝜂𝜂 + (
𝑎

𝑐
)
2

− 𝑓𝜂
2 + 𝜆𝜃 − 𝛽𝑓𝜂𝑡  = 0, (3.5) 

(1 + 2𝛾𝜂)𝜃𝜂𝜂 +  2𝛾𝜃𝜂 + 𝑃𝑟(𝑓𝜃𝜂 − 𝑓𝜂𝜃 − 𝛽𝜃𝑡  ) = 0. (3.6) 

The boundary conditions in Eq. (3.2) take the form 

𝜂 = 0:   𝑓(𝜂, 𝑡) = 𝑆, 𝑓𝜂(𝜂, 𝑡) = 1, 𝜃(𝜂, 𝑡) = 1 + 𝜖 sin 𝑡, 
(3.7) 

𝜂 → ∞:   𝜃(𝜂, 𝑡) = 0, 𝑓𝜂(𝜂, 𝑡 ) = 𝑎/𝑐 , 

where 𝛾 = √𝜈𝑙 𝑐𝑅∗2⁄  is curvature parameter, 𝑎 𝑐⁄  is the ratio of straining (free stream) to 

stretching velocities, 𝜆 = 𝐺𝑟𝑧 𝑅𝑒𝑧
2⁄  is the mixed convection parameter where 𝐺𝑟𝑧 =

𝑔𝛽𝑡𝑇0𝑧
4 𝑙𝜈2⁄  and 𝑅𝑒𝑧 = 𝑐𝑧

2 𝑙𝜈⁄ . It is important to note that 𝜆 = 0 corresponds to forced 

convection flow, 𝜆 > 0 (𝑇0 > 0) corresponds to assisting flow case (i.e., the buoyancy 

forces acts parallel to free stream velocity), 𝜆 < 0 (𝑇0 < 0) corresponds to opposing flow 

case (i.e., the buoyancy forces acts opposite to free stream velocity), 𝛽 = 𝑙𝜔 𝑐⁄  is unsteady 

parameter (arises due to temperature oscillations), 𝑃𝑟 = 𝜈 𝛼⁄  is Prandtl number, 𝑆 =

−𝑢𝑤√𝑙 𝜈𝑐⁄   is the suction/injection parameter with 𝑆 > 0 represents suction case and 𝑆 <

0 is for injection case. After utilizing Eq. (2.15) in Eq. (2.14), the expressions of 𝐶𝑓 and 𝑁𝑢 

will be modified as following 

𝑅𝑒𝑧
1/2 
𝐶𝑓 = 𝑓𝜂𝜂(0, 𝑡), 𝑅𝑒𝑧

−1/2 
𝑁𝑢𝑧 = −𝜃𝜂(0, 𝑡). (3.8) 

 

3.2 Solution Methodology 

The nonlinear system of partial differential equations. (3.5) and (3.6) subject to the boundary 

conditions (3.7) is solved by using the second order accurate Keller box method. The 

detailed method has explained in the book by Cebeci and Bradshaw (1984). The main steps 

are as follows: Setting  

𝑓𝜂 = 𝑝, 𝑝𝜂  = 𝑞, 𝜃𝜂 = 𝑈. (3.9) 

in differential equations (3.5, 3.6) and boundary conditions (3.7) resulting as 

(1 + 2𝜂𝛾)𝑞𝜂 + 2𝛾𝑞 + 𝑓𝑞 − 𝑝
2 + 2𝜃 − 𝛽

𝜕𝑝

𝜕𝜉
= −(

𝑎

𝑐
)
2

, (3.10) 

𝑈𝜂 +  2𝛾𝑈 + 𝑃𝑟 (𝑓𝑈 − 𝑓
′𝜃 − 𝛽

𝜕𝑝

𝜕𝜉
) = 0, (3.11) 
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and boundary conditions take the new form as 

𝑓(0, 𝜉) = 0, 𝑝(0, 𝜉) = 1, 𝜃(0, 𝜉) = 1, 

𝑓(∞, 𝜉) = 0,    𝜃(∞, 𝜉) = 0. 
(3.12) 

A net on the plane (𝜉, 𝜂) is defined as 

𝜂0 = 0, 𝜂𝑗 = 𝜂𝑗−1 + ∆𝜂, 𝜂𝐽 = 𝜂∞, 𝑗 = 1,2, … , 𝐽 − 1, 

𝜉0 = 0, 𝜉𝑛 = 𝜉𝑛−1 + ∆𝜉, 𝑛 = 1,2, …, 
(3.13) 

where 𝑛 and 𝑗 are positive integers, ∆𝜂 and ∆𝜉 are widths of meshing variables on (𝜉, 𝜂) 

plane. The approximate quantities of functions 𝑓, 𝑝, 𝑞, 𝜃 and 𝑈 at the net point (𝜉𝑛, 𝜂𝑗) are 

known as net functions whose derivatives in 𝜂 and 𝜉-directions are replaced by the central 

difference formulae, and functions itself are replaced by average centered at the midpoint 

(𝜉𝑛−1/2, 𝜂𝑗−1/2) defined as 

𝜕

𝜕𝜉
( )|

𝑗

𝑛−1/2

=
1

∆𝜉
(𝑓𝑗

𝑛 − 𝑓𝑗
𝑛−1),   

𝜕

𝜕𝜂
( )|

𝑗−1/2

𝑛

=
1

∆𝜂
(𝑓𝑗

𝑛 − 𝑓𝑗−1
𝑛 ),   

and 

𝑓𝑗
𝑛−1/2

=
1

2
(𝑓𝑗

𝑛 + 𝑓𝑗
𝑛−1),   𝑓𝑗−1/2

𝑛 =
1

2
(𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 ).   

After discretization, the system of nonlinear partial differential Eqs. (3.10) and (3.11) are 

converted to the system of difference equations written as  

(1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾)
𝑞𝑗
𝑛 − 𝑞𝑗−1

𝑛

Δ𝜂
+ 𝛾(𝑞𝑗

𝑛 + 𝑞𝑗−1
𝑛 ) + (

𝑓𝑗
𝑛 + 𝑓𝑗−1

𝑛

2
)(
𝑞𝑗
𝑛 + 𝑞𝑗−1

𝑛

2
)

−
1

4
(𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛 )
2
+ 𝜆 (

𝜃𝑗
𝑛 + 𝜃𝑗−1

𝑛

2
) −

2𝛽

Δ𝜉
{(𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 )

2
}

= 𝑟
𝑗−
1
2

𝑛−1, 

(3.14) 

(1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾)
𝑈𝑗
𝑛 − 𝑈𝑗−1

𝑛

Δ𝜂
+ 𝛾(𝑈𝑗

𝑛 + 𝑈𝑗−1
𝑛 )

+ 𝑃𝑟 (
𝑓𝑗
𝑛 + 𝑓𝑗−1

𝑛

2
)(
𝑈𝑗
𝑛 + 𝑈𝑗−1

𝑛

2
)

− 𝑃𝑟 (
𝜃𝑗
𝑛 + 𝜃𝑗−1

𝑛

2
)(
𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛

2
) − 2𝑃𝑟𝛽 (

𝜃𝑗
𝑛 + 𝜃𝑗−1

𝑛

Δ𝜉
) = 𝑚

𝑗−
1
2

𝑛−1, 

(3.15) 

Eq. (3.9) becomes 

𝑓𝑗
𝑛 − 𝑓𝑗−1

𝑛 =
∆𝜂

2
(𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛 ), (3.16) 

𝑝𝑗
𝑛 − 𝑝𝑗−1

𝑛 =
∆𝜂

2
(𝑞𝑗
𝑛 + 𝑞𝑗−1

𝑛 ), (3.17) 
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𝜃𝑗
𝑛 − 𝜃𝑗−1

𝑛 =
∆𝜂

2
(𝑈𝑗

𝑛 + 𝑈𝑗−1
𝑛 ), (3.18) 

where 

𝑟
𝑗−
1
2

𝑛−1 = −2(
𝑎

𝑐
)
2

+ [1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1)] (
𝑞𝑗
𝑛−1 + 𝑞𝑗−1

𝑛−1

Δ𝜂
) − 𝛾(𝑞𝑗

𝑛−1 + 𝑞𝑗−1
𝑛−1)

−
1

4
(𝑓𝑗

𝑛−1 + 𝑓𝑗−1
𝑛−1)(𝑞𝑗

𝑛−1 + 𝑞𝑗−1
𝑛−1) + (

𝑝𝑗
𝑛−1 + 𝑝𝑗−1

𝑛−1

2
)

2

− 𝜆 (
𝜃𝑗
𝑛−1 + 𝜃𝑗−1

𝑛−1

2
), 

𝑚
𝑗−
1
2

𝑛−1 = −(1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾) (
𝑈𝑗
𝑛−1 + 𝑈𝑗−1

𝑛−1

∆𝜂
) − 𝛾  (𝑈𝑗

𝑛−1 + 𝑈𝑗−1
𝑛−1)

−
𝑃𝑟

4
(𝑓𝑗

𝑛−1 + 𝑓𝑗−1
𝑛−1)(𝑈𝑗

𝑛−1 + 𝑈𝑗−1
𝑛−1)

+ 𝑃𝑟 (
𝜃𝑗
𝑛−1 + 𝜃𝑗−1

𝑛−1

2
)(
𝑝𝑗
𝑛−1 + 𝑝𝑗−1

𝑛−1

2
). 

(3.19) 

The boundary conditions (3.12) become 

𝑓0
𝑛 = 0, 𝑝0

𝑛 = 1, 𝜃0
𝑛 = 1, 𝑝𝐽

𝑛 = 𝜃𝐽
𝑛 = 0 (3.20) 

The nonlinear algebraic Eqs. (3.14) and (3.15) are linearized by using Newton method by 

introducing (𝑖 + 1)𝑡ℎ iterates as  

(𝑓𝑗
𝑛)
𝑖+1

= (𝑓𝑗
𝑛)
(𝑖)
+ (𝛿𝑓𝑗

𝑛)
(𝑖)
. (3.21) 

and similarly, it is same for all other variables in which (𝑓𝑗
𝑛)
(𝑖)

 is known for 0 < 𝑗 ≤ 𝐽 as 

an initial guess and (𝛿𝑓𝑗
𝑛)
(𝑖)

is unknown. After using the Newton linearization process and 

neglecting the terms containing square and higher order of 

(𝛿𝑓𝑗
𝑛)
(𝑖)
, (𝛿𝑝𝑗

𝑛)
(𝑖)
, (𝛿𝑞𝑗

𝑛)
(𝑖)
, (𝛿𝜃𝑗

𝑛)
(𝑖)

 and  (𝛿𝑈𝑗
𝑛)
(𝑖)

, the system of linear algebraic 

equations is obtained as follows  

𝛿𝑓𝑗
𝑛 − 𝛿𝑓𝑗−1

𝑛 −
Δ𝜂

2
(𝛿𝑝𝑗

𝑛 + 𝛿𝑝𝑗−1
𝑛 ) = (𝑟1)𝑗, 

(𝑎1)𝑗𝛿𝑓𝑗−1
𝑛 + (𝑎2)𝑗𝛿𝑓𝑗

𝑛 + (𝑎3)𝑗𝛿𝑝𝑗−1
𝑛 + (𝑎4)𝑗𝛿𝑝𝑗

𝑛 + (𝑎5)𝑗𝛿𝑞𝑗−1
𝑛 + (𝑎6)𝑗𝛿𝑞𝑗

𝑛
+ (𝑎7)𝑗𝛿𝜃𝑗−1

𝑛
 

+(𝑎8)𝑗𝛿𝜃𝑗
𝑛 = (𝑟2)𝑗 , 

(𝑎9)𝑗𝛿𝜃𝑗−1
𝑛 + (𝑎10)𝑗𝛿𝜃𝑗

𝑛 + (𝑎11)𝑗𝛿𝑈𝑗−1
𝑛 + (𝑎12)𝑗𝛿𝑈𝑗

𝑛 = (𝑟3)𝑗, 

𝛿𝑝𝑗
𝑛 − 𝛿𝑝𝑗−1

𝑛 −
∆𝜂

2
(𝛿𝑞𝑗

𝑛 + 𝛿𝑞𝑗−1
𝑛 ) = (𝑟4)𝑗, 

𝛿𝜃𝑗
𝑛 − 𝛿𝜃𝑗−1

𝑛 −
∆𝜂

2
(𝛿𝑈𝑗

𝑛 + 𝛿𝑈𝑗−1
𝑛
) = (𝑟5)𝑗. 
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The boundary conditions (3.24) take the new form as  

𝛿𝑓0
𝑛 = 0, 𝛿𝑝0

𝑛 = 1, 𝛿𝜃0
𝑛 = 1, 𝛿𝑝𝐽

𝑛 = 𝛿𝜃𝐽
𝑛 = 0. 

Finally, the above system of linear algebraic equations with boundary conditions will be 

written in matrix vector form. The coefficients in momentum and energy equations of 

unknown functions 𝛿𝑓𝑗
𝑛 ,  𝛿𝑝𝑗

𝑛, 𝛿𝑞𝑗
𝑛, 𝛿𝜃0

𝑛,  𝛿𝑈𝐽
𝑛 and non-homogeneous parts are given as: 

Coefficient of momentum equation: 

coefficient of 𝛿𝑓𝑗−1
𝑛 : 

(𝑎1)𝑗 = 
1

4
(𝑞𝑗
𝑛 + 𝑞𝑗−1

𝑛 ) 

Coefficient of 𝛿𝑓𝑗
𝑛: 

(𝑎2)𝑗  =  
1

4
(𝑞𝑗
𝑛 + 𝑞𝑗−1

𝑛 ) 

Coefficient of 𝛿𝑝𝑗−1
𝑛 : 

(𝑎3)𝑗 = −
1

2
(𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛 ) −
2𝛽

2∆𝜉
 

Coefficient of 𝛿𝑝𝑗
𝑛: 

(𝑎4)𝑗  =  −
1

2
(𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛 ) −
2𝛽

2∆𝜉
 

Coefficient of 𝛿𝑞𝑗−1
𝑛 : 

(𝑎5)𝑗 = −
1

Δ𝜂
[1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1)] + 𝛾 +

1

4
(𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 ) 

Coefficient of 𝛿𝑞𝑗
𝑛: 

(𝑎6)𝑗  =  −
1

Δ𝜂
[1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1)] + 𝛾 +

1

4
(𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 ) 

Coefficient of 𝛿𝜃𝑗−1
𝑛 : 

(𝑎7)𝑗  =  
𝜆

2
 

Coefficient of 𝛿𝜃𝑗
𝑛: 

(𝑎8)𝑗  =  
𝜆

2
 

Coefficient of energy equation: 

Coefficient of 𝛿𝜃𝑗−1
𝑛 : 

(𝑎9)𝑗  =  −
𝑃𝑟

4
(𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛 ) −
2𝑃𝑟𝛽

∆𝜉
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Coefficient of 𝛿𝜃𝑗
𝑛: 

(𝑎10)𝑗  =  −
𝑃𝑟

4
(𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛 ) −
2𝑃𝑟𝛽

∆𝜉
 

Coefficient of 𝛿𝑈𝑗−1
𝑛 : 

(𝑎11)𝑗  =  −
[1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1)]

Δ𝜂
+
𝑃𝑟

4
(𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 ) 

Coefficient of 𝛿𝑈𝑗
𝑛: 

(𝑎12)𝑗  =  
[1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1)]

Δ𝜂
+
𝑃𝑟

4
(𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 ) 

Non-homogeneous terms 

(𝑟𝟏)𝒋 = (𝑓𝑗−1
𝑛 − 𝑓𝑗

𝑛) +
Δ𝜂

2
 (𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 ), 

(𝑟𝟐)𝒋 = −2(
𝑎

𝑐
)
2

+ [1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1)] (
𝑞𝑗
𝑛−1 + 𝑞𝑗−1

𝑛−1

Δ𝜂
) − 𝛾(𝑞𝑗

𝑛−1 + 𝑞𝑗−1
𝑛−1)

−
1

4
(𝑓𝑗

𝑛−1 + 𝑓𝑗−1
𝑛−1)(𝑞𝑗

𝑛−1 + 𝑞𝑗−1
𝑛−1) + (

𝑝𝑗
𝑛−1 + 𝑝𝑗−1

𝑛−1

2
)

2

− (
𝜃𝑗
𝑛−1 + 𝜃𝑗−1

𝑛−1

2
)

− [1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1)] (
𝑞𝑗
𝑛 + 𝑞𝑗−1

𝑛

Δ𝜂
) − 𝛾(𝑞𝑗

𝑛 + 𝑞𝑗−1
𝑛 )

−
1

4
(𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 )(𝑞𝑗

𝑛 + 𝑞𝑗−1
𝑛 ) +

1

4
(𝑝𝑗
𝑛 + 𝑝𝑗−1

𝑛 )
2
−
𝜆

2
(𝑇𝑗

𝑛 + 𝑇𝑗−1
𝑛 )

+
𝛽

Δ𝜉
{(𝑝𝑗

𝑛 + 𝑝𝑗−1
𝑛 ) − (𝑝𝑗

𝑛−1 + 𝑝𝑗−1
𝑛−1)}, 

(𝑟𝟑)𝒋 = −[1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1)] (
𝑈𝑗
𝑛−1 − 𝑈𝑗−1

𝑛−1

Δ𝜂
) − 𝛾(𝑈𝑗

𝑛−1 + 𝑈𝑗−1
𝑛−1)

−
𝑃𝑟

4
(𝑓𝑗

𝑛−1 + 𝑓𝑗−1
𝑛−1)(𝑈𝑗

𝑛−1 + 𝑈𝑗−1
𝑛−1) +

𝑃𝑟

4
(𝑝𝑗
𝑛−1 + 𝑝𝑗−1

𝑛−1)(𝜃𝑗
𝑛−1 + 𝜃𝑗−1

𝑛−1)

−
1

Δ𝜂
[1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1)](𝑈𝑗

𝑛 +𝑈𝑗−1
𝑛 ) − 𝛾(𝑈𝑗

𝑛 + 𝑈𝑗−1
𝑛 )

−
𝑃𝑟

4
(𝑓𝑗

𝑛 + 𝑓𝑗−1
𝑛 )(𝑈𝑗

𝑛 + 𝑈𝑗−1
𝑛 ) +

𝑃𝑟𝛽

Δ𝜉
{(𝜃𝑗

𝑛 + 𝜃𝑗−1
𝑛 ) − (𝜃𝑗

𝑛−1 + 𝜃𝑗−1
𝑛−1)}, 

(𝑟4)𝒋 = (𝑝𝑗−1
𝑛 − 𝑝𝑗

𝑛) +
Δ𝜂

2
 (𝑞𝑗

𝑛 + 𝑞𝑗−1
𝑛 ), 

(𝑟5)𝒋 = (𝜃𝑗−1
𝑛 − 𝜃𝑗

𝑛) +
Δ𝜂

2
 (𝑈𝑗

𝑛 + 𝑈𝑗−1
𝑛 ). 

The resulting matrix vector form is solved by using block-tridiagonal elimination technique, 

which is explained in the previous chapter. The edge of boundary layer thickness 𝜂∞ is  
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Table 3.1: Numerical values of 𝑓𝜂𝜂(0) for different 𝑎/𝑐 when 𝛾 = 𝜆 = 𝑆 = 𝛽 = 𝑡 = 0 

with Mahapatra and Gupta (2002) and Nazar et al. (2004) 

𝑎/𝑐 Mahapatra and Gupta (2002) Nazar et al. (2004) Present study 

0.01  ˗0.9980 −0.9980 

0.02  −0.9958 −0.9958 

0.05  −0.9876 −0.9876 

0.10 −0.9694 −0.9694 −0.9694 

0.20 −0.9181 −0.9181 −0.9181 

0.50 −0.6673 −0.6673 −0.6673 

2.00 2.0175 2.0176 2.0175 

3.00 4.7293 4.7296 4.7294 

5.00  11.7537 11.7524 

10.00  36.2687 36.2603 

20.00  106.5744 106.5239 

50.00  430.6647 430.1501 

 

Table 3.2: Comparison of −𝜃𝜂(0) for different 𝑎/𝑐 and 𝑃𝑟 when 𝛾 = 𝑎/𝑐 = 𝑆 = 𝛽 =

𝑡 = 𝜖 = 0 with (Ishak et al. 2009)  

𝜆  𝑃𝑟 Ishak et al. (2009) Present study 

0 0.01 0.0197 0.0198 

 0.72 0.8086 0.8086 

 1.0 1.0000 1.0000 

 3.0 1.9237 1.9237 

 7.0 3.0723 3.0723 

 10 3.7207 3.7208 

 100 12.2941 12.3004 

1 1 1.0873 1.0873 

2  1.1423 1.1423 

3  1.1853 1.1853 

 

chosen according to the values of the parameters. The iteration is continued for refinement 

in the solution until we achieved the difference between two consecutive iterations is less 
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than 10−6. The employed technique is validated after comparing the numerical values of 

𝑓𝜂𝜂(0) with Mahapatra and Gupta (2002) and Nazar et al. (2004) as shown in Table 3.1 as 

a limiting case. Table 3.2 gives the comparison of −𝜃𝜂(0) with Ishak et al. (2009) for limited 

cases. These tables show that the computed results are in good agreement that gives us a 

confidence in accuracy of the employed numerical technique. 

