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Abstract

Two–weight criteria of various type for one–sided maximal functions and one–sided

potentials are established in variable exponent Lebesgue spaces. Among other re-

sults we derive the Hardy–Littlewood, Fefferman–Stein and trace inequalities in these

spaces. Weighted estimates for Hardy–type, maximal, potential and singular opera-

tors defined by means of a quasi–metric and a doubling measure are derived in Lp(x)

spaces. In some cases examples of weights guaranteeing the appropriate weighted

estimates are given.
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Introduction

The thesis is devoted to weighted estimates with general-type weights for Hardy-type,

maximal, potential and singular operators in variable exponent Lebesgue spaces.

In the last two decades a considerable interest of researchers was attracted to

the study of mapping properties of differential and integral operators in variable

exponent Lebesgue spaces. In the mid-80s, V. V. Zhikov ([93]) started a new line of

investigation that was to become related to the study of variable exponent spaces,

namely he considered variational integrals with non-standard growth conditions (see

also the papers by O. Kováčik in the 80s and 90s). V. V. Zhikov’s work was continued

by X.-L. Fan from around 1995 and by Yu. A. Alkhutov since 1997. Regularity

properties of functionals of the type∫
Ω

F (x, |∇u|)dx, F (x, z) ≈ zp(x),

have been intensively investigated by E. Acerbi and G. Mingione and their collabo-

rators. M. Ružička [77] studied the problems in the so called rheological and elec-

trorheological fluids, which lead to the spaces with variable exponent. Differential

equations with non-standard growth and corresponding function spaces with variable

exponents have been a very active field of investigation in recent years (see the survey

papers [80], [37], [81], [32], the monograph [17] and the papers cited therein for the

related topics).

The variable exponent Lebesgue spaces first appeared in 1931 in the paper by W.
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2

Orlicz [74], where the author established some properties of Lp(x) spaces on the real

line. Further development of these spaces was connected with the theory of modular

spaces. The first systematic study of modular spaces is due to H. Nakano [70]. The

basis of the variable exponent Lebesgue and Sobolev spaces were developed by J.

Musielak (see [69], [68]); H. Hudzik; I. I. Sharapudinov; S. Samko; O. Kováčik and J.

Rákosńık; D. E. Edmunds and J. Rákosńık; D. E. Edmunds, J. Lang and A. Nekvinda

etc. For the boundary value problems for analytic and harmonic functions in the

framework of variable exponent analysis we refer to the papers by V. Kokilashvili

and V. Paatashvili; V. Kokilashvili, V. Paatashvili and S. Samko.

The boundedness of Hardy- Littlewood maximal functions in Lp(x) spaces first

was established by L. Diening under the log-Hölder continuity condition on p. For

mapping properties of maximal functions, singular integrals and potentials in Lp(x)

spaces we emphasize the papers by S. Samko; L. Diening; A. Nekvinda; L. Diening

and M. Ružička; D. Cruz-Uribe, A. Fiorenza and Neugebauer; D. Cruz-Uribe, A.

Fiorenza, J. M. Martell and C. Perez; D. E. Edmunds, V. Kokilashvili and A. Meskhi;

P. Harjulehto, P. P. Hästö and M. Pere; C. Capone, D. Cruz-Uribe, A. Fiorenza; T.

Kopaliani; A. Almeida and S. Samko; A. Almeida and H. Rafeiro, etc.

For the weighted inequalities for the classical integral operators in variable expo-

nent function spaces we refer to the papers by V. Kokilashvili and S. Samko; D. E.

Edmunds, V. Kokilashvili and A. Meskhi; V.Kokilashvili and A. Meskhi; U. Ashraf,

V. Kokilashvili and A. Meskhi; M. Asif, V. Kokilashvili and A. Meskhi; T. Kopaliani;

L. Diening and S. Samko; H. Rafeiro and S. Samko; S. Samko and B. Vakulov; S.

Samko, E. Shargorodsky and B. Vakulov; V. Kokilashvili, N. Samko and S. Samko;

A. Harman and F. I. Mamedov, etc (see also the survey papers [80], [37],[81] and

references cited therein).

The One-weight problem under the Muckenhoupt-type condition for the Hardy-

Littlewood maximal operator in Lp(x) spaces was solved by L. Diening and P. Hästö
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[18]. Sawyer-type two-weight criteria for maximal operators were derived in [43].

The thesis is divided into two parts. In the first part various type of two-weight

criteria are derived for one-sided operators in variable exponent Lebesgue spaces.