 

3.3 Results and Discussion 

The non-linear partial differential equations (3.7)−(3.8) subject to the boundary conditions 

(3.9) are solved numerically using Keller Box method for various values of emerging 

dimensionless parameters namely, curvature parameter (𝛾), velocity ratio parameter (𝑎/𝑐), 

mixed convection parameter (𝜆), suction/injection parameter (𝑆), unsteadiness parameter 

(𝛽), Prandtl number (𝑃𝑟) and amplitude of oscillation in temperature (𝜖). The numerical 

results are computed in terms of velocity profile 𝑓𝜂(𝜂, 𝑡),  temperature profiles 𝜃(𝜂, 𝑡), skin 

friction coefficient 𝑅𝑒𝑧
1/2 
𝐶𝑓 and Nusselt number  𝑅𝑒𝑧

−1/2 
𝑁𝑢𝑧. Figure 3.2 exhibits the 

velocity profile against 𝜂 for different values of 𝑎/𝑐 for assisting flow (𝜆 = 1) and opposing 

flow (𝜆 = −1) cases at different time steps levels (𝑡 = 0, 𝜋/4, 𝜋/2). It is observed that 

velocity increases for increasing values of time (𝑡) in assisting flow case (𝜆 = 1) and 

opposite behavior is observed in opposing flow case (𝜆 = −1) for all values of velocities 

ratio parameter (𝑎/𝑐). This is due to the reason that in assisting flow, buoyant force assists 

the flow and in opposing flow, buoyant force delays the flow. Figures 3.3 and 3.4 show the 

velocity and temperature profiles respectively for various values of curvature parameter (𝛾) 

and suction/injection parameter (𝑆). In Figure 3.3, it is noted that the velocity profile 

decreases near the surface of cylinder and increases far away from the surface due to 

increase in curvature parameter (𝛾) for both suction (𝑆 = 0.5) and injection (𝑆 = −0.5) 

cases. It is also observed that in case of injection (𝑆 = −0.5), the velocity and corresponding 

momentum boundary layer thickness become higher as compare to the case of suction 

(𝑆 = 0.5). This is because injection enhances the flow near the surface. In Figure 3.4 for 

both values of parameter (𝑆), the temperature profile increases with increase in curvature 

of the cylinder (𝛾). Furthermore, it is noted that, thermal boundary layer thickness can be 

increased with increase in curvature parameter (𝛾) both for injection and suction cases. 

Figure 3.5 demonstrates the effects on temperature profiles against 𝜂 for various values of 
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parameter 𝑎/𝑐 at different time step levels 𝑡 = 0 and 𝑡 = 𝜋/2. The temperature profile 

increases with the increasing value of time (𝑡) for all values of 𝑎/𝑐 which is obviously due  

 

Table 3.3: Values of 𝑅𝑒𝑧
1/2
𝐶𝑓 and (𝑅𝑒𝑧

−1/2
𝑁𝑢𝑧) for the various parameter 𝛾, 

𝑎/𝑐, 𝜆, 𝑆, 𝛽, 𝜖 and 𝑃𝑟 

𝑃𝑟 𝛾 𝑎/𝑐 𝜆 𝛽 𝜖 𝑆 𝑡 =  0 𝑡 =  𝜋/4 𝑡 =  𝜋/2 𝑡 =  𝜋 

0.7 0.2 0 1 1 1 0.5 
−0.8034 

(1.1508) 

−0.5861 

(2.3036) 

−0.4110 

(2.4750) 

−0.6803 

(0.8097) 

  0.2     
−0.7140 

(1.1857) 

−0.4985 

(2.3446) 

−0.3280 

(2.5236) 

−0.6007 

(0.8530) 

   0    
−0.2075 

(1.1158) 

−1.2075 

(2.2353) 

−1.2075 

(2.3479) 

−1.2075 

(0.7137) 

    1.5   
−0.2075 

(1.1158) 

−1.2075 

(2.3632) 

−1.2075 

(2.4180) 

−1.2075 

(0.5696) 

     1.5  
−0.2075 

(1.1158) 

−1.2075 

(2.9870) 

−1.2075 

(3.0691) 

−1.2075 

(0.2965) 

1.0   −1    
−1.7312 

(1.3039) 

−1.9999 

(3.5290) 

−2.2780 

(3.5352) 

−2.1029 

(0.1079) 

 0.4      
−1.8222 

(1.3628) 

−2.0928 

(3.6805) 

−2.3769 

(3.7137) 

−2.2172 

(0.1349) 

  1     
−0.3432 

(1.7024) 

−0.5936 

(4.1352) 

−0.8064 

(4.3674) 

−0.4937 

(0.8606) 

    2   
−0.3432 

(1.7024) 

−0.5706 

(4.3265) 

−0.7776 

(4.4671) 

−0.5163 

(0.6346) 

     2  
−0.3432 

(1.7024) 

−0.6465 

(5.1987) 

−0.9241 

(5.3753) 

−0.5777 

(0.2686) 

7.0   1.5   −0.5 
0.3530 

(1.9770) 

0.6352 

(7.6830) 

0.8990 

(6.9611) 

0.5762 

(−1.4708) 

 0.6      
0.3526 

(2.0626) 

0.6346 

(7.8986) 

0.8982 

(7.2232) 

0.5761 

(−1.3965) 

  1.2     
0.6807 

(2.1204) 

0.9606 

(7.9825) 

1.2176 

(7.3444) 

0.8896 

(−1.2899) 
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to input temperature at the wall at that time. It is further important to note that the 

temperature profile decreases due to increase in velocity ratio parameter (𝑎/𝑐) and hence 

thermal boundary layer thickness become smaller for large values of velocity ratio 

parameter 𝑎/𝑐. In Figure 3.6, the temperature profile increases at any point within the 

boundary layer for increasing time steps levels in both assisting and opposing flow cases. 

In opposing flow case, the thermal boundary layer thickness is larger as compared to 

assisting flow case for all time steps levels 𝑡 = 0, 𝜋/4 and 𝜋/2. Influence of curvature 

parameter (𝛾) on velocity and temperature profile is shown in Figures 3.7 and 3.8 

respectively for 𝜆 = 0.5 (assisting flow) and 𝜆 = −0.5 (opposing flow). As curvature 

parameter (𝛾) increases the surface of cylinder squeezes due to which surface area reduces 

and consequently the velocity of the fluid increases as shown in Figure 3.7. Similarly, 

temperature of the fluid also enhances at any point within the boundary layer region due to 

increase in curvature parameter (𝛾) as shown in Figure 3.8. In addition, momentum 

boundary layer is maximum in case of 𝜆 = 0.5 (assisting flow) in comparison with 𝜆 =

−0.5 (opposing flow), but very little change is observed in thermal boundary layer for 𝜆 =

0.5 (assisting flow) and 𝜆 = −0.5 (opposing flow) cases. Figures 3.9 and 3.10 illustrate the 

variations in 𝑅𝑒𝑧
1/2
𝐶𝑓 and 𝑅𝑒𝑧

−1/2
𝑁𝑢𝑧 respectively against time (𝑡) for different values of 

unsteadiness parameter (𝛽). It is noted that due to sinusoidal nature of temperature, the 

amplitude of skin friction enhanced as well as reduced for Nusselt number with backward 

phase shift against time (𝑡) with increase in unsteadiness parameter (𝛽) as shown in Figures 

3.9 and 3.10. Figures 3.11 and 3.12 show the variation of 𝑅𝑒𝑧
1/2
𝐶𝑓 and 𝑅𝑒𝑧

−1/2
𝑁𝑢𝑧 

respectively against 𝑡 for different values of 𝜖. It is noted that amplitude of oscillations in 

the values of 𝑅𝑒𝑧
1/2
𝐶𝑓 and 𝑅𝑒𝑧

−1/2
𝑁𝑢𝑧 increases with increase in 𝜖. It is also perceived that 

as the values of 𝜖 drop, the amplitude of oscillations in 𝑅𝑒𝑧
1/2
𝐶𝑓 and 𝑅𝑒𝑧

−1/2
𝑁𝑢𝑧 also 

diminish. However, for 𝜖 = 0, the case of constant surface temperature is recovered as 

shown in Figures 3.11 and 3.12. The effect of Prandtl number (𝑃𝑟) on heat transfer rate is 

observed in Figure 3.13. The heat transfer rate enhances due to increase in 𝑃𝑟 and amplitude 

of oscillation become larger for large values of 𝑃𝑟 against time 𝑡. Figures 3.14 and 3.15 

demonstrate the isotherms for curvature parameter (𝛾) and amplitude of temperature 

oscillations (𝜖) respectively. Due to increase in curvature parameter (𝛾) and amplitude of 

temperature oscillations (𝜖), a pattern of increasing behavior in sinusoidal nature of 

isotherms is clearly visible. Table 3.3 is constructed to exhibit the behavior of sundry  
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Figure 3.2: Velocity profile for 𝜆 = 1 and 𝜆 = −1 at 𝛾 = 0.2, 𝛽 = 2, 𝜖 = 1, 𝑃𝑟 = 1. 

 

 

Figure 3.3: Velocity profile for different 𝛾 at 𝑆 = 0.5 (suction) and 𝑆 = −0.5 (injection) 

while 𝛽 = 2, 𝜖 = 1, 𝜆 = 1, 𝑎/𝑐 = 0.2, 𝑡 = 𝜋/4. 
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Figure 3.4: Temperature profile for different 𝛾 at 𝑆 = 0.5 (suction) and 𝑆 = −0.5 

(injection) while 𝛽 = 2, 𝜖 = 1, 𝜆 = 1, 𝑎/𝑐 = 0.2, 𝑡 = 𝜋/4 , 𝑃𝑟 =1. 

 

 

Figure 3.5: Temperature profile for different 𝑎/𝑐 at 𝑡 = 0 and 𝑡 = 𝜋/2 while 𝛾 =

0.2, 𝛽 = 2, 𝜖 = 1, 𝜆 = 1, 𝑆 = 0.2, 𝑃𝑟 = 1. 
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Figure 3.6: Temperature profile at 𝑡 = 0, 𝜋/4, 𝜋/2 while 𝛾 = 0.2, 𝛽 = 2, 𝜖 = 1, 𝑎/𝑐 =

0.2, 𝑆 = 0.2, 𝑃𝑟 = 1. 

 

 

Figure 3.7: Velocity profile at 𝛾 = 0, 0.4, 0.8 while 𝛽 = 2, 𝜖 = 1, 𝑆 = 0.5, 𝑎/𝑐 = 0.2, 𝑡 =

𝜋/4, 𝑃𝑟 = 1. 
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Figure 3.8: Temperature profile at 𝛾 = 0, 0.4, 0.8 while 𝛽 = 2, 𝜖 = 1, 𝑆 = 0.5, 𝑎/𝑐 =

0.2, 𝑡 = 𝜋/4, 𝑃𝑟 = 1. 

 

 

Figure 3.9: Variations in 𝑅𝑒𝑧
1/2
𝐶𝑓 against time for different 𝛽 while 𝛾 = 0.2, 𝜖 = 1, 𝑆 =

0.5, 𝑎/𝑐 = 0.2, 𝑃𝑟 = 1, 𝜆 = 1. 
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Figure 3.10: Variations in 𝑅𝑒𝑧
−1/2

𝑁𝑢𝑧 against time for different 𝛽 while 𝛾 = 0.2, 𝜖 =

1, 𝑆 = 0.5, 𝑎/𝑐 = 0.2, 𝑃𝑟 = 1, 𝜆 = 1. 

 

 

Figure 3.11: Variations in 𝑅𝑒𝑧
1/2
𝐶𝑓 against time for different 𝜖 while 𝛾 = 0.2, 𝛽 = 1, 𝑆 =

0.5, 𝑎/𝑐 = 0.2, 𝑃𝑟 = 1, 𝜆 = 1. 
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Figure 3.12: Variations in 𝑅𝑒𝑧
−1/2

𝑁𝑢𝑧 against time for different 𝜖 while 𝛾 = 0.2, 𝛽 =

1, 𝑆 = 0.5, 𝑎/𝑐 = 0.2, 𝑃𝑟 = 1, 𝜆 = 1. 

 

 

Figure 3.13: Variations in 𝑅𝑒𝑧
−1/2

𝑁𝑢𝑧 against time for different 𝑃𝑟.while 𝛾 = 0.2, 𝛽 =

1, 𝑆 = 0.5, 𝜖 = 1, 𝑎/𝑐 = 0.2, 𝜆 = 1. 
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Figure 3.14: Isotherms for different 𝛾 while 𝛽 = 1, 𝑆 = 0.5, 𝜖 = 1, 𝑎/𝑐 = 0.2, 𝜆 =

1, 𝑃𝑟 = 1. 

 

 

Figure 3.15: Isotherms for different 𝜖 while 𝛾 = 0.2, 𝛽 = 1, 𝑆 = 0.5, 𝑎/𝑐 = 0.2, 𝜆 =

1, 𝑃𝑟 = 1. 
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3.4 Conclusions 

In this chapter, the analysis of unsteady mixed convection stagnation point flow due to 

stretching cylinder with sinusoidal wall temperature is presented. The modeled equations 

are reduced into dimensionless form as partial differential equations and solved numerically 

with the help of Keller box method. The analysis is made in term of velocity, temperature 

profiles, skin friction and Nusselt number against different parameters of the problem. It is 

noted that the assisting buoyant flow increases the velocity profile and opposing buoyant 

flow decreases the velocity profile. The heat transfer rate increases due to increase in Prandtl 

number and amplitude of oscillation also increases with passage of time. Most importantly, 

this phenomenon of maximizing heat transfer near the stagnation point flow over a 

stretching cylinder can be enhanced by introducing the sinusoidal heat at the surface of the 

cylinder. 
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Chapter 4 

Heat transfer analysis of Casson fluid flow due to 

stretching cylinder  

This chapter analyses the combine effects of partial slip and prescribed surface heat flux on 

the heat transfer analysis of Casson fluid flow around the stretching cylinder. The physical 

model is represented as a system of ordinary differential equations. A very moderate and 

powerful technique namely Chebyshev Spectral Newton Iterative Scheme (CSNIS) is used 

to determine the solution of the governing equations. The comparison of computed 

numerical values of skin friction coefficient and the local Nusselt number is made with the 

results available in the literature. The accuracy and convergence of Chebyshev Spectral 

Newton Iterative Scheme is compared with finite difference scheme (Keller box method) 

through tables. The CPU time is calculated for both schemes. It is observed that CSNIS is 

efficient, less time consuming, stable and rapid convergent. Involved physical parameters, 

namely: the slip parameter, Casson fluid parameter, curvature parameter and Prandtl number 

are utilized to analyze the fluid movements and temperature distribution. The results show 

that the fluid velocity and the skin friction coefficient around the stretching cylinder are 

strongly influenced by the slip parameter. It is analysed that hydrodynamic boundary layer 

decreases and thermal boundary layer increases with the slip parameter. Influence of Casson 

fluid parameter on temperature profile provides the opposite behavior as compare to the slip 

parameter.  

 

4.1 Problem formulation 

Considered the flow of non-Newtonian Casson fluid outside the stretching cylinder of fixed 

radius 𝑅∗. The flow is assumed as steady, axi-symmetric and is subjected to laminar 

boundary layer assumptions. The surface of the cylinder is heated due to prescribed heat 

flux 𝑞𝑤. The physical model of the flow situation is shown in Figure 2.1. It is further 

assumed that cylinder is stretched in the axial direction with velocity 𝑉𝑤 with wall 

temperature 𝑇𝑤 and ambient temperature 𝑇∞. It is assumed that the wall temperature is larger 

than that of ambient temperature i.e., 𝑇𝑤 > 𝑇∞. The rheological equations for non-

Newtonian Casson fluid model are described in Eq. (1.11). For the problem under 
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consideration, the continuity and energy equations are same as in Eqs. (2.1) and (2.3). By 

means of boundary layer approximations, the momentum equation for Casson fluid model 

is  

𝑢
𝜕𝑣

𝜕𝑟
+ 𝑣

𝜕𝑣

𝜕𝑧
= 𝑣 (1 +

1

𝛽∗
) (

𝜕

𝑟𝜕𝑟
(𝑟
𝜕𝑣

𝜕𝑟
)), (4.1) 

where 𝛽∗ = 𝜇𝐵√2𝜋/𝑝𝑦 is known as Casson parameter. The boundary conditions which are 

imposed to the velocity components and temperature profile are  

𝑣 = 𝑉𝑤 + 𝐵1𝜈 (1 +
1

𝛽∗
)
𝜕𝑣

𝜕𝑟
, 𝑘

𝜕𝑇

𝜕𝑟
= −𝑞𝑤(𝑧),       𝑢 = 0 at  𝑟 = 𝑅

∗, 

𝑣 → 0,   𝑇 → 𝑇∞  as  𝑟 → 𝑅∗.   

(4.2) 

Here 𝑉𝑤 = 𝑐𝑧/𝑙 is the stretching velocity, 𝐵1 is velocity slip factor with dimension [𝑇/𝐿]. 

Following the similarity transformation of Bachok and Ishak (2010) as  

𝜂 =
𝑟2 − 𝑅∗2

2𝑅∗
√
𝑉𝑤
𝜈𝑧
, 𝜓 = √𝜈𝑧𝑉𝑤𝑅

∗𝑓(𝜂), 𝑇𝑤 = 𝑇∞ +
𝑞𝑤
𝑘
√
𝜈𝑧

𝑉𝑤
𝜃(𝜂). (4.3) 

Utilizing the transformation (4.3), the velocity components in stream function notation 

given in Eq. (2.5) will be of the form   

𝑣 = 𝑉𝑤𝑓
′(𝜂) and 𝑢 = −

𝑅∗

𝑟
√
𝜈𝑐

𝑙
 𝑓(𝜂). (4.4) 

After substituting Eqs. (4.3) and (4.4) into Eqs. (4.1) and (2.3), we get the following 

governing equations in terms of ordinary differential equations 

(1 + 2𝛾𝜂) (1 +
1

𝛽∗
) 𝑓′′′ +  2 (1 +

1

𝛽∗
) 𝛾𝑓′′ + 𝑓𝑓′′ − (𝑓′)2 = 0, (4.5) 

(1 + 2𝛾𝜂)𝜃′′ +  2𝛾𝜃′ + 𝑃𝑟(𝑓𝜃′ − 𝑓′𝜃 ) = 0, (4.6) 

where primes denote differentiation with respect to 𝜂. The boundary conditions in Eqs. (4.2) 

become 

𝑓(0) = 0, 𝑓′(0) = 1 + 𝐵 (1 +
1

𝛽∗
) 𝑓′′(0), 𝑓′(∞) = 0, 

(4.7) 

𝜃′(0) = −1, 𝜃(∞) = 0. 

where 𝐵 = 𝐵1𝜈√𝑐/𝜈𝑙 is velocity slip parameter. The wall skin friction and the wall heat 

flux are  

𝜏𝑤 = 𝜇𝐵 (1 +
1

𝛽∗
) (
𝜕𝑣

𝜕𝑟
)
𝑟=𝑅∗

,      𝑞𝑤 = −𝑘 (
𝜕𝑇

𝜕𝑟
)
𝑟=𝑅∗

 (4.8) 

Upon using the similarity transformation (4.3) in Eq. (4.8), the expression for 𝐶𝑓 and 𝑁𝑢 

which are already defined in chapters 2 and 3 can be written as 
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𝑅𝑒𝑧
1/2 
𝐶𝑓 = (1 +

1

𝛽∗
) 𝑓′′(0), 𝑅𝑒𝑧

−1/2
𝑁𝑢𝑧 =

1

𝜃(0)
 . (4.9) 

 

4.2 Numerical Scheme 

The system of nonlinear ordinary differential equations Eqs. (4.5) and (4.6) subject to 

boundary conditions (4.7) is solved for different values of involving parameters by an 

efficient numerical scheme namely: Chebyshev Spectral Newton Iterative Scheme (CSNIS). 

This scheme is mathematically simple and can be easily coded in MATLAB algorithm. It is 

based on Newton iterative scheme having convergence of order 2. It is therefore rapidly 

convergent as shown in Tables 4.4 and 4.5 and low-cost scheme with less CPU usage. The 

solution procedure is as follows: 

In first step, we linearized Eqs. (4.5)−(4.7) by using Newton iterative scheme. For (𝑖 + 1)𝑡ℎ 

iterates, we write 

𝑓𝑖+1 = 𝑓𝑖 + 𝛿𝑓𝑖 , 𝜃𝑖+1 = 𝜃𝑖 + 𝛿𝜃𝑖, (4.10) 

and for all other dependent variables. Using Eq. (4.10) in Eqs. (4.5−4.7), we obtained 

𝑐1,𝑖𝛿𝑓𝑖
′′′ + 𝑐2,𝑖𝛿𝑓𝑖

′′ + 𝑐3,𝑖𝛿𝑓𝑖
′ + 𝑐4,𝑖𝛿𝑓𝑖 = 𝑅1,𝑖, 

𝑑1,𝑖𝛿𝜃𝑖
′′ + 𝑑2,𝑖𝛿𝜃𝑖

′ + 𝑑3,𝑖𝜃𝑖 + 𝑑4,𝑖𝛿𝑓𝑖
′ + 𝑑5,𝑖𝛿𝑓𝑖 = 𝑅2,𝑖, 

(4.11) 

the boundary conditions become 

𝛿𝑓𝑖(0) = −𝑓𝑖(0), 

  𝛿𝑓𝑖
′(0) − 𝐵1 (1 +

1

𝛽∗
) 𝛿𝑓𝑖

′′(0) = 1 − 𝑓𝑖
′(0) + 𝐵1 (1 +

1

𝛽∗
) 𝑓𝑖

′′(0), 

𝛿𝑓𝑖
′(∞) = −𝑓𝑖

′(∞), 

𝛿𝜃𝑖
′(0) = −1 − 𝜃𝑖(∞),   𝛿𝜃𝑖(0) = −𝜃𝑖(∞). 