D. E. Edmunds, V. Kokilashvili and A. Meskhi [23] studied the boundedness

problems of the unilateral (one-sided) operators in variable exponent Lebesgue spaces

on an interval I ⊆ R. In that paper the authors proved that the boundedness of

maximal, fractional integral and Calderón-Zygmund type operators with unilateral

nature holds in the space Lp(x) under the weaker assumptions on p(x) than in the case

of bilateral operators. From the results obtained in the latter paper it follows that the

unilateral nature of an operator permits the development of better results within the

frameworks of variable exponents. This difference between unilateral and bilateral

forms of operators was not so essential in the case of constant exponents. It should

be emphasized that criteria governing the Lp(x) → L
q(x)
v boundedness/compactness

for the Riemann-Liouville transform were derived in the paper by U. Ashraf, V.

Kokilashvili and A. Meskhi [5] (see also [65], ch.5). One of the novelties of this

thesis is to study the two-weight problem for one–sided operators in variable exponent

Lebesgue spaces.

The second part of the thesis is devoted to two-weight estimates of integral op-

erators (Hardy–type transforms, maximal functions, potentials, singular integrals)

defined on quasi-metric measure spaces in the framework of variable exponent anal-

ysis. We derive various type of two-weight sufficient conditions (written in the form

of mudulars ) ensuring the boundedness of these operators in weighted Lp(x) spaces.

The derived conditions are simultaneously necessary and sufficient for appropriate

two–weight inequalities when exponents of spaces are constants.

It should be stressed that there is a wide range of problems of Mathematical

Physics whose solutions are closely connected to the weight problems of integral op-

erators acting between Banach function spaces. We emphasize, for example the very
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profound impact of trace inequalities on spectral problems of differential operators,

and in particular on eigenvalue estimates for Schrödinger operators (see the papers

by C. Fefferman; R. Kerman and E. Sawyer; the monograph [27]); and the close con-

nection with the solubility of certain semilinear differential operators with minimal

restrictions on the regularity of the coefficients and data. In fact, the existence of

positive solutions of certain nonlinear differential equations is equivalent to the va-

lidity of a certain two-weighted inequality for a potential-type operator, in which the

weights are expressed in terms of coefficients and data (see the papers by K. Hansson;

D. R. Adams and M. Pierre; P. Baras and M. Pierre; V. G. Mazya and I. E. Verbitsky;

I. E. Verbitsky and R.L. Wheeden). We refer the monographs [63], [28], [38], [82],

[73], [59], [20] and references cited therein for the weight theory of integral operators

of various type in the classical Lebesgue spaces.

The main results of the thesis are contained in the papers [44, 45, 46, 66, 67]



Chapter 1

Weighted Estimates for One-sided
Operators in Variable Exponent
Lebesgue Spaces.

1.1 Introduction

This chapter deals with the boundedness of one-sided maximal functions and poten-

tials in weighted Lebesgue spaces with variable exponent. In particular, we derive

one-weight inequality for one-sided maximal functions; sufficient conditions (in some

cases necessary and sufficient conditions) governing two-weight inequalities for one-

sided maximal and potential operators; criteria for the trace inequality for one-sided

fractional maximal functions and potentials; Fefferman-Stein type inequality for one-

sided fractional maximal functions; generalization of the Hardy-Littlewood theorem

for the Riemann-Liouville and Weyl transforms; the one–weight modular inequality

for the Riemann-Liouville transform on the cone of decreasing functions from the

variable exponent viewpoint. It is worth mentioning that some results of this chapter

implies the following fact: the one-weight inequality for one-sided maximal functions

automatically holds when both the exponent of the space and the weight are mono-

tonic functions.

5
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Solution of the one-weight problem for one-sided operators in classical Lebesgue

spaces was given in [86, 3]. Trace inequalities for one-sided potentials in Lp spaces

were characterized in [64, 75, 39]. It should be emphasized that a solution of the two-

weight problem in the classical Lebesgue spaces under transparent integral conditions

on weights for one-sided maximal functions and potentials in the non-diagonal case

are given in the monographs [29](Chapters 2 and 3) and [20](Chapter 2). For Sawyer-

type two-weight criteria for one-sided fractional operators we refer to [62], [61], [60].

1.2 Preliminaries

Let Ω be an open set in Rn and let p be a measurable function on Ω. Suppose that

1 ≤ p− ≤ p+ <∞, (1.2.1)

where p− and p+ are the infimum and the supremum respectively of p on Ω. Suppose

that ρ is a weight function on Ω, i.e. ρ is an almost everywhere positive locally

integrable function on Ω. We say that a measurable function f on Ω belongs to

L
p(·)
ρ (Ω) (or L

p(x)
ρ (Ω)) if

Sp,ρ(f) =

∫
Ω

∣∣f(x)ρ(x)
∣∣p(x)

dx <∞.