(4.12) 

The coefficients 𝑐𝑗 ,𝑖 (𝑗 = 1,2,3,4), 𝑑𝑚,𝑖 (𝑚 = 1,2,3,4,5) and 𝑅𝑛,𝑖(𝑛 = 1,2) are 

𝑐1,𝑖 = (1 + 2𝛾𝜂) (1 +
1

𝛽∗
) , 𝑐2,𝑖 = 2𝛾 (1 +

1

𝛽∗
) + 𝑓𝑖, 

𝑐3,𝑖 = −2𝑓𝑖
′, 𝑐4,𝑖 = 𝑓𝑖

′′, 

𝑑1,𝑖 = (1 + 2𝛾𝜂),  𝑑2,𝑖 = 2𝛾 + 𝑃𝑟𝑓𝑖 ,   𝑑3,𝑖 = −𝑃𝑟𝑓𝑖
′  

𝑑4,𝑖 = −𝑃𝑟𝜃𝑖 , 𝑑5,𝑖 = −𝑃𝑟𝑓𝑖
′ 

𝑅1,𝑖 = −(1 + 2𝛾𝜂) (1 +
1

𝛽∗
) 𝑓𝑖

′′′ − 2𝛾 (1 +
1

𝛽∗
) 𝑓𝑖

′′ − 𝑓𝑖𝑓𝑖
′′ + (𝑓𝑖

′)2, 

𝑅2,𝑖 = −(1 + 2𝛾𝜂)𝜃𝑖
′′ − 2𝛾𝜃𝑖

′ − 𝑃𝑟(𝑓𝜃′ − 𝑓′𝜃). 

(4.13) 
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Now the obtained linear system of equations (4.11) subject to conditions (4.12) is solved by 

using the Spectral Collocation method with Chebyshev polynomial is used as a basis 

function (Motsa and Sibanda 2012, Motsa et al. 2014). The physical domain [0, ∞] is shorten 

to finite domain [0, 𝐿] where 𝐿 is set as sufficiently large to achieve required accuracy. This 

finite domain again converted to [−1,1] by using transformation 𝜉∗ = 2𝜂/𝐿 − 1. The grid 

points between −1 and 1 are defined in term of Gauss-Lobatto collocation points defined by 

𝜉𝑗
∗ = 𝑐𝑜𝑠(𝜋𝑗/𝑁), 𝑗 = 0, 1, 2, …N. The derivatives are calculated by Chebyshev 

differentiation matrix 𝑫 as suggested by Trefethen (2000). The above linear system of 

equations can be arranged in matrix form as 

(
𝑀11 𝑀12
𝑀21 𝑀22

) (
𝛿𝑓𝑖
𝛿𝜃𝑖
) = (

𝑅1,𝑖
𝑅2,𝑖

) (4.14) 

where 

𝑀11 = 𝑐1,𝑖𝐷
3 + 𝑐2,𝑖𝐷

2 + 𝑐3,𝑖𝐷 + 𝑐4,𝑖𝐼,   𝑀12 = 0, 

𝑀21 = 𝑑4,𝑖𝐷 + 𝑑5,𝑖𝐼, 𝑀22 = 𝑑1,𝑖𝐷
2 + 𝑑2,𝑖𝐷 + 𝑑3,𝑖𝐼. 

 

The obtained system of linear equations is solved by an iterative Gauss elimination method. 

MATLAB software is used to develop the algorithm for the above problem. 

 

4.3 Results and Discussion 

The nonlinear system of ordinary differential equations (4.5) and (4.6) subject to the 

boundary conditions (4.7) have been solved numerically using CSNIS. The computed 

results are compared with the numerical values obtained by Keller box method. The 

comprehensive study related to Keller box method can be found in the book by (Cebeci and 

Bradshaw 1984). In Table 4.1, the computed numerical values of the surface temperature 

𝜃(0) are compared with previously published results (Bachok and Ishak 2010) available in 

the literature. It is observed that the results are in excellent agreement. In Tables 4.2 and 4.3, 

the comparison of the values of skin friction coefficient and local Nusselt number with the 

Keller box method is given. The main finding of the tables is that the CSNIS has advantage 

over Keller box method in terms of time consumption. CSNIS reduces the cost over the 

time, which is need of the hour and we achieved excellent accuracy. In Tables 4.4 and 4.5, 

the computed values of 𝑅𝑒𝑧
1/2
𝐶𝑓 and 𝜃(0) are presented. These results show the validity and 

convergence CSNIS. In Table 4.4, it is observed that the values of 𝑅𝑒𝑧
1/2
𝐶𝑓 converge rapidly 

after only 3 to 4 iterations. Table 4.5 clearly indicates that after performing few iterations, 

the present CSNIS results display an outstanding agreement with the results of Bachok and 
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Ishak (2010). It is also noted through Table 4.5 that for the case of stretching sheet (𝛾 = 0), 

the results converge after first iteration. This authenticates the validity of the present 

scheme. 

Figures 4.2−4.7 are plotted for various physical parameters namely: curvature parameter 

(𝛾), Casson fluid parameter (𝛽∗), slip parameter (𝐵) and Prandtl number 𝑃𝑟 against both 

velocity 𝑓′(𝜂) and temperature 𝜃(𝜂) profiles. In Figures 4.2 and 4.3, the domain truncation 

parameter ‘L’ and number of collocation points ‘𝑁’ are set as 15 and 82, respectively. 

Whereas in remaining figures 𝐿 and 𝑁 are set as 25 and 120, respectively. In Figure 4.2, 

influence of velocity profile against various values of curvature parameter (𝛾) is developed. 

It depicts that the velocity profile increases with increase of curvature parameter (𝛾) and 

growth in boundary layer thickness is noticed. Figure 4.3 demonstrates the variation in the 

temperature profile 𝜃(𝜂) for various values of curvature parameter (𝛾). As surface area of 

the cylinder will squeeze with increase in curvature parameter (𝛾), consequently, less 

surface area provides low heat transfer rate in other words temperature profile decreases 

with increase of curvature parameter (𝛾) near the surface of the cylinder. In Figure 4.4 

effects of Casson fluid parameter (𝛽∗) on velocity profile is presented. It is noticed that the 

increase in the non-Newtonian parameter (𝛽∗) provides more resistance in fluid motion and 

resultantly velocity of the fluid gets slow down with an increase in Casson fluid parameter 

(𝛽∗). Influence of temperature profile with Casson fluid parameter (𝛽∗) is plotted in Figure 

4.5. It is important to mention that highly viscous fluid (Casson fluid) provides more heat 

transfer rate as compare to the Newtonian fluid. These noticeable effects can be observed in 

Figure 4.5 that with an increase of Casson fluid parameter (𝛽∗) temperature profile 

increases. In Figure 4.6, the mainstream velocity has been plotted against  for various 

values of slip parameter B. It is noted that velocity profiles decrease near the wall with 

increase of 𝐵. It is due to the reason that when slip parameter increases in magnitude, the 

fluid near the wall no longer move with the stretching velocity of surface. By increase in the 

value of 𝐵 the surface of the cylinder become smoother so that the pulling of the stretching 

surface rarely transmitted to the fluid. It is obvious that 𝐵 has a substantial effect on the 

solutions. In Figure 4.7, temperature profiles are plotted against  for various values of slip 

parameter 𝐵 It is depicted that temperature of the fluid enhances with increase in slip 

parameter 𝐵. Figure 4.8 presents the variation in temperature profile due to increase in 𝑃𝑟. 

It is seen that the increment in 𝑃𝑟 reduces the thermal boundary layer thickness. 
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Table 4.1: Variation of 𝜃(0) for different values of 𝛾 and 𝑃𝑟 when 𝛽∗ → ∞ and 𝐵 = 0 

𝛾 𝑃𝑟 Analytic solution 

of Eq. (4.8)  

Bachok and Ishak (2010) 

Numerical Results  

Bachok and Ishak (2010) 

Present Results 

(CSNIS) 

0 0.72 1.236657472 1.2367 1.2366574712 

 1 1.000000000 1.0000 0.9999999999 

 6.7 0.3333030614 0.3333 0.3333030614 

 10 0.2687685151 0.2688 0.2687685151 

1 0.72  0.8701 0.8700421639 

 1  0.7439 0.7438521133 

 6.7  0.2966 0.2965389644 

 10  0.2442 0.2441266335 

 

Table 4.2: Variation of 𝑅𝑒𝑧
1/2
𝐶𝑓 for different values of 𝛾, 𝛽∗, 𝐵. 

𝛾 𝛽∗ 𝐵 Keller box 

Scheme 

CPU time 

(seconds) 

CSNIS CPU time 

(seconds) 

Error 

0 1 0.1 −1.17286 7.957862 −1.17286 0.070381 10−5 

  0.5 −0.72221 12.978531 −0.72221 0.066410 10−5 

 10 0.1 −0.90909 5.330466 −0.90909 0.067188 10−5 

  0.5 −0.60860 5.911651 −0.60860 0.071580 10−5 

 100 0.1 −0.87588 5.324875 −0.87588 0.068287 10−5 

  0.5 −0.59300 5.937075 −0.59300 0.078705 10−5 

 ∞ 0.1 −0.87208 5.282584 −0.87208 0.070348 10−5 

  0.5 −0.59120 5.956520 −0.59120 0.070998 10−5 

1 1 0.1 −1.64185 7.716986 −1.64188 0.051344 3.0×10−5 

  0.5 −0.91986 13.686686 −0.91986 0.054036 10−5 

 10 0.1 −1.19747 6.673299 −1.19748 0.056144 1.0×10−5 

  0.5 −0.75060 6.754250 −0.75061 0.057946 1.0×10−5 

 100 0.1 −1.14434 6.735931 −1.14436 0.054190 2.0×10−5 

  0.5 −0.72799 6.699626 −0.72799 0.058315 10−5 

 ∞ 0.1 −1.13830 7.448435 −1.13832 0.058091 2.0×10−5 

  0.5 −0.72538 6.749316 −0.72539 0.056084 1.0×10−5 
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Table 4.3: Variation of 𝑅𝑒𝑧
−1/2

𝑁𝑢𝑧 for different values of 𝛾, 𝑃𝑟 and𝛽∗when 𝐵 = 0.5. 

𝛾 𝛽∗ 𝑃𝑟 Finite 

difference 

CPU time 

(seconds) 

Iterative 

Scheme 

CPU time 

(seconds) 

Error 

0 1 0.7 0.69609 12.793637 0.69609 0.0703620 10−5 

  7.0 2.51384 12.881962 2.51380 0.070446 4.0×10−5 

 10 0.7 0.67216 5.916910 0.67216 0.072338 10−5 

  7.0 2.57226 6.022827 2.57222 0.070590 4.0×10−5 

 ∞ 0.7 0.66611 6.098248 0.66611 0.077956 10−5 

  7.0 2.57853 6.047961 2.57850 0.077398 3.0×10−5 

1 1 0.7 0.97388 13.636132 0.97389 0.052239 1.0×10−5 

  7.0 2.68205 13.643384 2.68209 0.054686 4.0×10−5 

 10 0.7 0.97410 6.643172 0.97412 0.055505 2.0×10−5 

  7.0 2.80726 6.574281 2.80732 0.056434 6.0×10−5 

 ∞ 0.7 0.97143 6.663579 0.97145 0.058720 2.0×10−5 

  7.0 2.82221 6.594247 2.82226 0.055463 5.0×10−5 

 

Table 4.4: Values of 𝑅𝑒𝑧
1/2
𝐶𝑓  at different iteration. 

 Iterations↓ 
𝛾 = 0, 𝛽∗ = ∞ 𝛾 = 1, 𝛽∗ = 1 

𝐵 = 0.1 𝐵 = 0.5 𝐵 = 0.1 𝐵 = 0.5 

(𝑅𝑒𝑧
1/2
𝐶𝑓)→ 

1 −0. 8695652 −0.57142857 −1.53508496 −0.84615333 

2 −0.8720819 −0.59108397 −1.63214914 −0.91558621 

3 −0.872082 −0.59119547 −1.64168650 −0.91981240 

4 −0.8720824 −0.59119548 −1.64187579 −0.91986053 

5 −0.8720824 −0.59119548 −1.64187589 −0.91986054 

6 −0.872082 −0.5911954 −1.641875899 −0.919860545 

 

Since the Prandtl number (𝑃𝑟) denotes the ratio of kinematic viscosity to thermal 

diffusivity, so as the viscosity of the fluid increases, the heat transfer rate enhances due to 

which the temperature of fluid decreases. Figure 4.9 is plotted for 𝑅𝑒𝑧
1/2
𝐶𝑓 against slip 

parameter (𝐵) for the different values of 𝛽∗. The absolute value of 𝑅𝑒𝑧
1/2
𝐶𝑓 gives higher 

friction with the wall for 𝛽∗ = 0.5 and 1  as compare to that of Newtonian fluid (𝛽∗ → ∞). 

It is also observed that with increase in the value of B, the drag in the fluid near the surface  
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Table 4.5: Comparison with analytical and numerical results of Bachok and Ishak (2010) 

and CSNIS results 

 Iterations↓ 
𝛾 = 0 𝛾 = 1 

𝑃𝑟 =  0.72 𝑃𝑟 =  6.7 𝑃𝑟 =  0.72 𝑃𝑟 =  6.7 

𝜃(0) → 

1 1.236657471 0.333303061 0.950775246 0.294388703 

2 1.236657471 0.333303061 0.843083154 0.295172498 

3 1.236657471 0.333303061 0.866247457 0.296395959 

4 1.236657471 0.333303061 0.869928748 0.296535240 

5 1.236657471 0.333303061 0.870042029 0.296538958 

6 1.236657471 0.333303061 0.870042164 0.296538963 

7 1.236657471 0.333303061 0.870042164 0.296538963 

8 1.236657471 0.333303061 0.870042164 0.296538963 

Analytical→ 1.236657472 0.3333030614   

Numerical→ 1.2367 0.3333 0.8701 0.2966 

 

increases for both Newtonian and non-Newtonian fluids. Figure 4.10 is plotted for the values 

of 𝑅𝑒𝑧
1/2
𝐶𝑓 against Casson fluid parameter for various values of curvature parameter (𝛾). 

The value of 𝑅𝑒𝑧
1/2 
𝐶𝑓 is decreasing with the increase of curvature parameter (𝛾) against 

any fixed values of Casson fluid parameter (𝛽∗). These results also validate the findings in 

Figure 4.2. Figure 4.11 is drawn for 𝑅𝑒𝑧
−1/2

𝑁𝑢𝑧 against slip parameter 𝐵1 for the different 

values of 𝛽∗. For small value of B, increase of 𝛽∗ results in reduction of heat transfer rate 

and for large value of 𝐵, heat transfer rate enhances. Figure 4.12 is plotted for 𝑅𝑒𝑧
−1/2

𝑁𝑢𝑧 

against Casson fluid parameter (𝛽∗) for the different values of curvature parameter 𝛾. With 

increase in 𝛾, the surface area of cylinder reduces due to which heat transfer rate increases 

and same effects are observed for increasing values of 𝛽∗. 

 

 

 

 

 

 

 



70 

 

 

 

Figure 4.2: Velocity profile for different 𝛾 with 𝐵 = 0.1, and 𝛽∗ → ∞. 

 

 

 

Figure 4.3: Temperature profile for different 𝛾 with 𝑃𝑟 = 0.7, 𝐵 = 0.1, and 𝛽∗ → ∞. 
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Figure 4.4: Velocity profile at different 𝛽∗ with 𝐵 = 0.1, and 𝛾 = 0.5. 

 

 

 

Figure 4.5: Temperature profile at different 𝛽∗ with 𝑃𝑟 = 0.7, 𝐵 = 0.1, and 𝛾 = 0.5. 
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Figure 4.6: Velocity profile at different 𝐵 with 𝛽∗ = 1 and 𝛾 = 0.5. 

 

 

 

Figure 4.7: Temperature profile at different 𝐵 with 𝑃𝑟 =  0.7, 𝛽∗ = 1, and 𝛾 = 0.5. 
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Figure 4.8: Temperature profile at different 𝑃𝑟 with 𝐵 =  0.5, 𝛽∗ = 1, and 𝛾 = 0.5. 

 

 

 

Figure 4.9: Variation in 𝑅𝑒𝑧
1/2
𝐶𝑓 against slip parameter 𝐵 at different 𝛽∗. 
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Figure 4.10: Variations in 𝑅𝑒𝑧
1/2
𝐶𝑓  against Casson fluid parameter 𝛽∗ at different 𝛾. 

 

 

 

Figure 4.11: Variation in 𝑅𝑒𝑧
−1/2

𝑁𝑢𝑧 against slip parameter 𝐵 at different 𝛽∗. 
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Figure 4.12: Variation in 𝑅𝑒𝑧
−1/2

𝑁𝑢𝑧 against Casson fluid parameter 𝛽∗ at different 𝛾. 

 

4.4 Conclusions 

The numerical investigation of heat transfer analysis of non-Newtonian Casson fluid due to 

stretching cylinder with partial slip and prescribed heat flux is this performed in this chapter. 

For computation purpose, the Chebyshev Spectral Newton Iteration Scheme (CSNIS) is 

utilized. It is observed that the CSNIS is efficient, less time consuming, stable and rapid 

convergent. The computed results by this scheme have excellent agreement with analytical 

solution (see Table 4.1) and Keller box method (see Table 4.2). The present investigations 

help to conclude that the velocity is decreasing function of Casson fluid parameter (𝛽∗) and 

temperature profile is increasing with increase in Casson fluid parameter (𝛽∗). The 

momentum and thermal boundary layer thickness increases with increase of curvature of 

cylinder. Absolute skin friction gives higher friction for small non-Newtonian parameter 

(𝛽∗) as compare that of Newtonian fluid (𝛽∗ → ∞) and absolute value of skin friction 

coefficient increases with the increase of curvature of cylinder. For small values of slip 

parameter (𝐵), reduction in the values of 𝑅𝑒𝑧
−1/2

𝑁𝑢𝑧 has been observed with increase of 

Casson fluid parameter (𝛽∗). 
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Chapter 5 

Heat transfer analysis of Walters-B fluid flow over a 

stretching cylinder 

In this chapter, two dimensional hydromagnetic flow and heat transfer of Walters-B fluid 

towards stagnation point region over a stretching cylinder is discussed. Constitutive 

equations are transformed into dimensionless form by means of suitable similarity 

transformations. Spectral Quasi Linearization Method (SQLM) is employed to obtain the 

solution of similarity equations. Comparison of computed results with existing results in 

limiting case of a flat sheet is also provided through Table. Analysis of obtained results is 

performed through graphs to discuss the influence of emerging parameters on the velocity 

and temperature profiles. The flow and heat transfer characteristics are analyzed through 

parameters representing curvature of cylinder, velocity ratio parameter, magnetic parameter 

and Weissenberg number. It is obvious that the magnetic field applied externally suppress 

the bulk motion and alters the momentum boundary layer thickness. The drag and heat 

transfer rate on the surface of cylinder are examined through skin friction and heat transfer 

coefficients. Furthermore, streamlines are drawn to see the flow pattern. 

 

5.1 Formulation of problem 

Let us consider the steady the flow of Walters-B fluid near the stagnation point over an 

horizontal stretching cylinder of radius 𝑅∗. It is assumed that the surface of the cylinder is 

at the temperature 𝑇𝑤, the ambient temperature is 𝑇∞ with 𝑇𝑤 > 𝑇∞. The cylindrical 

coordinate system is used to model the flow problem in which 𝑧-axis is taken along the 

horizontal direction and 𝑟-axis is along the vertical direction respectively. A constant 

magnetic field 𝐁(𝐵0, 0, 0) is applied along the radial direction of the flow. It is assumed that 

the fluid is electrically conducting in conjecture of low magnetic Reynolds number. 

Moreover, it is assumed that the effects of induced magnetic field effects are very small as 

compared to that of applied magnetic field neglected. This whole situation is summarized 

in Figure 5.1. 
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Figure 5.1: Physical model and coordinate system. 

The general transport equations for Walters-B fluid are (Beard and Walters 1964; 

Nandeppanavar et al. 2010) 

div𝐕 = 0,  (5.1) 

𝜌
𝑑𝐕

𝑑𝑡
= div𝐒 − 𝜌𝐛, (5.2) 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ 𝐕. 𝛁𝑇) = 𝛁. 𝑘𝛁𝑇, (5.3) 

where 𝐕 is time independent velocity vector, 𝜌 is the density of the fluid, 𝐒 is Cauchy 

stress tensor, 𝐛 is the external body force, 𝑐𝑝 represents specific heat, 𝑇 is the 

temperature and 𝑘 is the fluid thermal conductivity. 