It is known that (see, e.g., [57, 49, 48, 78]) L
p(·)
ρ (Ω) is a Banach space with the norm

‖f‖
L
p(·)
ρ (Ω)

= inf
{
λ > 0 : Sp(·),ρ

(
f/λ

)
≤ 1
}
.

If ρ ≡ 1, then we use the symbol Lp(·)(Ω) (resp. Sp) instead of L
p(·)
ρ (Ω) (resp. Sp(·),ρ).

It is clear that ‖f‖
L
p(·)
ρ (Ω)

= ‖fρ‖Lp(·)(Ω). It should be also emphasized that when p is

constant, then L
p(·)
ρ (Ω) coincides with the classical weighted Lebesgue space.

We will use the following notation:

p−(E) := inf
E
p; p+(E) := sup

E
p, E ⊂ Ω.
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The following statement is well-known:

Proposition 1.2.1 ([57, 78]). Let E be a measurable subset of Ω. Then the following

inequalities hold:

‖f‖p+(E)

Lp(·)(E)
≤ Sp(·)(fχE) ≤ ‖f‖p−(E)

Lp(·)(E)
, ‖f‖Lp(·)(E) ≤ 1;

‖f‖p−(E)

Lp(·)(E)
≤ Sp(·)(fχE) ≤ ‖f‖p+(E)

Lp(·)(E)
, ‖f‖Lp(·)(E) ≥ 1;∣∣∣ ∫

E

f(x)g(x)dx
∣∣∣ ≤ ( 1

p−(E)
+

1

(p+(E))′

)
‖f‖Lp(·)(E) ‖g‖Lp′(·)(E),

where p′(x) = p(x)
p(x)−1

and 1 < p− ≤ p+ <∞.

Let I be an open set in R. In the sequel we shall use the notation:

I+(x, h) := [x, x+ h] ∩ I, I−(x, h) := [x− h, x] ∩ I;

I(x, h) := [x− h, x+ h] ∩ I.

Now we introduce the following maximal operators with variable parameter:

(
Mα(·)f

)
(x) = sup

h>0

1

(2h)1−α(x)

∫
I(x,h)

|f(t)|dt,

(
M−

α(·)f
)
(x) = sup

h>0

1

h1−α(x)

∫
I−(x,h)

|f(t)|dt,

(
M+

α(·)f
)
(x) = sup

h>0

1

h1−α(x)

∫
I+(x,h)

|f(t)|dt,

where 0 < α− ≤ α+ < 1, I is an open set in R and x ∈ I.

If α ≡ 0, then M−
α(·) and M+

α(·) are the one-sided Hardy-Littlewood maximal operators

which are denoted by M− and M+ respectively.

To prove the main results we need some statements:
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Theorem 1.2.2 ([12]). Let Ω be a bounded open set in Rn. Then the maximal oper-

ator

(MΩf
)
(x) = sup

r>0

1

rn

∫
B(x,r)

⋂
Ω

|f(y)|dy, x ∈ Ω,

is bounded in Lp(·)(Ω) if p ∈ P(Ω), that is,

(a) 1 < p− ≤ p(x) ≤ p+ <∞;

(b) p satisfies the log-Hölder continuity (Dini-Lipschitz) condition (p ∈ LH(Ω)):

there exists a positive constant A such that for all x, y ∈ Ω with 0 < |x − y| ≤ 1
2

the

inequality ∣∣p(x)− p(y)
∣∣ ≤ A

ln 1
|x−y|

(1.2.2)

holds.

Theorem 1.2.3 ([9]). Let Ω be an open subset of Rn. Suppose that 1 < p− ≤ p+ <

∞. Then the maximal operator MΩ is bounded in Lp(·)(Ω) if

(i) p ∈ P(Ω);

(ii) |p(x)− p(y)| ≤ C

ln(e+ |x|)
(1.2.3)

for all x, y ∈ Ω, |y| ≥ |x|.

We shall also make use of the next two results:

Proposition 1.2.4 ([57, 78]). Let 1 ≤ p(x) ≤ q(x) ≤ q+ < ∞. Suppose that Ω is

an open set in Rn with |Ω| <∞, where |Ω| is the measure of Ω. Then the inequality

‖f‖Lp(·)(Ω) ≤ (1 + |Ω|)‖f‖Lq(·)(Ω)

holds.