The constitutive equation for Walters-B fluid is given by  

𝐒 = −𝑝𝐈 + 𝝉, (5.4) 

𝝉 = 2𝜂0𝐀1 − 2𝑘0
𝑑𝐀1
𝑑𝑡

 (5.5) 

here 𝐒 is the Cauchy stress tensor, 𝝉 is the extra stress tensor, 𝐈 is a unit tensor, 𝜂0 is the 

viscosity at zero shear rate, 𝑘0 is the elasticity of the fluid, and 𝐀1 is the first Rivlin-Erickson 

tensor. Incorporating the usual boundary layer assumption 𝑂(𝑣) = 𝑂(𝑧) = 1, 𝑂(𝑢) =

𝑂(𝑟) = 𝛿, and 𝑂(𝜈) = 𝑂(𝑘0) = 𝛿
2, where 𝛿 represents the boundary layer thickness which 

is very small as compare to the length of the cylinder (see Schlichting and Gersten 2003). 

The dominant order terms have been retained and neglected the small order terms (i.e. 𝛿 and 

𝛿2 etc.). The Eqs. (5.1)−(5.3) reduce to the following form 

𝜕(𝑟𝑢)

𝜕𝑟
+
𝜕(𝑟𝑣)

𝜕𝑧
= 0, (5.6) 
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𝑢
𝜕𝑣

𝜕𝑟
+ 𝑣

𝜕𝑣

𝜕𝑧
= 𝑉𝑒(𝑧)

𝜕𝑉𝑒(𝑧)

𝜕𝑧
+ 𝜈 (

𝜕𝑣

𝑟𝜕𝑟
+
𝜕2𝑣

𝜕𝑟2
)

+
𝑘0
𝜌
(
3

𝑟

𝜕𝑣

𝜕𝑧

𝜕

𝜕𝑟
(𝑟
𝜕𝑣

𝜕𝑟
) +

𝜕𝑣

𝑟𝜕𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝑣

𝜕𝑟
) −

𝜈

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕2𝑣

𝜕𝑟𝜕𝑧
)

−
𝑢

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕2𝑣

𝜕𝑟2
)) −

𝜎𝐵0
2

𝜌
(𝑉𝑒(𝑧) − 𝑣), 

(5.7) 

𝑢
𝜕𝑇

𝜕𝑟
+ 𝑣

𝜕𝑇

𝜕𝑧
= 𝛼

𝜕

𝑟𝜕𝑟
(𝑟
𝜕𝑇

𝜕𝑟
), (5.8) 

where 𝑢(𝑟, 𝑧) and 𝑣(𝑟, 𝑧) are radial and transverse components of velocity, 𝑣 is the 

kinematic viscosity, 𝜎 is the electrical conductivity of fluid and 𝛼 is the fluid thermal 

diffusivity. The relevant boundary conditions are  

𝑣(𝑟, 𝑧) = 𝑉𝑤(𝑧) =
𝑐𝑧

𝑙
, 𝑢(𝑟, 𝑧) = 0

𝑇(𝑟, 𝑧) = 𝑇𝑤 = 𝑇∞ + 𝑇0 (
𝑧

𝑙
)
𝑛∗ }  at  𝑟 = 𝑅∗, 

𝑣(𝑟, 𝑧) = 𝑉𝑤(𝑧) =
𝑎𝑧

𝑙
, 𝑇(𝑟, 𝑧) → 𝑇∞ as 𝑟 → ∞.  

(5.9) 

Eqs. (5.6)−(5.8) governing the two-dimensional flow in the plane 𝑟 ≥ 𝑅∗, −∞ < 𝑧 < +∞ 

subject to boundary condition (5.9) are not amendable to analytic solution. For numerical 

solution, we introduce the following transformations: 

𝜂 =
𝑟2 − 𝑅∗2

2𝑅∗
√
𝑐

𝜈𝑙
, 𝜓 = √

𝜈𝑐

𝑙
𝑧𝑅∗𝑓(𝜂), 𝑇 = 𝑇∞ + 𝑇0 (

𝑧

𝑙
)
𝑛∗

𝜃(𝜂). (5.10) 

In above transformations, stream function 𝜓 is related to velocity components as  𝑢 =

−𝑟−1𝜕𝜓/𝜕𝑧 and 𝑣 = 𝑟−1𝜕𝜓/𝜕𝑟, 𝜂 is the similarity variable, 𝑓(𝜂) and 𝜃(𝜂) are the 

dimensionless velocity function and temperature field. With the help of above 

transformations, Eq. (5.6) is identically satisfied and Eqs. (5.7) and (5.8) take the following 

form 

(1 + 2𝛾𝜂)𝑓′′′ +  2𝛾𝑓′′ + 𝑓𝑓′′ − (𝑓′)2+4𝑊𝑒𝛾(𝑓′𝑓′′ + 𝑓𝑓′′′) 

+(1 + 2𝛾𝜂)𝑊𝑒(𝑓𝑓𝑖𝑣 − 2𝑓′𝑓′′′ + (𝑓′′)2) − 𝑀2 (𝑓′ −
𝑎

𝑐
) + (

𝑎

𝑐
)
2

= 0, 
(5.11) 

(1 + 2𝛾𝜂)𝜃′′ +  2𝛾𝜃′ + 𝑃𝑟(𝑓𝜃′ − 𝑛∗𝑓′𝜃 ) = 0. (5.12) 

The corresponding boundary conditions are 

𝑓(0) = 0, 𝑓′(0) = 1, 𝜃(0) = 1, 𝑓′(∞) = 𝑎/𝑐, 𝜃(∞) → 0. (5.13) 

The involved non-dimensional parameter are 𝛾 = √𝜈𝑙/𝑐𝑅∗2 (Curvature parameter), 𝑊𝑒 =

𝑐𝑘0/𝜌𝜈𝑙 (Weissenberg number), 𝑀 = √𝜎𝐵0
2𝑙/𝜌𝑐 (Hartman number), 𝑎/𝑐 (Velocity ratio 
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parameter) and 𝑃𝑟 = 𝜈/𝛼 (Prandtl number). Physical quantities of interest for present study 

are skin friction coefficient 𝐶𝑓 and heat transfer coefficient 𝑁𝑢 are given as 

(𝑅𝑒𝑧)
1/2𝐶𝑓 = (1 − 3𝑊𝑒)𝑓′′(0)  and  (𝑅𝑒𝑧)

−1/2𝑁𝑢 = −𝜃′(0), (5.14) 

where, 𝑅𝑒𝑧 = 𝑐𝑧
2/𝜈𝑙 is the dimensionless local Reynolds number. 

 

5.2 Numerical procedure 

Eqs. (5.11) and (5.12) subject to the boundary conditions (5.13) forms a system of nonlinear 

differential equations and are solved by using Spectral Quasi Linearization Method 

(SQLM). This method is a generalized Newton-Raphson method that was first brought in 

use by Bellman and Kalaba (1965) for the solution of functional equations. SQLM can be 

used in place of traditional methods such as shooting method, finite difference schemes in 

solving non-linear boundary value problems to achieve better accuracy. The present scheme 

is based on linearizing the nonlinear component of governing equations using Taylor series 

expansion with the assumption that difference between the values of unknown function at 

the current (𝑟 + 1)𝑡ℎ stage the steps with that of previous represented by (𝑟)𝑡ℎ stage  is 

small. The equations in linearized form are 

𝑎1,𝑟𝑓𝑟+1
𝑖𝑣 +𝑎2,𝑟𝑓𝑟+1

′′′ +𝑎3,𝑟𝑓𝑟+1
′′ +𝑎4,𝑟𝑓𝑟+1

′ +𝑎5,𝑟𝑓𝑟+1 = 𝐵1,𝑟, (5.15) 

𝑏1,𝑟𝜃𝑟+1
′′ +𝑏2,𝑟𝜃𝑟+1

′ +𝑏3,𝑟𝜃𝑟+1+𝑏4,𝑟𝑓𝑟+1
′ +𝑏5,𝑟𝑓𝑟+1 = 𝐵2,𝑟 , (5.16) 

and the boundary conditions become 

𝑓𝑟+1(0) = 0, 𝑓𝑟+1
′ = 1, 𝜃𝑟+1(0) = 1, 

𝑓𝑟+1(∞) =
𝑎

𝑐
, 𝑓𝑟+1
′′ (∞) = 0, 𝜃𝑟+1(∞) = 0 

(5.17) 

The coefficients 𝑎𝑘,𝑟 𝑏𝑘,𝑟 and 𝐵𝑘,𝑟 𝑘 = (1,2, … ) 
are given as 

𝑎1,𝑟 = (1 + 2𝛾𝜂)𝑊𝑒𝑓𝑟 , 𝑎2,𝑟 = (1 + 2𝛾𝜂) + 4𝑊𝑒𝛾𝑓𝑟 − 2𝑓𝑟
′(1 + 2𝛾𝜂)𝑊𝑒,  

(5.18) 

𝑎3,𝑟 = 2𝛾 + 𝑓𝑟 + 4𝑊𝑒𝛾𝑓𝑟
′ + 2𝑓𝑟

′′(1 + 2𝛾𝜂)𝑊𝑒, 

𝑎4,𝑟 = −2𝑓𝑟
′ + 4𝑊𝑒𝛾𝑓𝑟 − 2𝑊𝑒(1 + 2𝛾𝜂)𝑓

′′′ −𝑀2, 

𝑎5,𝑟 = 𝑓𝑟
′′ + (1 + 2𝛾𝜂)𝑊𝑒𝑓𝑟

′′′ + 4𝑊𝑒𝛾𝑓𝑟
′′′, 

𝑏1,𝑟 = (1 + 2𝛾𝜂), 𝑏2,𝑟 = 2𝛾 + 𝑃𝑟𝑓𝑟 , 

𝑏3,𝑟 = −𝑛
∗𝑃𝑟𝑓𝑟

′,     𝑏4,𝑟 = −𝑛
∗𝑃𝑟𝜃𝑟 , 𝑏5,𝑟 = 𝑃𝑟𝜃𝑟

′ ,  

and 

𝐵1,𝑟 = (1 + 2𝛾𝜂)𝑊𝑒(𝑓𝑟𝑓𝑟
′′′ − 2𝑓𝑟

′𝑓𝑟
′′ + 𝑓𝑟

′′2) + 4𝑊𝑒𝛾(𝑓𝑟𝑓𝑟
′′′ + 𝑓𝑟

′𝑓𝑟
′′) (5.19) 



80 

 

+𝑓𝑟𝑓𝑟
′′ − 𝑓𝑟

′2 −𝑀2 (
𝑎

𝑐
) − (

𝑎

𝑐
)
2

, 

𝐵2,𝑟 = −𝑛
∗𝑃𝑟𝜃𝑟𝑓𝑟

′ + 𝑃𝑟𝜃𝑟
′𝑓𝑟 , 

For solution of Eqs. (5.15)−(5.17), Chebyshev Spectral Collocation Method is used. It is 

applied by first reducing the semi-infinite domain [0,∞] to finite domain say [0, 𝜂∞] and 

then further transforming it to [−1,1] by using the transformation 𝜂 = 𝜂∞(𝑦 + 1)/2, which 

is a basic need for use of collocation methods. To estimate the derivatives of unknown 

variables 𝑓(𝜂) and 𝜃(𝜂) at the collocation points, differentiation matrix 𝑫 is used e.g. 

derivative of 𝑓(𝜂) is given as 

𝑑𝑓𝑗

𝑑𝜂
=∑𝐷𝑗𝑘

𝑁

𝑘=0

𝑓(𝑦𝑘) = 𝐷𝑓, 𝑗 = 0,1, … ,𝑁, (5.20) 

where N is the total number of collocation points, 𝐷 = 𝑫/𝜂∞ and  

𝑓 = [𝑓(𝑦0), 𝑓(𝑦1),… , 𝑓(𝑦𝑁)]
𝑡. (5.21) 

For higher order derivatives, the following relation is used 

𝑓(𝑠) = 𝑫(𝑠)𝑓, (5.22) 

where ‘𝑠’ is the order of the derivative. Matrix 𝑫 is of size (𝑁 × 1) × (𝑁 × 1) and the 

collocation points are defined as 

𝑦𝑗 = 𝑐𝑜𝑠 (
𝜋𝑗

𝑁
) ,      𝑗 = 0,1, … , 𝑁. (5.23) 

Applying Collocation method to Eqs. (5.15-5.17), the following matrix is obtained. 

[
𝐴11 𝐴12
𝐴21 𝐴22

] [
𝑓𝑟+1

𝜃𝑟+1
] = [

𝐵1𝑟
𝐵2𝑟

]. (5.24) 

In which 

𝐴11 = 𝑎1,𝑟𝐷
4 + 𝑎2,𝑟𝐷

3 + 𝑎3,𝑟𝐷
2 + 𝑎4,𝑟𝐷 + 𝑎5,𝑟𝐼,    𝐴12 = 𝟎 

𝐴21 = 𝑏4,𝑟𝐷 + 𝑏5,𝑟𝐼, 𝐴22 = 𝑏1,𝑟𝐷
2 + 𝑏2,𝑟𝐷 + 𝑏3,𝑟𝐼. 

(5.25) 

In which 𝐼 is identity matrix, and 𝑎𝑖,𝑟, 𝑏𝑖,𝑟, 𝐵1𝑟and 𝐵2𝑟  (𝑖 = 1,2, … ,5) are given by set of 

Eqs. (5.18) and (5.19) respectively. In order to ensure that the solution of the present 

problem is grid independent, computed numerical values of 𝑓′′(0) against different 

refinement levels of grid points are given in Table 5.1. It is observed that percentage error 

is reducing by increasing the grid points and is minimum at fourth refinement level. Therefor 

the fourth refinement level (i.e., 𝑁 = 40) is used for the solution in present study. 

 

 

 



81 

 

Table 5.1: Validity of computed 𝑓′′(0) at different grid points 

 

 

 

 

 

 

5.3 Results and discussion 

The grid independent solution of the problem has been computed with the help of Spectral 

Quasi Linearization Method. Main focus of study is how fluid flow varies about stagnation 

point under the influence of traverse magnetic field. In order to get the clear insight of fluid 

flow and heat transfer principle, a parametric study is conducted in the prescribed domain 

with the variation of non-dimensional factors i.e. curvature parameter (𝛾), Magnetic 

parameter (𝑀), velocities ratio parameter (𝑎/𝑐), Weissenberg number (𝑊𝑒) and Prandtl 

number (𝑃𝑟). Tables 5.2−5.6 are drawn to show the validity and accuracy of computed 

results. In which, Table 5.2 shows a comparison of computed numerical values of 𝑓′′(0) 

with Sharma and Singh (2009) for different values of 𝑎/𝑐, when other parameters are fixed 

as 𝛾 = 𝑊𝑒 = 𝑀 = 0.  

Table 5.2: Present results of 𝑓′′(0) as compared to (Sharma and Singh 2009) for different 

values of 𝑎/𝑐  when 𝛾 = 𝑊𝑒 = 𝑀 = 0.  

𝑎/𝑐 Sharma and Singh (2009) Present results (SQLM) 

0.1 −0.969386 −0.969386 

0.2 −0.918106 −0.918107 

0.5 −0.667263 −0.667264 

2.0 2.017490 2.01750 

3.0 4.729226 4.729282 

 

In Table 5.3, comparison has been shown for computed numerical values of 𝑓′′(0) with 

Sharma and Singh (2009) when 𝛾 = 𝑊𝑒 = 0 are fixed against various values of parameters 

𝑀 and 𝑎/𝑐. In Table 5.4, comparison has been shown for computed numerical values of 

−𝜃′(0) with Elbashbeshy et al. (2012) when 𝛾 = 𝑊𝑒 = 𝑀 = 𝑎/𝑐 = 0 are fixed. Table 5.5 

shows a comparison of numerical values of 𝑓′′(0) with the results computed by Pillai et al. 

Refinement levels Grid Points (𝑁) 𝑓′′(0)  %Error  

First 10 −0.6325 − 

Second 20 −0.9706 35 

Third 30 −0.9736 0.3 

Fourth 40 −0.9735 0.01 
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(2004) and Nandeppanavar et al. (2010) for different values of 𝑊𝑒 when 𝛾 = 𝑀 = 𝑎/𝑐 =

0. It is observed through all these tables that the computed solution is convergent, grid 

independent and highly accurate. Computed numerical values of 𝑓′′(0) are listed in Table 

5.6 for different values of 𝑀. It is important to mention that these values are also validated 

by another numerical scheme known as Hybrid method (Areal 1992). These tabulated values 

are new results in literature and will be helpful in future references. 

The Figures 5.2 and 5.3 are plotted to observe the effects of curvature parameter 𝛾 on 

velocity and temperature profiles respectively. It is noticed that by increasing the curvature 

of the cylinder, the velocity and temperature profiles increase in the boundary layer. It is 

because by enhancing 𝛾, the cylinder surface area squeezes and the motion of the fluid 

adjacent to the surface speeds up which consequently increases the temperature of the fluid 

within the boundary layer. The increase in 𝛾 further helps to control the momentum and 

thermal boundary layer thickness as shown in these figures. Figures 5.4 and 5.5 demonstrate 

 

Table 5.3: Present results of 𝑓′′(0) compared to (Sharma and Singh 2009) for different 

values of 𝑀 and 𝑎/𝑐  when 𝛾 = 𝑊𝑒 = 0. 

𝑎/𝑐 𝑀  Sharma and Singh (2009) Present results 

0.1 0.1 −0.973508 −0.973508 

0.2 0.1 −0.921466 −0.921534 

0.5 0.1 −0.669102 −0.669102 

2.0 0.1 2.019932 2.019944 

3.0 0.1 4.733399 4.733455 

0.1 0.5 −1.067898 −1.067898 

0.2 0.5 −1.000469 −1.000469 

0.5 0.5 −0.711890 −0.711891 

2.0 0.5 2.077711 2.077724 

3.0 0.5 4.832501 4.832520 

0.1 1.0 −1.321111 −1.321111 

0.2 1.0 −1.215622 −1.215622 

0.5 1.0 −0.832125 −0.832126 

2.0 1.0 2.240857 2.249103 

3.0 1.0 5.130344 5.130380 
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Table 5.4: Present results of −𝜃′(0) compared to Elbashbeshy et al. 2012 for different 

values of 𝑀  when 𝛾 = 𝑊𝑒 = 𝑀 = 𝑎/𝑐 = 0. 

 

 

Table 5.5: Present results of 𝑓′′(0) compared to Pillai et al. 2004 and Nandeppanavar et 

al. 2010 for different values of 𝑊𝑒  when 𝛾 = 𝑀 = 𝑎/𝑐 = 0. 

𝑊𝑒 Pillai et al. 2004 Nandeppanavar et al. 2010 Present results (SQLM) 

0 1.0 1.0 1.0 

0.0001 1.00005 1.00005 1.00005 

0.001 1.0050 1.00500 1.00500 

0.005 − 1.00251 1.00250 

0.01 1.00504 1.00504 1.00504 

0.03 − 1.01535 1.01534 

0.05 − 1.02598 1.02597 

0.1 1.05409 1.05409 1.05406 

0.2 1.11803 1.11803 1.11797 

0.3 1.19523 1.19523 1.19512 

0.4 1.29099 1.29099 1.29079 

0.5 1.41421 1.41421 1.41390 

 

𝑃𝑟 𝑛∗ Elbashbeshy et al. 2012 Present results (SQLM) 

1 −2 −1.0000 −1.0000 

 −1 0.0000 0.0000 

 0 0.5820 0.5819 

 1 1.0000 1.0000 

 2 1.3333 1.3333 

10 −2 −10.0000 −10.0000 

 −1 0.0000 0.0000 

 0 2.3080 2.3080 

 1 3.7207 3.7207 

 2 4.7969 4.7969 

0.9 2 − 1.25046 

0.8 2 − 1.16276 

0.7 2 − 1.06932 
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Table 5.6: Numerical values of 𝑓′′(0) for different values of 𝛾, 𝑎/𝑐,𝑀 and 𝑊𝑒.  