Proposition 1.2.5 ([12]). Let Ω be an open set in Rn and let p and q be bounded

exponents on Ω. Then

Lq(·)(Ω) ↪→ Lp(·)(Ω)
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if and only if p(x) ≤ q(x) almost everywhere on Ω and there is a constant 0 < K < 1

such that ∫
Ω

Kp(x)q(x)/(|q(x)−p(x)|)dx <∞. (1.2.4)

Remark 1.2.1. In the previous statement it is used the convention K1/0 := 0.

To state more results we need the following definitions:

Definition 1.2.1. Let P−(I) be the class of all measurable positive functions p : I →

R satisfying the following condition: there exist a positive constant C1 such that for

a.e x ∈ I and a.e y ∈ I with 0 < x− y ≤ 1
2

the inequality

p(x) ≤ p(y) +
C1

ln
(

1
x−y

) (1.2.5)

holds. Further, we say that p belongs to P+(I) if p is a positive function on I and there

exists a positive constant C2 such that for a.e x ∈ I and a.e y ∈ I with 0 < y−x ≤ 1
2

the inequality

p(x) ≤ p(y) +
C2

ln
(

1
y−x

) (1.2.6)

is fulfilled.

Definition 1.2.2. We say that a measurable positive function on I belongs to the

class P∞(I) (p ∈ P∞(I)) if (1.2.3) holds for all x, y ∈ I with |y| ≥ |x|.

Definition 1.2.3. Let p be a measurable function on an unbounded interval I in R.

We say that p ∈ G(I) if there is a constant 0 < K < 1 such that∫
I

Kp(x)p−/(p(x)−p−)dx <∞.

The next result was obtained in [23].
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Theorem 1.2.6. Let I be a bounded interval in R. Suppose that 1 < p− ≤ p+ <∞.

Then

(i) if p ∈ P−(I), then M− is bounded in Lp(·)(I);

(ii) if p ∈ P+(I), then M+ is bounded in Lp(·)(I).

In the case of an unbounded set we have

Theorem 1.2.7 ([23]). Let I be an arbitrary open set in R. Suppose that 1 < p− ≤

p+ <∞. If p ∈ P+(I)∩P∞(I), then the operator M+ is bounded in Lp(·)(I). Further,

if p ∈ P−(I) ∩ P∞(I), then the operator M− is bounded in Lp(·)(I).

In particular, the previous statement yields

Theorem 1.2.8 ([23]). Let I = R+ and let 1 < p− ≤ p+ < ∞. Suppose that

p ∈ P+(I) and there is a positive number a such that p ∈ P∞((a,∞)). Then M+ is

bounded in Lp(·)(I). Further, if p ∈ P−(I) and there is a positive number a such that

p ∈ P∞((a,∞)), then M− is bounded in Lp(·)(I).

The next statement gives one-weight criteria for the one-sided maximal operators

in classical Lebesgue spaces (see [86], [3]).

Theorem 1.2.9 ([3]). Let I ⊆ R be an interval. Assume that 0 ≤ α < 1 and

1 < p < 1/α, where p and α are constants (1/α =∞ if α = 0). We set 1/q = 1/p−α.

(i) Let T := M−
α . Then the inequality[ ∫
I

|Tf(x)|qv(x)dx

]1/q

≤ C

[ ∫
I

|f(x)|pvp/q(x)dx

]1/p

(1.2.7)

holds if and only if

sup
h>0

(
1

h

∫
I+(x,x+h)

v(t)dt

) 1
q
(

1

h

∫
I−(x−h,x)

v−p
′/q(t)dt

) 1
p′

<∞. (1.2.8)
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(ii) Let T := M+
α . Then (1.2.7) holds if and only if

sup
h>0

(
1

h

∫
I−(x−h,x)

v(t)dt

) 1
q
(

1

h

∫
I+(x,x+h)

v−p
′/q(t)dt

) 1
p′

<∞. (1.2.9)

Definition 1.2.4. Let I ⊆ R be an interval. Suppose that 1 < p < q < ∞, where

p and q are constants. We say that the weight v ∈ A−p,q(I) ( resp. v ∈ A+
p,q(I) ) if

(1.2.8) ( resp. (1.2.9)) holds.

If p = q, then we denote the class A+
p,q(I) ( resp. A−p,q(I) ) by A+

p (I) (resp. A−p (I)).

Notice that v ∈ A+
p,q(I) (resp. v ∈ A−p,q(I)) is equivalent to the condition v ∈

A+
1+q/p′(I) (resp. v ∈ A−1+q/p′(I)).

Further, we denote by D(R) (resp. D(R+)) a dyadic lattice in R (resp. in R+).

Definition 1.2.5. We say that a measure µ belongs to the class RD(d)(Rn) (dyadic

reverse doubling condition) if there exists a constant δ > 1, such that for all dyadic

cubes Q and Q′, Q ⊂ Q′, |Q| = |Q′|
2n
, the inequality

µ(Q′) ≥ δµ(Q)

holds.