𝛾 𝑎/𝑐 𝑀 𝑊𝑒 
Present results 

SQLM Hybrid Method (Areal 1992) 

0.0 0.1 0.1 0.1 −1.0317 −1.0317 

 0.2 0.1  −0.9832 −0.9832 

 0.5 0.1  −0.7320 −0.7320 

0.5 0.1 0.5 0.2 −1.7450 −1.7450 

 0.2 0.5  −1.6627 −1.6627 

 0.5 0.5  −1.2701 −1.2701 

1.0 0.1 1.0 0.3 −3.5380 −3.5380 

 0.2 1.0  −3.4028 −3.4028 

 0.5 1.0  −2.8108 −2.8108 

 

the effects of 𝑊𝑒 on velocity and temperature profiles respectively. The case when 𝑎/𝑐 <

1; the velocity profile decreases for larger values of 𝑊𝑒 and for the case 𝑎/𝑐 > 1; the 

velocity profile increases for larger values of 𝑊𝑒. This behavior of 𝑊𝑒 is quite opposite in 

the temperature profile as shown in Figure 5.5. It is also noted that when the value of 𝑎/𝑐 >

1, the temperature variation is very small for increasing values of 𝑊𝑒. For 𝑎/𝑐 close to 

unity, the velocity 𝑓′(𝜂) is almost constant and independent of 𝑊𝑒. Due to this fact, the 

temperature inside the boundary layer is independent of 𝑊𝑒 for 𝑎/𝑐 = 1. To show the 

importance of Lorentz force on the velocity profile of Walters-B fluid near a stagnation 

point over a stretching cylinder, Figure 5.6 is plotted. It depicts the variation in velocity 

profile for different values of magnetic parameter 𝑀. Physically, the presence of transverse 

magnetic field to an electrically conducting fluid develops a body force known as Lorentz 

force. It acts like a resistive force which decelerates the fluids velocity. This effect differs 

due to boundary layer structure and due to the velocities ratio parameter 𝑎/𝑐. When 𝑎/𝑐 =

0.4 < 1 (i.e. free stream velocity is less than stretching velocity and inverted boundary layer 

structure develops), the velocity profile decreases with increase in 𝑀. When 𝑎/𝑐 = 0.4 > 1 

(i.e. free stream velocity is greater than stretching velocity and boundary layer structure 

develops), the velocity profile increases with increase in 𝑀 Also when 𝑎/𝑐 = 1 (i.e. free 

stream velocity is equal to stretching velocity and no boundary layer exists), the velocity 

profile for different values of 𝑀 coincides. In other words, the velocity profile is 

independent of the applied magnetic field when free stream velocity is equal to stretching 
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velocity. Mathematically, this behavior of velocity profile can be related to the factor 

−𝑀(𝐹′ − 𝑎/𝑐) in the flow Eq. (5.11). Figure 5.7 is plotted to predict the temperature 

distribution against the impact of Lorentz force. The observation reflects that the 

temperature in boundary layer region is enhanced by strengthening magnetic field. It is 

because of this reason that by increasing strength of magnetic field (i.e. increase in Lorentz 

force) the heat transfer rate reduces which falls out as enhancement of temperature in 

boundary layer region. In addition, the variation in heat transfer rate against M  is discussed 

later in this section. Figure 5.8 depicts the variation in velocity profile against the velocity 

ratio parameter 𝑎/𝑐. It is noted from the figure that when 𝑎/𝑐 > 1, the flow has boundary 

layer structure. Also with increase in 𝑎/𝑐, the boundary layer thickness shrinks. Physically, 

it means that for large value of free stream velocity as compare to stretching velocity (such 

that 𝑎/𝑐 > 1), the fluid near the surface of cylinder moves with free stream velocity which 

leads to thinning of momentum boundary layer. When 𝑎/𝑐 < 1, the flow has an inverted 

boundary layer structure, which is because of the reason that the stretching velocity exceeds 

the free stream velocity. When 𝑎/𝑐 = 1, no boundary layer structure is formed. Temperature 

profile for various values of 𝑛∗ is shown in Figure 5.9. It is seen from the figure that 

temperature profile decreases and thermal boundary layer is controlled by increasing 𝑛∗. 

Figure 5.10 shows that the temperature of the fluid is reduced for larger values of Pr. 

Physically it is due to the fact that the fluids with large 𝑃𝑟 have the ability to reduce the 

temperature of the surface. Therefore, in automobiles and industrial mechanisms, the fluids 

with high Prandtl number are frequently used as a cooling agent. Numerical results for 

physical parameters like skin friction coefficient (𝑅𝑒𝑧
1/2
𝐶𝑓) and heat transfer coefficient 

(𝑅𝑒𝑧
−1/2

𝑁𝑢) are plotted in Figures 5.11-5.15 against curvature parameter (𝛾), magnetic 

parameter (𝑀) and Weissenberg number (𝑊𝑒) for various ranges of 𝑊𝑒 and 𝑃𝑟 

respectively by taking other parameters fixed. It is noted in Figure 5.11 that the skin friction 

coefficient (𝑅𝑒𝑧
1/2
𝐶𝑓) increases by increasing the prescribed values of 𝑊𝑒. This implies that 

the drag between fluid and surface of cylinder is getting stronger in going from Newtonian 

to non-Newtonian behavior of the fluid (𝑊𝑒 = 0 → 0.3). However, a small amount of 

reduction in drag is noted with large value of 𝑊𝑒 against each 𝛾. It is illustrated from Figure 

5.12 that heat transfer coefficient (𝑅𝑒𝑧
−1/2

𝑁𝑢) is an increasing function of 𝛾 for prescribed 

values of 𝑊𝑒. This affirms the reduction in heat transfer rate in going from Newtonian to 

non-Newtonian behavior of fluid (𝑊𝑒 = 0 → 0.3). The dominating effects of 𝑀 are shown 
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in Figure. 5.13. By increasing the strength of magnetic field, the absolute value of 𝑅𝑒𝑧
1/2
𝐶𝑓 

increases. Also the effects of 𝑀 are more pronounced for 𝑊𝑒 = 0 in comparison with 𝑊𝑒 =

0.3. In Figure 5.14, the heat transfer rate is found to be decreasing function of 𝑀 which 

validates the effects achieved in Figure 5.7. Figure 5.15 shows that the heat transfer 

coefficient (𝑅𝑒𝑧
−1/2

𝑁𝑢) is an increasing function of Prandtl number 𝑃𝑟 and heat transfer 

rate slightly decreases against large values of 𝑊𝑒. The flow developments through 

streamlines are observed in Figures 5.16−5.19 within the restricted domain. Variation in 

streamlines in the absence of stagnation and in the presence of stagnation point are plotted 

in Figures 5.16(a) and (b), respectively. When 𝑎/𝑐 = 0, the fluid moves due to stretching 

of surface, and no potential flow occurs. Due to this, the streamlines are stagnant in the 

region beyond the surface and near the surface the fluid is moving away from dividing 

streamline in both directions. When 𝑎/𝑐 = 0, the potential flow exists but the case 𝑎/𝑐 < 1 

means the stretching velocity effects are more dominant than straining velocity effects. 

Because of this, streamlines are more concentrated towards dividing streamline beyond the 

surface and expanding near the surface. The resulting patterns of streamlines for (a) 

stretching sheet 𝛾 = 0 and (b) stretching cylinder 𝛾 = 1 are shown in Figure 5.17. 

Streamlines are getting closer and concentrated near dividing stream in case of stretching 

cylinder 𝛾 = 1 in comparison with that of stretching sheet 𝛾 = 0. This shows a dominant 

fluid flow around stretching cylinder due to small surface area. Figure 5.18 (a, b) shows the 

streamlines in case of Newtonian(𝑊𝑒 = 0)and non-Newtonian Walter-B fluid (𝑊𝑒 = 0.3), 

respectively. Figure 5.18 (b) shows that the streamlines are more diverging from dividing 

stream line for Walter-B fluid (𝑊𝑒 = 0.3) than the Newtonian fluid (𝑊𝑒 = 0) in Figure 18 

(a). In Figure 5.19 (a, b), the streamlines are plotted for 𝑀 = 0 (absence of magnetic field 

effects) and for 𝑀 = 2 (presence of magnetic field effects), respectively. In Figure 5.19(a), 

the minimum and maximum values of |𝜓| are observed as |𝜓| 𝑚𝑖𝑛 = 1.6748 and |𝜓| 𝑚𝑎𝑥 =

7.6748, and the streamlines are concentrated in this domain, which is indication of high 

flow rate. In Figure 19 (b), |𝜓| 𝑚𝑎𝑥 = 5.6748 which is smaller than the |𝜓| 𝑚𝑎𝑥 in absence 

of magnetic field, this leads to the fact that magnetic field reduces the flow rate. It is noted 

through Figures 5.18 and 5.19 that We and M have same impact on fluid flow.  
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Figure 5.2: Curvature effects on velocity profile at 𝑀 = 0.1, 𝑎/𝑐 = 0.1,𝑊𝑒 = 0.1. 

 

 

 

Figure 5.3: Curvature effects on temperature distribution at 𝑀 = 0.1, 𝑎/𝑐 = 0.1,𝑊𝑒 =

0.1, 𝑛∗ = 2, 𝑃𝑟 = 0.7.  
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Figure 5.4: Viscoelastic effects on velocity profile at 𝛾 = 0.1,𝑀 = 0.1. 

 

 

 

Figure 5.5: Viscoelastic effects on temperature distribution 𝛾 = 0.1,𝑀 = 0.1, 𝑛∗ =

2, 𝑃𝑟 = 0.7.  
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Figure 5.6: Magnetic field influence on velocity profile at 𝛾 = 0.1,𝑊𝑒 = 0.1. 

 

 

 

Figure 5.7: Magnetic field influence on temperature distribution at 𝛾 = 0.1, 𝑎/𝑐 =

0.1,𝑊𝑒 = 0.1, 𝑛∗ = 2, 𝑃𝑟 = 0.7. 
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Figure 5.8: Velocity behavior due to variation of 𝑎/𝑐 at 𝛾 = 0.1,𝑀 = 0.1,𝑊𝑒 = 0.1. 

 

 

 

Figure 5.9: Influence of 𝑛 on temperature distribution at 𝛾 = 0.1,𝑀 = 0.1, 𝑎/𝑐 =

0.1,𝑊𝑒 = 0.1, 𝑃𝑟 = 0.7.  
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Figure 5.10: Effect of 𝑃𝑟 on temperature distribution at 𝛾 = 0.1,𝑀 = 0.1, 𝑎/𝑐 = 0.1,

𝑊𝑒 = 0.1, 𝑃𝑟 = 0.7.  

 

 

Figure 5.11: Variation in 𝑅𝑒𝑧
1/2
𝐶𝑓 with 𝛾 at different 𝑊𝑒 for 𝑀 = 0.1, 𝑎/𝑐 = 0.1. 

 



92 

 

 

 

Figure 5.12: Variation in 𝑅𝑒𝑧
−1/2

𝑁𝑢 with 𝛾 at different 𝑊𝑒 for 𝑀 = 0.1, 𝑎/𝑐 =

0.1, 𝑛∗ = 2, 𝑃𝑟 = 0.7.  

 

 

Figure 5.13: Variation in 𝑅𝑒𝑧
1/2
𝐶𝑓 with 𝑀 at different 𝑊𝑒 for 𝛾 = 0.1, 𝑎/𝑐 = 0.1. 
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Figure 5.14: Variation in 𝑅𝑒𝑧
−1/2

𝑁𝑢 with 𝑀 at different 𝑊𝑒 for 𝛾 = 0.1, 𝑎/𝑐 =

0.1, 𝑛∗ = 2, 𝑃𝑟 = 0.7.  

 

 

Figure 5.15: Variation in 𝑅𝑒𝑧
−1/2

𝑁𝑢 with 𝑊𝑒 at different 𝑃𝑟 for 𝛾 = 0.1, 𝑎/𝑐 =

0.1, 𝑛∗ = 2,𝑀 = 0.1.  
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Figure 5.16: Streamlines for (a) 𝑎/𝑐 = 0, and (b) 𝑎/𝑐 = 0.4. 

 

 

 

Figure 5.17: Streamlines for (a) 𝛾 = 0, and (b) 𝛾 = 1. 
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Figure 5.18: Streamlines for (a) 𝑊𝑒 = 0, and (b) 𝑊𝑒 = 0.3. 
 

 

 

 

Figure 5.19: Streamlines for (a) 𝑀 = 0, and (b) 𝑀 = 2. 
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5.4 Conclusions 

A computational study is performed to investigate the two-dimensional, laminar, MHD 

stagnation point flow of Walters B fluid over a stretching cylinder. The main theme is to 

model the Walters B fluid constitutive equation in cylindrical coordinate system subject to 

flow over stretching cylinder. For this purpose, the Spectral Quasi Linearization Method 

(SQLM) has successfully employed to perform a comparative study of present problem in 

limiting case with that of previous studies. It is observed that SQLM is accurate, rapidly 

convergent, time saving and easy to implement in MATLAB coding. It is concluded that 

the implemented method reflects an abundant prospective to widely use in non-linear 

science and engineering problems. In present study, mainly the effects of curvature 

parameter (𝛾), velocity ratio parameter (𝑎/𝑐), Weissenberg parameter (𝑊𝑒) and Prandtl 

number (𝑃𝑟) with constant magnetic field are discussed. The developed Walters-B fluid 

model over a stretching cylinder can be extended for the nanofluid by incorporating the 

nanoparticles and mixed convection flows. We noted that the curvature of cylinder has 

significant effect over velocity and temperature profiles as compared to that of flat plat case 

when 𝛾 = 0. The application of an external magnetic field generates Lorentz force which 

decelerate the fluid flow and accelerate temperature of the fluid. The velocity profile 

decreases significantly and momentum boundary layer gets thin for large values of 

Weissenberg number (𝑊𝑒). It is because viscous forces dominate the elastic forces. With 

increasing values of Weissenberg number (𝑊𝑒), the drag force over the surface increases 

and it reduces against each value of cylinder Curvature parameter (𝛾). Reduction in heat 

transfer rate is noted with increase in the values of Weissenberg number (𝑊𝑒), while 

enhancement in the heat transfer rate is observed with increasing curvature of cylinder. 
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Chapter 6 

Study of non-Newtonian fluid flow due to stretching 

cylinder under Soret and Dufour effects  

This chapter presents the analysis of Soret and Dufour effects on the two-dimensional flow 

of second grade fluid due to stretching cylinder. It is further considered that the flow is 

subjected to thermal radiation, which is another aspect of the study. Mathematical model for 

second grade fluid in cylindrical coordinate system is developed in terms of nonlinear partial 

differential equations. These modelled equations are first transformed to a system of 

nonlinear coupled ordinary differential equations after using similarity transformation, and 

then the solution is computed numerically by using Keller box scheme for the wide range 

of physical parameters. The computed results are validated with the existing literature for 

limiting case. The drag coefficient on surface, heat transfer, and mass transfer rates are 

analyzed through the graphs and tables. It is predicted that the simultaneous increase in 

Dufour and Soret numbers help to enhance the temperature and the concentration in the 

boundary layer region around the cylinder, respectively. Also concurrent occurring of 

increasing Dufour and decreasing Soret numbers on heat transfer and mass transfer rates 

have opposite effects. Moreover, the radiation effects are elaborated through the variation 

of effective Prandtl number. The increase in effective Prandtl number results in decrease of 

the temperature of the fluid. 

 

6.1 Mathematical formulation 

Let us consider the two-dimensional flow of second grade fluid due to stretching cylinder. 

To generalize the scope of the study, the effects of thermal radiation, Soret and Dufour 

phenomena are also made a part of this work. Moreover, the properties of the fluid are 

assumed to be constant. Geometry of the problem is constructed in such a way that axis of 

cylinder (z-axis) is taken in horizontal direction and r-axis is considered normal to it. The 

cylinder is assumed of fixed radius 𝑅∗ and the surface is subjected to stretching with velocity 

𝑐𝑧/𝑙. The Schematic of flow model is presented in Figure 4.1. After invoking the boundary 

layer approximation, the governing equations for the momentum (in component form), 

energy and concentration are reduced to: 
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z-component of momentum equation 

 𝑣
𝜕𝑣

𝜕𝑧
+ 𝑢

𝜕𝑣

𝜕𝑟
= −

𝜕𝑝
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+ 𝜈 (
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+
1
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𝜕𝑟
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+
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𝜌
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−
𝜕𝑢

𝜕𝑟

𝜕𝑣

𝜕𝑟
+ 𝑣

𝜕2𝑣

𝜕𝑟𝜕𝑧
+ 𝑢

𝜕2𝑣

𝜕𝑟2
} +

𝑢
𝜕3𝑣

𝜕𝑟3
+ 𝑣

𝜕3𝑣

𝜕𝑟2𝜕𝑧
−
𝜕𝑣

𝜕𝑧

𝜕2𝑢

𝜕𝑟2
+
𝜕𝑣

𝜕𝑧

𝜕2𝑣

𝜕𝑟2 )

 
 
, 

(6.1) 

r-component of momentum equation 

0 = −
1

𝜌

𝜕𝑝

𝜕𝑟
+
𝛼1
𝜌
(
1

𝑟
(
𝜕𝑣

𝜕𝑟
)
2

+ 2
𝜕𝑣

𝜕𝑧

𝜕2𝑣

𝜕𝑟2
), 

(6.2) 

Energy equation 

𝜌𝑐𝑝 (𝑢
𝜕𝑇

𝜕𝑟
+ 𝑣

𝜕𝑇

𝜕𝑧
) = 𝑘 (

𝜕2𝑇

𝜕𝑟2
+
𝜕𝑇

𝑟𝜕𝑟
) +

𝜌𝐷𝑚𝑘𝑡
𝑐𝑠

(
𝜕2𝐶

𝜕𝑟2
+
𝜕𝐶

𝑟𝜕𝑟
) −

𝜕

𝑟𝜕𝑟
(𝑟𝑞𝑟), 

(6.3) 

 

Concentration equation 

(𝑢
𝜕𝐶

𝜕𝑟
+ 𝑣

𝜕𝐶

𝜕𝑧
) = 𝐷𝑚 (

𝜕2𝐶

𝜕𝑟2
+
𝜕𝐶

𝑟𝜕𝑟
) +

𝐷𝑚𝑘𝑡
𝑇𝑚

(
𝜕2𝑇

𝜕𝑟2
+
𝜕𝑇

𝑟𝜕𝑟
). 

(6.4) 

 

The corresponding boundary conditions against the fluid flow, temperature and 

concentration are 

  𝑣(𝑟, 𝑧) =
𝑐𝑧

𝑙
,

𝑢(𝑟, 𝑧) = 0,

                       𝑇(𝑟, 𝑧) = 𝑇∞ + (
𝑧

𝑙
)
𝑛∗

∆𝑇,

                       𝐶(𝑟, 𝑧) = 𝐶∞ + (
𝑧

𝑙
)
𝑛∗

∆𝐶}
  
 

  
 

 at 𝑟 = 𝑅∗, 

and 

𝑣(𝑟, 𝑧) = 0,
𝑢(𝑟, 𝑧) = 0,
   𝑇(𝑟, 𝑧) = 𝑇∞,

  𝐶(𝑟, 𝑧) = 𝐶∞}
 

 
 as 𝑟 → ∞.  

(6.5) 

 

The symbols used in above equations are listed below as: 

𝑝: pressure 𝑐𝑠: concentration susceptibility 

𝛼1: material parameter of second grade fluid 𝑐𝑝: specific heat capacity 

𝐷𝑚: molecular diffusivity of the species    

concentration 

𝑞𝑟: radiative heat flux 

𝑛∗: temperature index. 

𝑘𝑡: thermal diffusion ratio 𝑇𝑚: mean fluid temperature 
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𝑙: characteristic length of the cylinder 𝐶: concentration of fluid 

𝐶∞: ambient concentration 𝑐: dimensional constant  

 

The radiative heat flux 𝑞𝑟 is obtained by means of Rosseland approximation (Rosseland 

1931) as follows 

𝑞𝑟 = −
4𝜎∗

3(𝛼𝑟 + 𝜎𝑠)

𝜕𝑇4

𝜕𝑟
, (6.6) 

where 𝜎∗ is the Stefan-Boltzman constant, 𝛼𝑟 is the Rosseland mean absorption coefficient, 

and 𝜎𝑠 is the scattering coefficient. For the flow over hot stretching cylinder, the reduced 

form of radiative heat flux (Magyari and Pantokratoras 2011) is 

𝑞𝑟 = −
16𝜎∗𝑇3

3(𝛼𝑟 + 𝜎𝑠)

𝜕𝑇

𝜕𝑟
. (6.7) 

Upon utilizing Eq. (6.6) in Eq. (6.3), we get  

(𝑢
𝜕𝑇

𝜕𝑟
+ 𝑣

𝜕𝑇

𝜕𝑧
) =

𝑘

𝜌𝑐𝑝
(1 +

16𝜎∗𝑇3

3𝑘(𝛼𝑟 + 𝛼𝑠)
) (
𝜕2𝑇

𝜕𝑟2
+
𝜕𝑇

𝑟𝜕𝑟
) 

+
𝜌𝐷𝑚𝑘𝑡
𝑐𝑝𝑐𝑠

(
𝜕2𝐶

𝜕𝑟2
+
𝜕𝐶

𝑟𝜕𝑟
). 

(6.8) 

It is assumed that temperature difference in the fluid-phase within the flow is sufficiently 

small and 𝑘 is considered as constant. Linearizing the radiative heat flux about the ambient 

temperature 𝑇∞ will bring Eq. (6.8) to the following form: 

(𝑢
𝜕𝑇

𝜕𝑟
+ 𝑣

𝜕𝑇

𝜕𝑧
) =

𝑘

𝜌𝑐𝑝
(1 +

16𝜎∗𝑇∞
3

3𝑘(𝛼𝑟 + 𝛼𝑠)
) (
𝜕2𝑇

𝜕𝑟2
+
𝜕𝑇

𝑟𝜕𝑟
) 

+
𝜌𝐷𝑚𝑘𝑡
𝑐𝑝𝑐𝑠

(
𝜕2𝐶

𝜕𝑟2
+
𝜕𝐶

𝑟𝜕𝑟
). 

(6.9) 

Introducing the following appropriate similarity transformations 

𝜂 =
𝑟2 − 𝑅∗2

2𝑅∗
√
𝑐

𝜈𝑙
, 𝑢 =  −

𝑅∗

𝑟
√
𝑐𝜈

𝑙
 𝑓(𝜂), 𝑣 =

𝑐𝑧

𝑙
𝑓′(𝜂),  

𝜃(𝜂) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

, 𝜃(𝜂) =
𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞

, 

(6.10) 

After eliminating pressure terms from Eq. (6.1) and Eq. (6.2) and upon using similarity 

transformation, Eqs. (6.1-6.4) take the following dimensionless form: 

(1 + 2𝛾𝜂)𝑓𝑖𝑣 − 𝑓′𝑓′′ + 𝑓𝑓′′′ + 4𝛾𝑓′′′ + 4𝛾𝐾𝑓′𝑓′′′ − 

6𝛾𝐾𝑓𝑓𝑖𝑣 + (1 + 2𝛾𝜂)𝐾(𝑓′𝑓𝑖𝑣 − 𝑓𝑓𝑣) = 0, 
(6.11) 
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1

𝑃𝑟𝑒𝑓𝑓
((1 + 2𝛾𝜂)𝜃′′ + 2𝛾𝜃′) + (𝑓𝜃′ − 𝑛∗𝑓′𝜃) + 𝐷𝑢((1 + 2𝛾𝜂)𝜙′′ + 2𝛾𝜙′)

= 0, 

(6.12) 

((1 + 2𝛾𝜂)𝜙′′ + 2𝛾𝜙′) + 𝑆𝑐(𝑓𝜙′ − 𝑛∗𝑓′𝜙) + 𝑆𝑐𝑆𝑟((1 + 2𝛾𝜂)𝜃′′ + 2𝛾𝜃′)

= 0. 
(6.13) 

The boundary conditions (6.5) reduce to: 

𝑓(0) = 0, 𝑓′(0) = 1, 𝑓′(∞) = 𝑓′′(∞) = 𝑓′′′(∞) = 0, 

𝜃(0) = 1, 𝜃(∞) = 0, 𝜙(0) = 1, 𝜙(∞) = 0, 

(6.14) 

where, 𝐾 = 𝛼1𝑐/𝜌𝜈𝑙 (Viscoelastic parameter), 𝑁𝑟 = 16𝜎∗𝑇∞
3  /3𝑘(𝛼𝑟 + 𝜎𝑠) (Radiation 

parameter), 𝑃𝑟𝑒𝑓𝑓 = 𝑃𝑟/(1 + 𝑁𝑟) (Prandtl effective number), 𝐷𝑢 = 𝐷𝑚𝑘𝑡(𝐶𝑤 − 𝐶∞)/

𝑐𝑝𝑐𝑠(𝑇𝑤 − 𝑇∞) (Dufour number), 𝑆𝑟 = 𝐷𝑚𝑘𝑡(𝑇𝑤 − 𝑇∞)/𝑇𝑚𝜈(𝐶𝑤 − 𝐶∞) (Soret number), 

and 𝑆𝑐 = 𝜈/𝐷𝑚 (Schmidt number). 

It is important to mention here that for 𝛾 = 0, Eq. (6.11) reduces to the case of flat sheet 

problem, i.e. 

𝑓𝑖𝑣 − 𝑓′𝑓′′ + 𝑓𝑓′′′ + 𝐾(𝑓′𝑓𝑖𝑣 − 𝑓𝑓𝑣) = 0. (6.15) 

Integrating above equation w.r.t 𝜂 we get:  

𝑓′′′ + 𝑓𝑓′′ − 𝑓′2 + 𝐾(2𝑓𝑓′′′ − 𝑓′′2 − 𝑓𝑓𝑖𝑣) + 𝑐 = 0. (6.16) 

here constant 𝑐 = 0, due to boundary condition specified at infinity. The above Eq. (6.16) 

is a typical form of second grade fluid model as reported by (Vajravelu and Roper 2011). 

The important physical quantities which are used to measure the skin-friction, heat and mass 

transfer are given as 

𝐶𝑓 =
𝜏𝑤
𝜌𝑉𝑤2

, 𝑁𝑢 =
𝑧𝑞𝑤

𝑘𝑒𝑓𝑓(𝑇𝑤 − 𝑇∞)
, 𝑆ℎ =

𝑧𝑞𝑚
𝐷𝑚(𝐶𝑤 − 𝐶∞)

,  (6.17) 

where 𝜏𝑟𝑧 represents the shear stress along the cylinder, 𝑘𝑒𝑓𝑓 is the combination of 𝑘𝑐𝑜𝑛𝑑 

with 𝑘𝑟𝑎𝑑, 𝑞𝑤 represents the heat flux and 𝑞𝑚 is mass flux at the wall, which are defined as 

𝜏𝑤 = 𝜇 (
𝜕𝑣

𝜕𝑟
)
𝑟=𝑅

+ 𝛼1 (𝑣
𝜕2𝑣

𝜕𝑧𝜕𝑟
+ 𝑢

𝜕2𝑣

𝜕𝑟2
−
𝜕𝑣

𝜕𝑟

𝜕𝑣

𝜕𝑧
+
𝜕𝑣

𝜕𝑟

𝜕𝑢

𝜕𝑟
)
𝑟=𝑅

, 

𝑘𝑒𝑓𝑓 = 𝑘 +
16𝜎𝑇3

3(𝛼𝑟 + 𝜎𝑠)
 , 𝑞𝑤 = −𝑘𝑒𝑓𝑓 (

𝜕𝑇

𝜕𝑟
)
𝑟=𝑅

, 𝑞𝑚 = −𝐷𝑚 (
𝜕𝐶

𝜕𝑟
)
𝑟=𝑅
.  

(6.18) 

In view of Eq. (6.18), Eq. (6.17) become 

              Skin friction coefficient: 𝑅𝑒𝑧
1/2
𝐶𝑓 = (1 + 3𝐾)𝑓

′′(0), 

Local Nusselt number:  𝑅𝑒𝑧
−1/2

𝑁𝑢 = −𝜃′(0), 
(6.19) 
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   Local Sherwood number:  𝑅𝑒𝑧
−1/2

𝑆ℎ = −𝜙′(0), 

where 𝑅𝑒𝑧 = 𝑐𝑧
2/𝑙𝜈  is the local Reynolds number. 

 

6.2 Solution methodology 

The numerical simulation of nonlinear ordinary differential equations (6.11–6.13) subject 

to the boundary conditions (6.14) is performed by means of Keller box method (Cebeci and 

Bradshaw 1984). The steps through which the solution is computed are as follows: 

The system of equations (6.13-6.15) are reduced to the system of first order ODE’s. For this 

purpose, let us introduce the new variables 𝑝, 𝑞, 𝑠, 𝑑, 𝑈, 𝑉 which are defined as: 

𝑓′ = 𝑝, 𝑝′ = 𝑞, 𝑞′ = 𝑠, 𝑠′ = 𝑑, 𝜃′ = 𝑈,𝜙′ = 𝑉. (6.20) 

After using above functions in Eqs. (6.11-6.14), we get 

(1 + 2𝜂𝛾)𝑑 − 𝑝𝑞 + 𝑓𝑠 + 4𝛾𝑠 + 4𝛾𝐾𝑝𝑠 − 

6𝛾𝐾𝑓𝑑 + (1 + 2𝛾𝜂)𝐾(𝑝𝑑 − 𝑓𝑑′) = 0, 
(6.21) 

1

𝑝𝑟𝑒𝑓𝑓
[(1 + 2𝛾𝜂)𝑈′ + 2𝛾𝑈] + (𝑓𝑈 − 𝑛∗𝑝𝜃) + 𝐷𝑢[(1 + 2𝛾𝜂)𝑉′ + 2𝛾𝑉] = 0, 

(6.22) 

[(1 + 2𝛾𝜂)𝑉′ + 2𝛾𝑉] + 𝑆𝑐(𝑓𝑉 − 𝑛∗𝑝𝜙) + 𝑆𝑐𝑆𝑟[(1 + 2𝛾𝜂)𝑈′ + 2𝛾𝑈] = 0, (6.23) 

𝑓(0) = 0, 𝑝(0) = 1, 𝑝(∞) = 𝑞(∞) = 𝑠(∞) = 0, 

 𝜃(0) = 1, 𝜃(∞) = 0, 𝜙(0) = 1, 𝜙(∞) = 0. 

(6.24) 

A net on 𝜂 is defined as 

𝜂0 = 0, 𝜂𝑗 = 𝜂𝑗−1 + ∆𝜂, 𝜂𝐽 = 𝜂∞, 𝑗 = 1,2, … , 𝐽 − 1 (6.25) 

where 𝑗 is positive integer and ∆𝜂 is the width of meshing variables on 𝜂. The approximate 

quantities of functions 𝑝, 𝑞, 𝑠, 𝑑, 𝑈, and 𝑉 at the net point 𝜂𝑗 are known as net functions 

whose derivatives in 𝜂-direction are replaced by the central difference formulae and 

functions itself are replaced by average centered at the midpoint 𝜂𝑗−1/2 defined as 𝑓𝑗−1/2
′ =

(𝑓𝑗 − 𝑓𝑗−1)/∆𝜂, and 𝑓𝑗−1/2 = (𝑓𝑗 + 𝑓𝑗−1)/∆𝜂. After discretization, the system of first order 

nonlinear ordinary differential Eqs. (6.21–6.23) are converted to difference equations in 

terms of nonlinear algebraic equations as follows 

1

2
(1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾)(𝑑𝑗 + 𝑑𝑗−1) −

1

4
(𝑝𝑗 + 𝑝𝑗−1 )(𝑞𝑗 + 𝑞𝑗−1 ) 

+ 
1

4
(𝑓𝑗 + 𝑓𝑗−1 )(𝑠𝑗 + 𝑠𝑗−1) + 2𝛾(𝑠𝑗 + 𝑠𝑗−1) + 𝛾𝐾(𝑝𝑗 + 𝑝𝑗−1 )(𝑠𝑗 + 𝑠𝑗−1) 

−
3𝛾𝐾

2
(𝑓𝑗 + 𝑓𝑗−1 )(𝑑𝑗 + 𝑑𝑗−1) −

3𝛾𝐾

2
(𝑓𝑗 + 𝑓𝑗−1 )(𝑑𝑗 + 𝑑𝑗−1) 

(6.26) 
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+(1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾)𝐾 (
1

4
(𝑝𝑗 + 𝑝𝑗−1)(𝑑𝑗 + 𝑑𝑗−1)

−
1

2Δ𝜂
(𝑓𝑗 + 𝑓𝑗−1 )(𝑑𝑗 − 𝑑𝑗−1)) = 0, 

1

𝑝𝑟𝑒𝑓𝑓
((1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾) (

𝑈𝑗 − 𝑈𝑗−1

Δ𝜂
) + 𝛾(𝑈𝑗 + 𝑈𝑗−1))

+ (
1

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑈𝑗 + 𝑈𝑗−1) −

𝑛∗

4
(𝑝𝑗 + 𝑝𝑗−1)(𝜃𝑗 + 𝜃𝑗−1))

+ 𝐷𝑢 ((1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾) (
𝑉𝑗 − 𝑉𝑗−1

Δ𝜂
) + 𝛾(𝑉𝑗 + 𝑉𝑗−1)) = 0, 

(6.27) 

((1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾) (
𝑉𝑗 − 𝑉𝑗−1

Δ𝜂
) + 𝛾(𝑉𝑗 + 𝑉𝑗−1))

+ 𝑆𝑐 (
1

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑉𝑗 + 𝑉𝑗−1) −

𝑛∗

4
(𝑝𝑗 + 𝑝𝑗−1)(𝜙𝑗 + 𝜙𝑗−1)) 

+𝑆𝑐𝑆𝑟 ((1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾) (
𝑈𝑗 − 𝑈𝑗−1

Δ𝜂
) + 𝛾(𝑈𝑗 +𝑈𝑗−1)) = 0 

(6.28) 

and Eq. (6.20) becomes  

𝑓𝑗 − 𝑓𝑗−1 =
∆𝜂

2
(𝑝𝑗 + 𝑝𝑗−1), 

(6.29) 

 

𝑝𝑗 − 𝑝𝑗−1 =
∆𝜂

2
(𝑞𝑗 + 𝑞𝑗−1), 

𝑞𝑗 − 𝑞𝑗−1 =
∆𝜂

2
(𝑠𝑗 + 𝑠𝑗−1), 

𝑠𝑗 − 𝑠𝑗−1 =
∆𝜂

2
(𝑑𝑗 + 𝑑𝑗−1), 

𝜃𝑗 − 𝜃𝑗−1 =
∆𝜂

2
(𝑈𝑗 + 𝑈𝑗−1), 

𝜙𝑗 − 𝜙𝑗−1 =
∆𝜂

2
(𝑉𝑗 + 𝑉𝑗−1). 

The nonlinear algebraic Eqs. (6.26)−(6.28) are linearized using Newton method by 

introducing (𝑖 + 1)𝑡ℎ iterates as  

𝑓𝑗
𝑖+1 = 𝑓𝑗

(𝑖) + 𝛿𝑓𝑗
(𝑖)

 6.30) 

and similarly for all other variables. Here 𝑓𝑗
(𝑖)

 is known for 0 ≤ 𝑗 < 𝐽 as an initial guess and 

𝛿𝑓𝑗
(𝑖)

 is unknown. After using the Newton linearization process and neglecting the terms 
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containing square and higher order of 𝛿𝑓𝑗
(𝑖), 𝛿𝑝𝑗

(𝑖), 𝛿𝑞𝑗
(𝑖), 𝛿𝑠𝑗

(𝑖), 𝛿𝑑𝑗
(𝑖), 𝛿𝜃𝑗

(𝑖), 𝛿𝑈𝑗
(𝑖), 𝛿𝜙𝑗

(𝑖)
, and 

𝛿𝑉𝑗
(𝑖)

, the system of linear algebraic equations is obtained as follows: 

𝛿𝑓𝑗 − 𝛿𝑓𝑗−1 −
∆𝜂

2
(𝛿𝑝𝑗 + 𝛿𝑝𝑗−1) = (𝑟1)𝑗, 

(𝑎1)𝑗𝛿𝑓𝑗−1 + (𝑎2)𝑗𝛿𝑓𝑗 + (𝑎3)𝑗𝛿𝑝𝑗−1 + (𝑎4)𝑗𝛿𝑝𝑗 + (𝑎5)𝑗𝛿𝑞𝑗−1 + (𝑎6)𝑗𝛿𝑞𝑗 

(𝑎7)𝑗𝛿𝑠𝑗−1 + (𝑎8)𝑗𝛿𝑠𝑗 + (𝑎9)𝑗𝛿𝑑𝑗−1 + (𝑎10)𝑗𝛿𝑑𝑗 = (𝑟2)𝑗, 

(𝑎11)𝑗𝛿𝜃𝑗−1 + (𝑎12)𝑗𝛿𝜃𝑗 + (𝑎13)𝑗𝛿𝑈𝑗−1 + (𝑎14)𝑗𝛿𝑈𝑗 + (𝑎15)𝑗𝛿𝑉𝑗−1 + (𝑎16)𝑗𝛿𝑉𝑗

= (𝑟3)𝑗, 

(𝑎17)𝑗𝛿𝜙𝑗−1 + (𝑎18)𝑗𝛿𝜙𝑗 + (𝑎19)𝑗𝛿𝑉𝑗−1 + (𝑎20)𝑗𝛿𝑉𝑗 = (𝑟4)𝑗, 

𝛿𝑝𝑗 − 𝛿𝑝𝑗−1 −
∆𝜂

2
(𝛿𝑞𝑗 + 𝛿𝑞𝑗−1) = (𝑟5)𝑗, 

𝛿𝑞𝑗 − 𝛿𝑞𝑗−1 −
∆𝜂

2
(𝛿𝑠𝑗 + 𝛿𝑠𝑗−1) = (𝑟6)𝑗 

𝛿𝑠𝑗 − 𝛿𝑠𝑗−1 −
∆𝜂

2
(𝛿𝑑𝑗 + 𝛿𝑑𝑗−1) = (𝑟7)𝑗, 

𝛿𝜃𝑗 − 𝛿𝜃𝑗−1 −
∆𝜂

2
(𝛿𝑈𝑗 + 𝛿𝑈𝑗−1) = (𝑟8)𝑗, 

𝛿𝜙𝑗 − 𝛿𝜙𝑗−1 −
∆𝜂

2
(𝛿𝑉𝑗 + 𝛿𝑉𝑗−1) = (𝑟9)𝑗. 

The boundary conditions (6.24) take the form as 

𝛿𝑓0 = 𝛿𝑝0 =  𝛿𝜃0 = 𝛿𝜙0 = 0, 𝛿𝑝𝐽 = 𝛿𝑞𝐽 = 𝛿𝑠𝐽 =  𝛿𝜃𝐽 = 𝛿𝜙𝐽 = 0. 

Finally, the above system of linear algebraic equations with boundary conditions are written 

in matrix vector form. The coefficients in momentum and energy equations of unknown 

functions 𝛿𝑓𝑗−1, 𝛿𝑝𝑗−1, 𝛿𝑞𝑗−1, 𝛿𝑠𝑗−1, 𝛿𝑑𝑗−1, 𝛿𝜃𝑗−1, 𝛿𝑈𝑗−1 and 𝛿𝑉𝑗−1 and non-homogeneous 

parts are given as 

Coefficient of momentum equation 

Coefficient of 𝛿𝑓𝑗−1: 

(𝑎1)𝑗  =  −
1

4
(𝑠𝑗 + 𝑠𝑗−1 ) −

3𝛾𝐾

2
(𝑑𝑗 + 𝑑𝑗−1)

+ (1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1))𝐾 (−
1

2Δ𝜂
(𝑑𝑗 + 𝑑𝑗−1)) 

Coefficient of 𝛿𝑓𝑗: 

(𝑎2)𝑗  =  
1

4
(𝑠𝑗 + 𝑠𝑗−1 ) −

3𝛾𝐾

2
(𝑑𝑗 + 𝑑𝑗−1) 
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+(1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1))𝐾 (−
1

2Δ𝜂
(𝑑𝑗 + 𝑑𝑗−1)) 

Coefficient of 𝛿𝑝𝑗−1: 

(𝑎3)𝑗  =  −
1

4
(𝑞𝑗 + 𝑞𝑗−1 ) + 𝛾𝐾(𝑠𝑗 + 𝑠𝑗−1)

+ (1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1))
𝐾

4
(−

1

2Δ𝜂
(𝑑𝑗 + 𝑑𝑗−1)) 

Coefficient of 𝛿𝑝𝑗: 

(𝑎4)𝑗  =  −
1

4
(𝑞𝑗 + 𝑞𝑗−1 ) + 𝛾𝐾(𝑠𝑗 + 𝑠𝑗−1)

+ [1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1)]
𝐾

4
(−

1

2Δ𝜂
(𝑑𝑗 + 𝑑𝑗−1)) 

Coefficient of 𝛿𝑞𝑗−1: 

(𝑎5)𝑗  =  −
1

4
(𝑝𝑗 + 𝑝𝑗−1 ) 

Coefficient of 𝛿𝑞𝑗: 

(𝑎6)𝑗 = −
1

4
(𝑝𝑗 + 𝑝𝑗−1 ) 

Coefficient of 𝛿𝑠𝑗−1: 

(𝑎7)𝑗  =  
1

4
(𝑓𝑗 + 𝑓𝑗−1 ) + 2𝛾 + 𝛾𝐾(𝑝𝑗 + 𝑝𝑗−1) 

Coefficient of 𝛿𝑠𝑗: 

(𝑎8)𝑗  =  
1

4
(𝑓𝑗 + 𝑓𝑗−1 ) + 2𝛾 + 𝛾𝐾(𝑝𝑗 + 𝑝𝑗−1) 

Coefficient of 𝛿𝑑𝑗−1: 

(𝑎9)𝑗  =  
(1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1))

2
−
3𝛾𝐾

2
(𝑓𝑗 + 𝑓𝑗−1)

+ (1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1))𝐾 (
1

4
(𝑝𝑗 + 𝑝𝑗−1) +

1

2Δ𝜂
(𝑓𝑗 + 𝑓𝑗−1)) 

Coefficient of 𝛿𝑑𝑗: 

(𝑎10)𝑗  =  
(1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1))

2
−
3𝛾𝐾

2
(𝑓𝑗 + 𝑓𝑗−1)

+ (1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1))𝐾 (
1

4
(𝑝𝑗 + 𝑝𝑗−1) −

1

2Δ𝜂
(𝑓𝑗 + 𝑓𝑗−1)) 
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Coefficient of energy equation 

Coefficient of 𝛿𝜃𝑗−1: 

(𝑎11)𝑗  = −
𝑛∗

4
(𝑝𝑗 + 𝑝𝑗−1) 

Coefficient of 𝛿𝜃𝑗: 

(𝑎12)𝑗  =  −
𝑛∗

4
(𝑝𝑗 + 𝑝𝑗−1) 

Coefficient of 𝛿𝑈𝑗−1: 

(𝑎13)𝑗  =  
1

𝑃𝑟𝑒𝑓𝑓
(
(1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1))

Δ𝜂
+ 𝛾) +

1

4
(𝑓𝑗 + 𝑓𝑗−1) 

Coefficient of 𝛿𝑈𝑗: 

(𝑎14)𝑗  =  
1

𝑃𝑟𝑒𝑓𝑓
(
(1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1))

Δ𝜂
+ 𝛾) +

1

4
(𝑓𝑗 + 𝑓𝑗−1) 

Coefficient of 𝛿𝑉𝑗−1: 

(𝑎15)𝑗  =  𝐷𝑢 ((1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1)) (
−1

Δ𝜂
) + 𝛾) 

Coefficient of 𝛿𝑉𝑗: 