Definition 1.2.6. We say that a measure µ on Rn satisfies the doubling condition

(µ ∈ DC(Rn)) if there is a positive number b such that

µB(x, 2r) ≤ bµB(x, r)

for all x ∈ Rn and r > 0.

It is known ( see [89], p. 11) that if µ ∈ DC(Rn), then µ ∈ RD(Rn), i.e., there

are positive constants η1 and η2, 0 < η1, η2 < 1, such that

µB(x, η1r) ≤ η2µB(x, r),
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for all x ∈ Rn and r > 0. It is easy to check that if µ ∈ DC(Rn), then µ ∈ RD(d)(R).

We shall need some lemmas giving Carleson-Hörmander type inequalities.

Lemma 1.2.10 ([90]). Let 1 < p ≤ r < ∞ and let ρ−p
′ ∈ RD(d)(Rn), where ρ

is a weight function on Rn. Then there is a positive constant C such that for all

non-negative f the inequality

∑
Q∈D(Rn)

(∫
Q

ρ−p
′
(x)dx

)− r
p′
(∫
Q

f(y)dy

)r
≤ C

(∫
Rn

(f(x)ρ(x))pdx

) 1
p

holds.

Lemma 1.2.11 ([87, 91]). Let u(x) ≥ 0 on Rn; {Qi}i∈A be a countable collection of

dyadic cubes in Rn and {ai}i∈A, {bi}i∈A be positive numbers satisfying

(i)

∫
Qi

u(x)dx ≤ Cai for all i ∈ A;

(ii)
∑

j: Qj⊂Qi

bj ≤ Cai for all i ∈ A.

Then (∑
i∈I

bi

(
1

ai

∫
Qi

g(x)u(x)dx

)p) 1
p

≤ Cp

(∫
Rn

gp(x)u(x)dx

) 1
p

for all g ≥ 0 on Rn and 1 < p <∞.

1.3 Hardy-Littlewood One-sided Maximal Func-

tions. One-weight Problem

In this section we discuss the one-weight problem for the one-sided Hardy-Littlewood

maximal operators.

We shall apply the following lemma in the proof of the main results of this section:



13

Lemma 1.3.1 ([23]). Let I be a bounded interval and let p be a measurable function

on I such that (1.2.1) hold on I. If p ∈ P+(I), then there is a positive constant

depending only on p such that for all f , ‖f‖Lp(·)(I) ≤ 1, the inequality

(
M+f(x)

)p(x) ≤ C
(
1 +M+

(
|f |p(·)

)
(x)
)

holds.

The following two theorems are the main results of this section:

Theorem 1.3.2. Let I be a bounded interval in R and let p be a measurable function

on R such that 1 < p− ≤ p+ <∞.

(i) If p ∈ P+(I) and a weight function w satisfies the condition w(·)p(·) ∈ A+
p−(I),

then for all f ∈ Lp(·)w (I) the inequality

‖(Nf)w‖Lp(·)(I) ≤ C‖wf‖Lp(·)(I) (1.3.1)

holds, where N = M+.

(ii) Let p ∈ P−(I) and let w(·)p(·) ∈ A−p−(I). Then inequality (1.3.1) holds for all

f ∈ Lp(·)w (I), where N = M−.

The result similar to Theorem 1.3.2 has been derived in [51], [53] for MΩ, where

Ω ⊂ Rn is a bounded domain.

In the case of unbounded intervals we have the next statement:

Theorem 1.3.3. Let I = R+ and let p be a measurable function on R+ such that

1 < p− ≤ p+ < ∞. Suppose that there is a positive number a such that p(x) ≡ pc ≡

const outside (0, a).

(i) If p ∈ P+(I) and w(·)p(·) ∈ A+
p−(I), then (1.3.1) holds for N = M+.

(ii) If p ∈ P−(I) and w(·)p(·) ∈ A−p−(I), then (1.3.1) holds for N = M−.

Theorem 1.3.2 yields the following corollaries:
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Corollary 1.3.4. Let p be an increasing function on an interval I = (a, b) such that

1 < p(a) ≤ p(b) < ∞. Suppose that w is an increasing positive function on I. Then

the one-weight inequality

‖w1/p(·)(M+f)(·)‖Lp(·)(I) ≤ c‖w1/p(·)f(·)‖Lp(·)(I)

holds.