(𝑎16)𝑗  =  𝐷𝑢 ((1 + 𝛾(𝜂𝑗 + 𝜂𝑗−1)) (
1

Δ𝜂
) + 𝛾) 

Coefficient of concentration equation 

Coefficient of 𝛿𝜃𝑗−1: 

(𝑎17)𝑗  =  −𝑆𝑐 (
𝑛∗

4
) (𝑝𝑗 + 𝑝𝑗−1) 

Coefficient of 𝛿𝜃𝑗: 

(𝑎18)𝑗  =  −𝑆𝑐 (
𝑛∗

4
) (𝑝𝑗 + 𝑝𝑗−1) 

Coefficient of 𝛿𝜙𝑗−1: 

(𝑎19)𝑗  =  −
𝑛∗

4
(𝑝𝑗 + 𝑝𝑗−1) 

Coefficient of 𝛿𝜙𝑗: 

(𝑎20)𝑗  =  −
𝑛∗

4
(𝑝𝑗 + 𝑝𝑗−1) 
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Non-homogeneous terms: 

(𝑟1)𝑗 = 𝑓𝑗 − 𝑓𝑗−1 −
∆𝜂

2
(𝑝𝑗 + 𝑝𝑗−1), 

(𝑟2)𝑗 = −
1

2
(1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾)(𝑑𝑗 + 𝑑𝑗−1) +

1

4
(𝑝𝑗 + 𝑝𝑗−1 )(𝑞𝑗 + 𝑞𝑗−1 ) 

− 
1

4
(𝑓𝑗 + 𝑓𝑗−1 )(𝑠𝑗 + 𝑠𝑗−1) − 2𝛾(𝑠𝑗 + 𝑠𝑗−1) − 𝛾𝐾(𝑝𝑗 + 𝑝𝑗−1 )(𝑠𝑗 + 𝑠𝑗−1) 

−
3𝛾𝐾

2
(𝑓𝑗 + 𝑓𝑗−1 )(𝑑𝑗 + 𝑑𝑗−1) +

3𝛾𝐾

2
(𝑓𝑗 + 𝑓𝑗−1 )(𝑑𝑗 + 𝑑𝑗−1) 

−(1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾)𝐾 (
1

4
(𝑝𝑗 + 𝑝𝑗−1)(𝑑𝑗 + 𝑑𝑗−1) −

1

2Δ𝜂
(𝑓𝑗 + 𝑓𝑗−1 )(𝑑𝑗 − 𝑑𝑗−1)), 

(𝑟3)𝑗 = −
1

𝑝𝑟𝑒𝑓𝑓
((1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾) (

𝑈𝑗 − 𝑈𝑗−1

Δ𝜂
) + 𝛾(𝑈𝑗 + 𝑈𝑗−1))

− (
1

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑈𝑗 + 𝑈𝑗−1) −

𝑛

4
(𝑝𝑗 + 𝑝𝑗−1)(𝜃𝑗 + 𝜃𝑗−1))

− 𝐷𝑢 ((1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾) (
𝑉𝑗 + 𝑉𝑗−1

Δ𝜂
) + 𝛾(𝑉𝑗 + 𝑉𝑗−1)), 

(𝑟4)𝑗 = −((1 + (𝜂𝑗 + 𝜂𝑗−1)𝛾) (
𝑉𝑗 − 𝑉𝑗−1

Δ𝜂
) + 𝛾(𝑉𝑗 + 𝑉𝑗−1))

− 𝑆𝑐 (
1

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑉𝑗 + 𝑉𝑗−1) −

𝑛

4
(𝑝𝑗 + 𝑝𝑗−1)(𝜙𝑗 + 𝜙𝑗−1)), 

(𝑟5)𝑗 = 𝛿𝑝𝑗 − 𝛿𝑝𝑗−1 −
∆𝜂

2
(𝛿𝑞𝑗 + 𝛿𝑞𝑗−1), 

(𝑟6)𝑗 = 𝛿𝑞𝑗 − 𝛿𝑞𝑗−1 −
∆𝜂

2
(𝛿𝑠𝑗 + 𝛿𝑠𝑗−1), 

(𝑟7)𝑗 = 𝛿𝑠𝑗 − 𝛿𝑠𝑗−1 −
∆𝜂

2
(𝛿𝑑𝑗 + 𝛿𝑑𝑗−1), 

(𝑟8)𝑗 = 𝛿𝜃𝑗 − 𝛿𝜃𝑗−1 −
∆𝜂

2
(𝛿𝑈𝑗 + 𝛿𝑈𝑗−1), 

(𝑟9)𝑗 = 𝛿𝜙𝑗 − 𝛿𝜙𝑗−1 −
∆𝜂

2
(𝛿𝑉𝑗 + 𝛿𝑉𝑗−1). 

The resulting matrix vector form is solved by using block-tridiagonal elimination technique. 

The edge of the boundary layer 𝜂∞ and step sizes ∆𝜂 are set for different range of 

parameters. By implementing the above mentioned procedure, the system of equations 

(6.11-6.14) is solved and the computed results are presented through tables and graphs for 

wide ranges of physical parameters involved in the equations. Table 6.1, presents the 
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numerical values of skin friction coefficient against different iterations to ensure the 

convergence of the adopted method. It is ensured from these results that convergence is 

achieved after only 5 or 6 number of iterations and these values are validated with 

Chebyshev Spectral Newton Iterative Scheme (Majeed et al. 2015). This gave us great 

confidence in accuracy of applied technique. A comparison of the computed numerical 

values of −𝜃′(0) as a limiting case with previous published results is given in Table 6.2. 

These results are in perfect agreement with Ali (1994), and Mukhopadhyay (2012) for 

Newtonian case. 

 

Table 6.1: Values of 𝑅𝑒𝑧
1/2
𝐶𝑓 at different iterations with Keller box method when 𝛾 = 0 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ↓ 𝑅𝑒𝑧
1/2
𝐶𝑓 

𝐾 = 0 𝐾 = 0.5 𝐾 = 1 𝐾 = 5 

1 −0.7241 −1.2719 −1.6652 −3.5303 

2 −0.9337 −1.7792 −2.3827 −5.1968 

3 −0.9768 −1.9431 −2.6521 −5.9641 

4 −0.9911 −2.0017 −2.7575 −6.3183 

5 −0.9969 −2.0265 −2.8031 −6.4753 

6 −0.9993 −2.0373 −2.8225 −6.5259 

7 −0.9999 −2.0408 −2.8280 −6.5319 

8 −1.0000 −2.0412 −2.8284 −6.5320 

9 −1.0000 −2.0412 −2.8284 −6.5320 

10 −1.0000 −2.0412 −2.8284 −6.5320 

CSNIS (Majeed et al. 2015) −1.0000 −2.0412 −2.8284 −6.5320 

 

Table 6.2: Numerical values of −𝜃′(0) for different 𝑛 when 𝛾 = 𝐾 = 𝑁𝑟 = 0  

and 𝑃𝑟 = 𝑃𝑟𝑒𝑓𝑓 

n Ali (1999) Mukhopadhyay (2012) Present 

0 0.5821 0.5820 0.5820 

1 1.0000 1.0000 1.0000 

2 1.3269 1.3332 1.3333 
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6.3 Results and Discussion 

After employing the above discussed numerical scheme, results are found for velocity, 

temperature and concentration profile against the various values of emerging parameters 

named as: curvature parameter (𝛾), viscoelastic parameter (𝐾), Dufour parameter (𝐷𝑢), 

Soret parameter (𝑆𝑟), temperature exponent (𝑛∗), effective Prandtl number (𝑃𝑟𝑒𝑓𝑓), and 

Schmidt parameter (𝑆𝑐) which are shown in Figures 6.16.7. The effects of Curvature, 

viscoelasticity, Soret and Dufour parameters on 𝑅𝑒𝑧
1/2
𝐶𝑓, 𝑅𝑒𝑧

−1/2
𝑁𝑢 and 𝑅𝑒𝑧

−1/2
𝑆ℎ are 

computed and shown in Figures 6.8–6.11. Figures 6.1 and 6.2 illustrate the variations of 

velocity, temperature and concentration profiles against various values of curvature 

parameter 𝛾 and viscoelastic parameter 𝐾, respectively. Figure 6.1 shows that the velocity 

enhances as the curvature of the cylinder increases. This is evident from practical 

observation that the fluid flows over the cylinder with relatively small radius is much faster 

than that of cylinder with large radius or flat surface. As having the reciprocal relationship 

between curvature and radius, so increase in curvature results in reduction of surface of 

cylinder. The reduction in surface area enhances the fluid flow over the surface which 

increases the velocity, temperature and concentration. Figure 6.2 demonstrates that by 

enhancing the viscoelasticity of the fluid through increasing viscoelastic parameter 𝑊𝑒, the 

fluid velocity increases, and opposing effects are seen in case of temperature and 

concentration profiles. The effects of 𝐷𝑢 on temperature and 𝑆𝑟 on concentration are shown 

in Figures 6.3 and 6.4 respectively. Temperature and thermal boundary layer thickness is 

observed an increasing function of 𝐷𝑢. On the other hand, Soret number 𝑆𝑟 helps to 

accelerate the concentration in the fluid in the boundary layer region. The effects of 

temperature exponents 𝑛∗ on temperature and concentration profiles are demonstrated in 

Figure 6.5. It is seen that the variation from linear to nonlinear wall temperature helps to 

reduce the temperature and concentration boundary layer thicknesses. In Figure 6.6, the 

effects of effective Prandtl number on temperature profile is shown. It is found that with 

increase in effective Prandtl number the boundary layer gets thin. Since the effective Prandtl 

number is a combination of both radiation and Prandtl number as proposed by Magyari and 

Pantokratoras (2011). In their article, they suggested that the prominent effects of radiation 

can be obtained for the smaller values of effective Prandtl number and increase in 𝑃𝑟𝑒𝑓𝑓 

results in substantial reduce in temperature of the fluid. It is further seen that with increase 

in 𝑃𝑟𝑒𝑓𝑓, thermal boundary layer thickness decreases near the surface of cylinder. Figure 

6.7 demonstrates the results of concentration profiles for various values of 𝑆𝑐. It is found 
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that the increasing values of 𝑆𝑐 minimize the concentration in the fluid. This is because of 

the fact that molecular diffusivity has inverse relation with 𝑆𝑐, in turns increasing Schmidt 

number has decreases diffusivity effects in flow domain. It is found through Figure 6.8 that 

values of  𝑅𝑒𝑧
1/2
𝐶𝑓 is a decreasing function of 𝛾 and 𝐾. However, it is sharply decreasing 

for viscoelastic effects. It is due to the reason that increase in curvature of stretching cylinder 

implies to reduce the surface area of the cylinder, hence skin friction will decrease. It is also 

seen that with increase in 𝛾, the variation in skin friction remain negligible at 𝐾 = 0. Figure 

6.9 shows the effects of curvature parameter 𝛾 on 𝑅𝑒𝑧
−1/2

𝑁𝑢  and 𝑅𝑒𝑧
−1/2

𝑆ℎ for different 

values of 𝐾. It is observed that as much we reduce the radius of cylinder heat transfer rate 

near the surface in the fluid decrease for both Newtonian and non-Newtonian fluid. 

However, the effects are more dominant in non-Newtonian case. Figure 6.10 shows the 

effects of 𝐾 on 𝑅𝑒𝑧
−1/2

𝑁𝑢 and 𝑅𝑒𝑧
−1/2

𝑆ℎ for simultaneous variation of 𝐷𝑢 (increasing) and 

𝑆𝑟 (decreasing). To discuss the effects of Dufour and Soret number, keep in mind that their 

product should be constant for homogeneous mixture. It is seen through Figure 6.10 that by 

increasing the 𝐷𝑢 parameter heat transfer rate reduces. On the other hand, 𝑆𝑟 parameter is 

found responsible for increase in 𝑅𝑒𝑧
−1/2

𝑁𝑢 for all values of 𝑊𝑒. Variations of mass transfer 

rate against 𝑊𝑒 for different values of 𝐷𝑢 and 𝑆𝑟 are also presented in Figure 6.11. A 

development in concentration rate is seen for large values of 𝑊𝑒. However, the effects for 

simultaneous variation of 𝐷𝑢 (increasing) and 𝑆𝑟 (decreasing) on the values of 𝑅𝑒𝑧
−1/2

𝑆ℎ 

are observed opposite as that of effects on the values of 𝑅𝑒𝑧
−1/2

𝑁𝑢. Figure 6.12 illustrates 

the variations of 𝑅𝑒𝑧
−1/2

𝑁𝑢 and 𝑅𝑒𝑧
−1/2

𝑆ℎ against viscoelastic parameter 𝑊𝑒 for different 

values of Prandtl effective 𝑃𝑟𝑒𝑓𝑓. The values of 𝑅𝑒𝑧
−1/2

𝑁𝑢 enhance for larger values of 

𝑃𝑟𝑒𝑓𝑓 while opposite trend of it has been observed on 𝑅𝑒𝑧
−1/2

𝑆ℎ. Figure 6.12 is plotted to 

show a relationship among the parameters 𝑃𝑟, 𝑃𝑟𝑒𝑓𝑓 and 𝑁𝑟. This graph shows that 𝑁𝑟 = 0 

implies 𝑃𝑟𝑒𝑓𝑓 = 𝑃𝑟 and with increase in radiation (i.e. 𝑁𝑟 > 0) the values of 𝑃𝑟𝑒𝑓𝑓 are 

decreasing. This behaviour exhibits that the small Prandtl number exalts radiation effects. 

The computed numerical values of 𝑅𝑒𝑧
1/2
𝐶𝑓, 𝑅𝑒𝑧

−1/2
𝑁𝑢, and 𝑅𝑒𝑧

−1/2
𝑆ℎ for various values 

of viscoelastic parameter 𝐾 and curvature parameter 𝛾 is shown in Table 6.3. 
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Figure 6.1: Curvature effects on velocity, temperature and concentration profile with 

fixed values of 𝐾 = 𝑛∗ = 𝑃𝑟𝑒𝑓𝑓 = 1,𝐷𝑢 = 0.3, 𝑆𝑟 = 0.2, and 𝑆𝑐 = 1.6. 

 

 

Figure 6.2: Impact of 𝐾 on velocity, temperature and concentration profile with fixed 

values of 𝛾 = 0.2, 𝑛∗ = 𝑃𝑟𝑒𝑓𝑓 = 1,𝐷𝑢 = 0.3, 𝑆𝑟 = 0.2, and 𝑆𝑐 = 1.6. 
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Figure 6.3: Impact of Du on temperature profile with fixed values of 𝛾 = 0.2, 𝐾 = 𝑛∗ =

𝑃𝑟𝑒𝑓𝑓 = 1, 𝑆𝑟 = 0.2, and 𝑆𝑐 = 1.6. 

 

 

Figure 6.4: Impact of 𝑆𝑟 on concentration profile with fixed values of 𝛾 = 0.2, 𝐾 = 𝑛∗ =

𝑃𝑟𝑒𝑓𝑓 = 1,𝐷𝑢 = 0.3, and 𝑆𝑐 = 1.6. 
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Figure 6.5: Impact of 𝑛∗ on temperature and concentration when 𝛾 = 0.2, 𝐾 = 𝑃𝑟𝑒𝑓𝑓 =

1, 𝐷𝑢 = 0.3, 𝑆𝑟 = 0.2, and 𝑆𝑐 = 1.6. 

 

 

Figure 6.6: Impact of 𝑃𝑟𝑒𝑓𝑓 on temperature and concentration when 𝛾 = 0.2, 𝐾 = 𝑛∗ =

1, 𝐷𝑢 = 0.3, 𝑆𝑟 = 0.2, and 𝑆𝑐 = 1.6. 
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Figure 6.7: Impact of 𝑆𝑐 on temperature and concentration when 𝛾 = 0.2, 𝐾 = 𝑛∗ =

𝑃𝑟𝑒𝑓𝑓 = 1,𝐷𝑢 = 0.3, and 𝑆𝑟 = 0.2. 

 

 

Figure 6.8: Variation in 𝑅𝑒𝑧
1/2
𝐶𝑓 against 𝛾 at different 𝐾 while 𝑛∗ = 𝑃𝑟𝑒𝑓𝑓 = 1,𝐷𝑢 =

0.3, 𝑆𝑟 = 0.2 and 𝑆𝑐 = 1.6 are fixed. 
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Figure 6.9: Variation in 𝑅𝑒𝑧
−1/2

𝑁𝑢  and 𝑅𝑒𝑧
−1/2

𝑆ℎ  against 𝛾 at different 𝐾 while 𝑛∗ =

𝑃𝑟𝑒𝑓𝑓 = 1,𝐷𝑢 = 0.3, 𝑆𝑟 = 0.2 and 𝑆𝑐 = 1.6 are fixed. 

 

 

Figure 6.10: Variation in 𝑅𝑒𝑧
−1/2

𝑁𝑢  and 𝑅𝑒𝑧
−1/2

𝑆ℎ  against 𝐾 at different 𝐷𝑢, and Sr 

while 𝛾 = 0.5, 𝑛∗ = 𝑃𝑟𝑒𝑓𝑓 = 1, and 𝑆𝑐 = 1.6 are fixed. 
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Figure 6.11: Variation in 𝑅𝑒𝑧
−1/2

𝑁𝑢  and 𝑅𝑒𝑧
−1/2

𝑆ℎ  against 𝐾 at different 𝑃𝑟𝑒𝑓𝑓 while 

γ = 0.5, 𝑛∗ = 1, 𝐷𝑢 = 0.3, 𝑆𝑟 = 0.2, and  𝑆𝑐 = 1.6 are fixed. 

 

 

Figure 6.12: Graph of relationship among 𝑁𝑟, 𝑃𝑟, and 𝑃𝑟𝑒𝑓𝑓. 
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Table 6.3: Numerical values of 𝑅𝑒𝑧
1/2
𝐶𝑓, 𝑅𝑒𝑧

−1/2
𝑁𝑢, and 𝑅𝑒𝑧

−1/2
𝑆ℎ at different 𝐾 and 𝛾 

𝐾 𝛾 𝑅𝑒𝑧
1/2
𝐶𝑓 𝑅𝑒𝑧

−1/2
𝑁𝑢 𝑅𝑒𝑧

−1/2
𝑆ℎ 

0 0 −1.0000 0.4613 0.7151 

 0.2 −1.0727 0.4857 0.7737 

 0.5 −1.1779 0.5687 0.8615 

1 0 −2.8284 0.4926 0.7780 

 0.2 −3.1259 0.5482 0.8374 

 0.5 −3.5614 0.6297 0.9245 

5 0 −6.5320 0.5579 0.8433 

 0.2 −7.8801 0.6162 0.9038 

 0.5 −9.7687 0.7001 0.9923 

 

6.4 Conclusions 

Heat and mass transfer analysis of second grade fluid over an elongating surface of the 

cylinder has been studied in this chapter. For computational purposes, two numerical 

schemes, i.e. Keller box and Chebyshev Spectral Newton Iterative Scheme is used. To 

confirm the validity of obtaining results, the comparison is made with published results and 

it ensures that the computed solution is highly accurate. The important results of this study 

are mainly dependent upon the Soret, Dufour, viscoelastic and radiation parameters. We 

expressed our results in terms of figures and tables. The Curvature parameter (𝛾) increases 

the velocity of the fluid in the boundary layer region outside the cylinder. Similarly, 

temperature, and concentration are also increasing function of 𝛾. The non-Newtonian fluid 

parameter (𝐾) has an increasing impact on velocity and likewise temperature and 

concentration. The increase in 𝐷𝑢 and 𝑆𝑟 significantly enhance the temperature and the 

concentration, respectively. The variations of concurrent occurring of 𝐷𝑢 (increasing) and 

𝑆𝑟 (decreasing) on 𝑅𝑒𝑧
−1/2

𝑆ℎ are observed opposite as that of effects on 𝑅𝑒𝑧
−1/2

𝑁𝑢. The 

concentration boundary layer augments with a decrease in Schmidt number. It is important 

to write here that increase in 𝑃𝑟𝑒𝑓𝑓 bring about substantial reduce of temperature of the fluid.  
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Chapter 7 

Study of Maxwell nanofluid flow around a stretching 

cylinder 

In this chapter, attention is given to investigate the combined effects of linear and non-linear 

Rosseland thermal radiations in Maxwell nanofluid flow due to stretching cylinder. To 

strengthen the importance of the study, non-linear heat generation/absorption is also 

considered. These effects are incorporated into momentum, energy and concentration 

equations, and then these modeled non-linear partial differential equations are converted 

into ordinary differential equations with the help of suitable transformations. Significant 

difference in the heat transfer enhancement is observed through temperature profiles and 

tables of Nusselt number. From the graphs, it is observed that the nonlinear radiation 

provides better heat transfer rate at the surface of cylinder as compare to that of linear or 

absence of radiation effects. 

 

7.1 Mathematical Formulation 

Let us consider the two-dimensional flow of Maxwell nanofluid around the stretching 

cylinder of fixed radius 𝑅∗. The constitutive equations of Maxwell fluid model are 

developed in cylindrical coordinate system.  The schematic of the flow has been described 

in chapter 4 and 6. Extra heating factors like nonlinear radiation and non-uniform heat 

generation/absorption are taken into account. Buongiorno’s model is used to investigate the 

Brownian diffusion and thermophoresis effects on flow, heat and mass transfer of Maxwell 

nanofluid. This physical situation is modeled into mathematical form and obtained boundary 

layer equations which governs the flow, heat and mass transfer are as follows: 

𝜕(𝑟𝑢)

𝜕𝑟
+
𝜕(𝑟𝑣)

𝜕𝑧
, (7.1) 

 𝑢
𝜕𝑣

𝜕𝑟
+ 𝑣

𝜕𝑣

𝜕𝑧
= 𝜈 (

𝜕2𝑣

𝜕𝑟2
+
1

𝑟

𝜕𝑣

𝜕𝑟
) +

𝜆1
𝜌
(𝑢2

𝜕2𝑣

𝜕𝑟2
+ 2𝑢𝑣

𝜕2𝑣

𝜕𝑟𝜕𝑧
+ 𝑣2

𝜕2𝑣

𝜕𝑧2
), (7.2) 

𝑢
𝜕𝑇

𝜕𝑟
+ 𝑣

𝜕𝑇

𝜕𝑧
=

𝑘

𝜌𝑐𝑝
(
𝜕2𝑇

𝜕𝑟2
+
1

𝑟

𝜕𝑇

𝜕𝑟
) + 𝜏 [𝐷𝐵

𝜕𝐶

𝜕𝑟

𝜕𝑇

𝜕𝑟
+
𝐷𝑇
𝑇∞
(
𝜕𝑇

𝜕𝑟
)
2

] − ⋯ (7.3) 
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1

𝜌𝑐𝑝

1

𝑟

𝜕(𝑟𝑞𝑟)

𝜕𝑟
+
𝑞′′′

𝜌𝑐𝑝
, 

𝑢
𝜕𝐶

𝜕𝑟
+ 𝑣

𝜕𝐶

𝜕𝑧
= 𝐷𝐵 (

𝜕2𝐶

𝜕𝑟2
+
1

𝑟

𝜕𝐶

𝜕𝑟
) +

𝐷𝑇
𝑇∞
(
𝜕2𝑇

𝜕𝑟2
+
1

𝑟

𝜕𝑇

𝜕𝑟
), (7.4) 

 with boundary conditions  

 𝑣(𝑟, 𝑧) = 𝑉𝑤 = 𝑐 (
𝑧

𝑙
) , 𝑢(𝑟, 𝑧) = 0,

𝑇(𝑟, 𝑧) = 𝑇𝑤, 𝐶(𝑟, 𝑧) = 𝐶𝑤

}  at 𝑟 = 𝑅∗, 

 𝑣(𝑟, 𝑧) = 0, 𝑢(𝑟, 𝑧) = 0,
𝑇(𝑟, 𝑧) = 𝑇∞, 𝐶(𝑟, 𝑧) = 𝐶∞

}   as 𝑟 → ∞.  

(7.5) 

The new symbols which are used in equations (7.2-7.5) are defined as  

𝜆1: material relaxation time 𝐷𝐵: Brownian diffusion coefficient 

𝐷𝑇: Thermophoretic diffusion coefficient 

𝑞′′′ =
𝑘𝑉𝑤(𝑧) 

𝑧𝜈
[𝐴∗(𝑇𝑤 − 𝑇∞)𝑓

′ + 𝐵∗(𝑇 − 𝑇∞)]: non-uniform heat sink/source  

𝐴∗: coefficient of space dependent heat source/sink 

𝐵∗ coefficient of temperature dependent heat source/sink 

Upon using the radiative heat flux 𝑞𝑟 and non-uniform heat sink/source 𝑞′′′ as defined 

above, Eq. (7.3) takes the following form 

𝑢
𝜕𝑇

𝜕𝑟
+ 𝑣

𝜕𝑇

𝜕𝑧
=

𝑘

𝜌𝑐𝑝
(1 +

16𝜎∗𝑇3

3𝑘(𝛼𝑟 + 𝛼𝑠)
) (
𝜕2𝑇

𝜕𝑟2
+
𝜕𝑇

𝑟𝜕𝑟
) + 

𝜏 [𝐷𝐵
𝜕𝐶

𝜕𝑟

𝜕𝑇

𝜕𝑟
+
𝐷𝑇
𝑇∞
(
𝜕𝑇

𝜕𝑟
)
2

] +

𝑘𝑉𝑤(𝑧) 
𝑧𝜈

[𝐴∗(𝑇𝑤 − 𝑇∞)𝑓
′ + 𝐵∗(𝑇 − 𝑇∞)]

𝜌𝑐𝑝
. 

(7.6) 

Introducing the following appropriate similarity transformations: 

𝜂 =
𝑟2 − 𝑅∗2

2𝑅∗
√
𝑐

𝜈𝑙
, 𝑢 =  −

𝑅∗

𝑟
√
𝑐𝜈

𝑙
 𝑓(𝜂), 𝑣 =

𝑐𝑧

𝑙
𝑓′(𝜂),  

𝜃(𝜂) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

, 𝜙(𝜂) =
𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞

. 

(7.7) 

Utilizing 𝑇 = 𝑇∞(1 + (𝜃𝑤 − 1)𝜃) and 𝜃𝑤 = 𝑇𝑤/𝑇∞ (temperature ratio parameter) into Eqs. 

(7.2)−(7.4), we obtained the following differential equations 

(1 + 2𝛾𝜂)𝑓′′′ + 2𝛾𝑓′′ + 𝑓𝑓′′ − (𝑓′)2 −
𝛾𝐷𝑒

(1 + 2𝛾𝜂)
𝑓2𝑓′′

+ 𝐷𝑒(2𝑓𝑓′𝑓′′ − 𝑓2𝑓′′′) = 0, 

(7.8) 
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(1 + 2𝛾𝜂)
𝜕

𝜕𝜂
{(1 +

4

3
𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃)

3) 𝜃′}

+ {2𝛾 (1 +
4

3
𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃)

3) + 𝑃𝑟𝑓}𝜃′ 

+ (1 + 2𝛾𝜂)(𝑁𝑏𝜙
′𝜃′ + 𝑁𝑡𝜃

′2 ) + 𝐴∗𝑓′ + 𝐵∗𝜃 = 0, 

(7.9) 

(1 + 2𝛾𝜂)𝜙′′ + 2𝛾𝜙′ + 𝑆𝑐𝑓𝜙′ +
𝑁𝑡
𝑁𝑏
((1 + 2𝛾𝜂)𝜃′′ + 2𝛾𝜃′) = 0. (7.10) 

The boundary conditions (7.5) in dimensionless form are 

𝑓(0) = 0, 𝑓′(0) = 1, 𝑓′(∞) = 0, 

𝜃(0) = 1, 𝜃(∞) = 0, 𝜙(0) = 1, 𝜙(∞) = 0. 
(7.11) 

Dimensionless symbols used in equations (7.8)−(7.10) are defined as  

𝛾 = √𝜈𝑙/𝑐𝑅∗2 : curvature parameter 𝐷𝑒 = 𝜆1𝑐/𝑙 : Maxwell fluid parameter  

𝜃𝑤 = 𝑇𝑤/𝑇∞: surface heating parameter 𝑅𝑑 = 4𝜎∗𝑇∞
3/ 𝑘(𝛼𝑟 + 𝜎𝑠): radiation 

parameter 

𝑃𝑟 = 𝜈/𝛼: Prandtl number 𝑁𝑡 = 𝐷𝑇𝜏(𝑇𝑤 − 𝑇∞)/𝑇∞𝛼: Thermophoresis 

parameter  

𝑁𝑏=𝐷𝐵𝜏(𝐶𝑤 − 𝐶∞)/𝛼: Brownian motion 

parameter 

𝜃: dimensionless temperature 

𝜙: dimensionless concentration 𝑆𝑐 = 𝜈/𝐷𝐵: Schmidt number 

After utilizing the expression of 𝑁𝑢 from Eq. (2.15) and expression of 𝑆ℎ from Eq. (6.17) 

with similarity transformation of present chapter the transformed values of 𝑁𝑢 and 𝑆ℎ will 

be of the form 

𝑅𝑒𝑧
−
1
2𝑁𝑢𝑧 = −(1 +

4𝑅𝑑

3
𝜃𝑤
3) 𝜃′(0), 𝑅𝑒𝑧

−
1
2𝑆ℎ = −𝜙′(0). (7.12) 

 

7.2 Numerical Scheme 

Since the system of equations with boundary conditions (7.8)−(7.11) is non-linear, so the 

presentation of solution in exact form is impossible. Keeping this in view, we obtained the 

numerical solution of it by using shooting method with Runge-Kutta fourth order integrator. 

For this purpose, we first need to convert the obtained system of boundary value problem 

(7.8-7.11) into first order initial value problem such as 

𝑓′ = 𝑝,  

𝑝′ = 𝑞, 
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[(1 + 2𝛾𝜂) − 𝐷𝑒𝑓2]𝑞′ + [2𝛾 + 𝑓 −
𝐷𝑒𝛾𝑓2

(1 + 2𝛾𝜂)
] 𝑞 − 𝑝2 + 2𝐷𝑒𝑓𝑝𝑞 = 0, 

 𝜃′ = 𝑈,𝜙′ = 𝑅, 

(1 + 2𝛾𝜂)
𝜕

𝜕𝜂
{(1 +

4

3
𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃)

3)𝑈} + 2𝛾 (1 +
4

3
𝑅𝑑(1 + (𝜃𝑤 − 1)𝜃)

3)𝑈

+ 𝑃𝑟𝑓𝑈 + (𝑁𝑏𝑅𝑈 + 𝑁𝑡𝑄
2 ) + 𝐴∗𝑝 + 𝐵∗𝜃 = 0,   

(1 + 2𝛾𝜂)𝑅′ + 2𝛾𝑅 + 𝑆𝑐𝑓𝑅 +
𝑁𝑡
𝑁𝑏
((1 + 2𝛾𝜂)𝑈′ + 2𝛾𝜃′) = 0, 

with initial conditions 

𝑓(0) = 0, 𝑝(0) = 1, 𝑞(0) = 𝑠1, 

𝜃(0) = 1, 𝑈(0) = 𝑠2, 

𝜙(0) = 1, 𝑅(0) = 𝑠3.  

where the constants 𝑠1, 𝑠2 and 𝑠3 are unknown commonly known as missing initial 

conditions. These missing conditions are chosen in such a way that the boundary conditions 

at infinity satisfy. So for the calculation of missing initial conditions Newton Raphson 

algorithm is utilized. The obtained results are firstly validated by the comparison with 

published results and then novel results for the considered problem are calculated.  

 

7.3 Results and discussion 

Numerical investigation of Maxwell nanofluid with non-linear radiation and non-uniform 

heat generation/absorption is performed. Obtained system of partial differential equations 

are transformed into dimensionless form by using suitable similarity transformation.  The 

numerical scheme described previously is applied to get the results. To check the validity 

of these results, a comparison is given in Tables 7.1-7.3, which show a good agreement with 

the past studies. Further, the results for different emerging parameters such as Maxwell fluid 

parameter 𝐷𝑒, radius of curvature 𝛾, radiation parameter 𝑅𝑑, thermophoresis parameter 𝑁𝑡, 

Brownian motion parameter 𝑁𝑏, space dependent heat source/sink 𝐴∗, temperature 

dependent heat source/sink 𝐵∗, Prandtl number 𝑃𝑟 and Schmidt number 𝑆𝑐 are presented in 

Figures 7.1-7.12. Figure 7.1 demonstrate the effects of Maxwell fluid parameter 𝐷𝑒 on 

dimensionless velocity profile by taking 𝛾 = 0 (Stretching sheet) and 𝛾 = 0.5 (Stretching 

cylinder). It is clearly seen that with the increase in 𝐷𝑒 the velocity and momentum 

boundary layer decrease for both stretching sheet and stretching cylinder. It is found that the  
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Table 7.1: Values of −𝑓′′(0) for various values of Maxwell fluid parameter 𝐷𝑒. 

𝛾 → 0.0 0.2 0.5 

𝐷𝑒 ↓ Abel et al. 

(2012) 

Present→ 

0.0 0.999962 1.000008 1.073104 1.180682 

0.2 1.051948 1.051886 1.121344 1.226009 

0.4 1.101850 1.101892 1.168136 1.270075 

0.6 1.150163 1.150126 1.213519 1.312934 

0.8 1.196692 1.196702 1.257568 1.354648 

1.2 1.285257 1.285349 1.341984 1.434921 

1.6 1.368641 1.368744 1.421978 1.511338 

2.0 1.447617 1.447637 1.498083 1.584367 

 

Table 7.2: Comparison of −𝜃′(0) for the various values of 𝑁𝑡 and 𝑁𝑏 when 𝛽 = 𝛾 =

𝑅𝑑 = 𝐴∗ = 𝐵∗ = 0, 𝑃𝑟 = 10 and 𝑆𝑐 = 10. 

𝑁𝑏 → 0.1 0.3 0.5 

𝑁𝑡 ↓ Present 
Khan and 

Pop (2010) 
Present 

Khan and 

Pop (2010) 
Present 

Khan and 

Pop (2010) 

0.1 0.9524 0.9524 0.2521 0.2522 0.0542 0.0543 

0.3 0.5201 0.5201 0.1355 0.1355 0.0291 0.0291 

0.5 0.3211 0.3211 0.0833 0.0833 0.0179 0.0179 

 

Table 7.3: Comparison of 𝜙′(0) for the various values of 𝑁𝑡 and 𝑁𝑏 when 𝛽 = 𝛾 = 𝑅𝑑 =

𝐴∗ = 𝐵∗ = 0, 𝑃𝑟 = 10 and 𝑆𝑐 = 10. 

𝑁𝑏 → 0.1 0.3 0.5 

𝑁𝑡 ↓ Present 
Khan and 

Pop (2010) 
Present 

Khan and 

Pop (2010) 
Present 

Khan and 

Pop (2010) 

0.1 2.1294 2.1294 2.4100 2.4100 2.3836 2.3836 

0.3 2.5287 2.5286 2.6088 2.6088 2.4984 2.4984 

0.5 3.0352 3.0351 2.7519 2.7519 2.5731 2.5731 

 

boundary layer thickness increases with increase of 𝛾. Linear and non-linear radiation 

effects on temperature and concentration profile over a stretching cylinder are presented in 

Figure 7.2. It is depicted that temperature enhances and concentration reduces with increase 

 in 𝜃𝑤. The graph clearly distinguishes between linear and nonlinear radiation effects. 

Nonlinear radiation greatly increases the temperature of the fluid but little effect can be seen 

on concentration profile. Figure 7.3 capture the effects of space dependent coefficient of 

heat generation/absorption on temperature and concentration profiles. It is seen that with 
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increase of 𝐴∗ temperature profile increases throughout the boundary layer regime but the 

concentration profile decreases near the wall and adopted an opposite behavior away from 

the cylinder surface. Same effects of temperature dependent coefficient of heat 

generation/absorption 𝐵∗ are observed in Figure 7.4. Figure 7.5 and 7.6 capture the 

Brownian motion and thermophoresis effects on temperature 𝜃(𝜂) and nanoparticle volume 

fraction 𝜙(𝜂). It can be seen that for weak Brownian motion (𝑁𝑏 = 0.1) temperature and 

concentration significantly increase due to increase in thermophoretic parameter. However 

due to hot surface a particle-free layer occurs near the wall because heated surface drive 

back the small size particles.  However, for small thermophoresis effect with 𝑁𝑡 = 0.1, due 

to change in weak to strong Brownian motion, a very small increase in temperature 𝜃(𝜂) 

and nanoparticle volume fraction 𝜙(𝜂) is observed. Figure 7.7 is developed to show the 

variation in wall shear stress again Maxwell fluid parameter at different orientations of 

geometry from sheet (𝛾 = 0) to cylinder (𝛾 > 0). It clearly describes that wall shear stress 

decreases for the curved surface (𝛾 > 0) and same is happening with Maxwell fluid 

parameter. Due to increase in curvature parameter the cylinder surface reduces, 

consequently drag on the surface will reduce. The variation in 𝑁𝑢 and 𝑆ℎ against Deborah 

number 𝐷𝑒 is plotted for 𝛾 = 0, 0.5, 1 and is shown in Figure 7.8. With increase in curvature 

parameter 𝛾, the values of 𝑁𝑢 and 𝑆ℎ both increase while these quantities reduce for 

increase in 𝐷𝑒. Linear and nonlinear radiation effects on heat transfer rate are presented in 

Figure 7.9 for different values of 𝑁𝑡 and 𝑁𝑏. This figure depicts that heat transfer rate due 

to nonlinear radiation is more prominent than that of linear radiation. Moreover, the increase 

in radiation parameter also enhances the rate of heat transfer. This figure depicts that the 

radiation effects enhances the heat transfer rate and this enhancement in case of nonlinear 

radiation is higher than that of linear radiation. It can also be seen that by increasing the 

thermophoresis and Brownian motion effects of the nanoparticles the cylinder surface 

rapidly gets cool as compare to Maxwell fluid alone. To show the flow pattern at the surface 

of sheet and cylinder, the streamlines are displayed in Figures 7.10 and 7.11 for both 𝛾 = 0 

and 𝛾 = 10.  
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Figure 7.1: Impact of 𝐷𝑒 on velocity distribution. 

 

 

Figure 7.2: Influence of 𝜃𝑤 on 𝜃(𝜂) and 𝜙(𝜂) when 𝐷𝑒 = 1, 𝛾 = 0.2, 𝐴∗ = 0.4, 𝐵∗ =

0.4, 𝑃𝑟 = 6.8, 𝑆𝑐 = 1.5, 𝑁𝑡 = 𝑁𝑏 = 0.1, 𝑅𝑑 = 2. 
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Figure 7.3: Effects of 𝐴∗ on 𝜃(𝜂) and 𝜙(𝜂) while 𝐷𝑒 = 1, 𝛾 = 0.2, 𝑅𝑑 = 2, 𝜃𝑤 =

1.3, 𝐵∗ = 0.4, 𝑃𝑟 = 10, 𝑆𝑐 = 10, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1. 

 

 

Figure 7.4: Effects of 𝐵∗ on temperature and concentration profile while 𝐷𝑒 = 1, 𝛾 =

0.2, 𝑅𝑑 = 2, 𝜃𝑤 = 1.3, 𝐴
∗ = 0.4, 𝑃𝑟 = 10, 𝑆𝑐 = 10, 𝑁𝑡 = 0.1, 𝑁𝑏 = 0.1. 
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Figure 7.5: Effect of 𝑁𝑡 on temperature and concentration profile while 𝐷𝑒 = 1, 𝛾 =

0.2, 𝑅𝑑 = 2, 𝜃𝑤 = 1.3, 𝐴
∗ = 0.4, 𝐵∗ = 0.4, 𝑃𝑟 = 10, 𝑆𝑐 = 10,𝑁𝑏 = 0.1. 

 

 

Figure 7.6: Effect of 𝑁𝑏 on temperature and concentration profile 𝐷𝑒 = 1, 𝛾 = 0.2, 𝑅𝑑 =

2, 𝜃𝑤 = 1.3, 𝐴
∗ = 0.4, 𝐵∗ = 0.4, 𝑃𝑟 = 10, 𝑆𝑐 = 10,𝑁𝑡 = 0.1. 
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Figure 7.7: Variation in 𝑓′′(0) against 𝐷𝑒 for different 𝛾 at 𝑅𝑑 = 2, 𝜃𝑤 = 1.3, 𝐴
∗ = 1,

𝐵∗ = 1, 𝑃𝑟 = 10, 𝑆𝑐 = 1.5, 𝑁𝑡 = 𝑁𝑏 = 0.1. 

 

 

Figure 7.8: Variation in 𝑁𝑢 and 𝑆ℎ against 𝛽 for 𝑅𝑑 = 2, 𝜃𝑤 = 1.3, 𝐴
∗ = 1, 𝐵∗ =

1, 𝑃𝑟 = 10, 𝑆𝑐 = 1.5, 𝑁𝑡 = 𝑁𝑏 = 0.1. 
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Figure 7.9: Variation in 𝑁𝑢 against 𝑅𝑑 for different 𝜃𝑤 at 𝐷𝑒 = 1, 𝛾 = 0.2, 𝐴∗ = 𝐵∗ =

0.4, 𝑃𝑟 = 6.8, 𝑆𝑐 = 1.5. 

 

 

Figure 7.10: Streamlines for 𝛾 = 0 at 𝐷𝑒 = 1. 
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Figure 7.11: Streamlines for 𝛾 = 10 at 𝐷𝑒 = 1. 

 

7.4 Conclusion 

The non-linear radiation effects on Maxwell nanofluid flow along a stretching cylinder in 

presence of non-uniform heat generation/absorption is performed. The governed partial 

differential equations transformed into dimensionless ordinary differential equations, which 

are then simulated with the help of shooting method. For the validity of applied scheme, the 

results are first compared with the benchmark studies and then innovative results for the 

Maxwell nanofluid flowing over stretching cylinder are presented through table and graphs 

for emerging dimensionless parameters. It is observed the velocity profile shows a 

decreasing trend with increasing values of Maxwell fluid parameter (𝐷𝑒) for both stretching 

sheet (𝛾 = 0) and stretching cylinder (𝛾 > 0) case. Heat transfer rate is decreasing with the 

increasing strength of Brownian motion and thermophoresis effects. It is important to 

mention that nonlinear radiation has significantly enhances the radiation as compare to 

linear radiation. 
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