Corollary 1.3.5. Let p be a decreasing function on an interval I = (a, b) such that

1 < p(b) ≤ p(a) < ∞. Suppose that w is a decreasing positive function on I. Then

the one-weight inequality

‖w1/p(·)(M−f)(·)‖Lp(·)(I) ≤ c‖w1/p(·)f(·)‖Lp(·)(I)

holds.

Now we prove Theorems 1.3.2 and 1.3.3.

Proof of Theorem 1.3.2. Since the proof of the second part is similar to the first one,

we prove only (i). It is enough to show that

Sp
(
wM+(f/w)

)
≤ C

for f satisfying the condition ‖f‖Lp(·)(I) ≤ 1.

First we prove that Sp∗
(
f
w

)
<∞, where p∗(x) = p(x)

p−
·

By using Hölder’s inequality we find that

Sp∗

(
f

w

)
=

∫
I

[f/w]p
∗(x) (x)dx ≤

(∫
I

|f(x)|p(x)dx

) 1
p−
·
(∫
I

w(x)p(x)(1−(p−)′)dx

) 1
´(p−)′

<∞

because wp(·)(·) ∈ A+
p−(I).
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Thus Lemma 1.3.1 might be applied for p∗. Consequently,

Sp
(
w(M+f/w)

)
=

∫
I

[
M+

(
f

w

)
(x)

]p(x)

wp(x)(x)dx

=

∫
I

([
M+ (f/w) (x)

]p∗(x)
)p−

wp(x)(x)dx

≤ C

∫
I

(
1 +M+

(∣∣∣ f
w

∣∣∣p∗(·))(x)

)p−
(w(x))p(x)dx

≤ C

∫
I

(w(x))p(x) dx+ C

∫
I

(
M+

(∣∣∣ f
w

∣∣∣p∗(·))(x)

)p−
wp(x)(x)dx

≤ C + C

∫
I

∣∣f/w∣∣p(x)
wp(x)(x)dx ≤ C.

Proof of Theorem 1.3.3. First we prove (i). Without loss of generality we can assume

that M+f(a) < ∞. Since M+ is a sub-linear operator it is enough to prove that

Sp,w(M+f) <∞, whenever Sp,w(f) <∞. We have∫
R+

(
M+f

)p(x)
(x)w(x)p(x)dx ≤ c

[ ∫ a

0

(
M+fχ[0,a]

)p(x)
(x)w(x)p(x)dx

+

∫ a

0

(
M+(fχ[a,∞))

)p(x)
(x)w(x)p(x)dx+

∫ ∞
a

(
M+(fχ[0,a])

)p(x)
(x)w(x)p(x)dx

+

∫ ∞
a

(
M+fχ[a,∞)

)p(x)
(x)w(x)p(x)dx

]
= c[I1 + I2 + I3 + I4].

Since M+f(x) = M+(fχ[0,a])(x) for x ∈ [0, a], using the assumptions w(·)p(·) ∈

A+
p−([0, a]), p+ ∈ P+((0, a)) and Theorem 1.3.2 we find that I1 <∞.

Further, the condition w(·)p(·) ∈ A+
p−(I) implies that w(·)p(·) ∈ A+

p−((a,∞)). Conse-

quently, since p ≡ pc ≡ const on (a,∞), by Theorem 1.2.9 we have I4 <∞.

Now observe that M+(fχ[0,a])(x) = 0 when x ∈ (a,∞). Therefore I3 = 0.

It remains to estimate I2. For this notice that if x ∈ (0, a), then

M+
(
f · χ[a,∞)

)
(x) = sup

h>0

1

h

∫ x+h

x

|f(y)|χ[a,∞)(y)dy = sup
h>a−x

1

h

∫ x+h

a

|f(y)|χ[a,∞)(y)dy

≤ sup
h>a−x

1

x+ h− a

∫ a+(x+h−a)

a

|f(y)|χ[a,∞)(y)dy ≤M+f(a) <∞.
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Hence,

I2 ≤ c

∫ a

0

w(x)p(x)dx <∞

because w(·)p(·) is locally integrable on R+.

To prove (ii) we use the notation of the proof of (i) substituting M+ by M−. In

fact, the proof is similar to that of (i). The only difference is in the estimates of

I2 :=

∫ a

0

(
M−(fχ[a,∞))

)p(x)
(x)w(x)p(x)dx

and

I3 :=

∫ ∞
a

(
M−(f · χ[0,a])(x)

)p(x)
(x)w(x)p(x)dx.

Obviously, we have that I2 = 0. Further, we represent I3 as follows:

I3 =

∫ ∞
a

(
M−(f · χ[0,a])(x)

)pc
(x)w(x)pcdx

=

∫ 2a

a

(
M−(f · χ[0,a])(x)

)pc
(x)w(x)pcdx+

∫ ∞
2a

(
M−(f · χ[0,a])(x)

)pc
(x)w(x)pcdx

=: I
(1)
3 + I

(2)
3 .

Observe that for x ∈ (a, 2a],

M−(f · χ[0,a])(x) ≤ sup
x−a<h<x

1

a− x+ h

∫ a

a−(a−x+h)

|f(y)|dy ≤M−f(a) <∞.

Hence,

I
(1)
3 ≤ (M−f)pc(a)

∫ 2a

a

(w(x))pc dx <∞.

If x > 2a, then (
M−f

)
(x) ≤ 1

a− x

∫ a

0

|f(y)|dy.

Therefore by using Hölder’s inequality with respect to the exponent p(·) (see Propo-

sition 1.2.1) we find that

I
(2)
3 ≤

(∫ ∞
2a

(w(x))pc (a− x)−pcdx

)(∫ a

0

|f(x)|dx
)pc

≤ c

(∫ ∞
2a

(w(x))pc (a− x)−pcdx

)
‖fw ‖pc

L
p(·)
([0,a])

‖w−1‖pc
L
p′(·)
([0,a])

=: cJ1 · J2 · J3.
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It is clear that J2 <∞. Further, since w(·)p(·) ∈ A−p−
(
(a,∞)

)
, by Hölder’s inequality

we have that w(·)p(·) ∈ A−pc
(
(a,∞)

)
, because pc ≥ p−. Hence, by applying Theorem

1.2.9 (for α = 0) we have that the operator M−f := M−(fχ(a,∞)) is bounded in

Lpcw ((a,∞)). Consequently, the Hardy operator

Haf(x) =
1

x− a

x∫
a

|f(t)|dt, x ∈ (a,∞),

is bounded in Lpcw ((a,∞)). This implies (see, e.g., [35], [63]) that J1 <∞.

It remains to see that J3 <∞. Indeed, Proposition 1.2.4 yields

‖w−1‖
L
p′(·)
([0,a])

≤ (1 + a)‖w−1‖
L(p−)′·([0,a])

≤ c‖χ{w−1≥1}(·)w−1(·)‖
L(p−)′(·)([0,a])

+ ‖χ{w−1<1}(·)w−1(·)‖
L(p−)′ ([0,a])

≤ c
∥∥χ{w−1≥1}(·)w

− p(·)
p− (x)

∥∥
L(p−)′ ([0,a])

+ c

≤
( a∫

0

wp(x)(1−(p−)′)(x)dx

)1/(p−)′

+ c.

Thus I
(2)
3 <∞.

1.4 One-sided Fractional Maximal Operators. One-

weight Problem

In this section we derive the one-weight inequality for the one-sided fractional maximal

operators. Concerning this section the main results are the following statements:

Theorem 1.4.1. Let I be a bounded interval and let 1 < p− ≤ p+ <∞. Suppose that

α is constant satisfying 0 < α < 1/p+. Let q(x) = p(x)
1−αp(x)

.

(i) If p ∈ P+(I) and a weight w satisfies the condition w(·)q(·) ∈ A+
p−,q−(I), then

the inequality

‖(Nαf)w‖Lq(·)(I) ≤ C‖wf‖Lp(·)(I), f ∈ Lp(·)w (I), (1.4.1)
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holds for Nα = M+
α .

(ii) Let p ∈ P−(I) and let w(·)q(·) ∈ A−p−,q−(I). Then inequality (1.4.1) holds for

Nα = M−
α .

Theorem 1.4.2. Let I = R+, 1 < p− ≤ p+ < ∞ and let p(x) ≡ pc ≡ const outside

some interval (0, a). Suppose that q(x) = p(x)
1−αp(x)

, where α is constant satisfying

0 < α < 1/p+.

(i) If p ∈ P+(I) and w(·)q(·) ∈ A+
p−,q−(I), then (1.4.1) holds for Nα = M+

α .

(ii) If p ∈ P−(I) and w(·)q(·) ∈ A−p−,q−(I), then (1.4.1) holds for Nα = M−
α .

Proof of Theorem 1.4.1. We prove (i). The proof of (ii) is the same. First we show

that the inequality

M+
α (f/w)(x) ≤

(
M+

(
fp(·)/s(·)w−q(·)/s(·)

)
(x)
)s(x)/q(x)

(∫
I

fp(y)(y)dy

)α
,

holds, where s(x) = 1+q(x)/p′(x). Indeed, denoting g(·) := (f(·))p(·)/s(·)(w(·))−q(·)/s(·)

we see that f(·)/w(·) = (g(·))s(·)/p(·)wq(·)/p(·)−1 = (g(·))1−αgs(·)/p(·)+α−1wαq(·).

By using Hölder’s inequality with respect to the exponent (1 − α)−1 and the facts

that s(·)/q(·) = 1− α, (s(y)/p(y) + α− 1)/α = s(·) we have

1

h1−α

∫
I+(x,x+h)

f(y)

w(y)
dy

≤
(

1

h

∫
I+(x,x+h)

g(y)dy

)1−α(∫
I+(x,x+h)

g(s(y)/p(y)+α−1)/α(y)wq(y)(y)dy

)α
≤
(
M+g(x)

)s(x)/q(x)
(∫

I+(x,x+h)

gs(y)(y)wq(y)(y)

)α
≤
(
M+g(x)

)s(x)/q(x)
(∫

I

fp(y)(y)dy

)α
.

Now we prove that Sq
(
wM+

α (f/w)
)
≤ C, when Sp(f) ≤ 1. By applying the above-

derived inequality we find that

Sq
(
wM+

α (f/w)
)
≤ c

∫
I

(
M+

α (fp(·)/s(·)w−q(·)/s(·))
)s(x)

(x)wq(x)(x)dx

= cSs
(
M+(fp(·)/s(·)w−q(·)/s(·))wq(·)/s(·)

)
.



19

Observe now that the condition on the weight w is equivalent to the assumption

wq(·)(·) ∈ A+
s−(I). On the other hand, ‖fp(·)/s(·)‖Ls(·)(I) ≤ 1. Therefore taking Theorem

1.3.2 into account we have the desired result.

Proof of Theorem 1.4.2. (i) Let f ≥ 0 and let Sp,w(f) <∞. We have

Sq,w(M+
α f) =

∫
I

(
M+

α f
)q(x)

(x)w(x)q(x)dx

≤ c

[ ∫ a

0

(
M+

α fχ[0,a](x)
)q(x)

(x)w(x)q(x)dx+

∫ a

0

(
M+

α (f · χ[a,∞))(x)
)q(x)

(x)w(x)q(x)dx

+

∫ ∞
a

(
M+

α (f · χ[0,a])(x)
)q(x)

(x)w(x)q(x)dx+

∫ ∞
a

(
M+

α (fχ[a,∞))(x)
)q(x)

(x)w(x)q(x)dx

]
=: c[I1 + I2 + I3 + I4].

It is easy to see that I1 < ∞ because of Theorem 1.4.1 and the condition wq(·)(·) ∈

A+
p−,q−([0, a]). Further, it is obvious that I3 < ∞ because M+

α (fχ[0,a])(x) = 0 for

x > a. Further, observe that

I2 ≤ c

∫ a

0

w(x)q(x)dx <∞,

where the positive constant depends on α, f , p, a.

It is easy to check that by Hölder’s inequality with respect to the power(
(pc)

′/qc
)
/
(
(p−)′/q−

)
the condition w(·)qc ∈ A+

p−,q−([a,∞)) implies w(·)qc ∈ A+
pc,qc([a,∞)). Hence, by using

Theorem 1.2.9 we find that I4 <∞.

(ii) We keep the notation of the proof of (i) but substitute M+
α by M−

α . The only

difference between the proofs of (i) and (ii) is in the estimates of I2 and I3.

It is obvious that I2 = 0, while for I3 we have

I3 =

2a∫
a

(
M−

α (f · χ[0,a])(x)
)q(x)

(x)w(x)q(x)dx+

∞∫
2a

(
M−

α (f · χ[0,a])(x)
)qc

(x)w(x)qcdx

=: I
(1)
3 + I

(2)
3 .
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If x > a, then

M−
α f(x) ≤ sup

x−a<h<x
hα−1

a∫
x−h

|f(y)|dy ≤ cM−
α f(a).

Consequently,

I
(1)
3 ≤ c

(
M−

α f(a)
)qc 2a∫

a

(
w(x)

)qc
dx <∞.

Now observe that when x > a we have the following pointwise estimates:

M−
α (fχ[0,a]))(x) ≤ (x− a)α−1

a∫
0

|f(y)|dy

≤ (x− a)α−1‖fw‖Lp(·)([0,a])‖w−1‖Lp′(·)([0,a]) =: (x− a)α−1J1 · J2.

Hence,

I
(2)
3 ≤

( ∞∫
2a

(x− a)(α−1)qc(w(x))qcdx

)
(J1 · J2)qc .

It is obvious that J1 <∞. Further,

J2 ≤ ‖w−1(·)χw−1>1(·)‖Lp′(·)([0,a]) + ‖w−1(·)χw−1≤1(·)‖Lp′(·)([0,a]) =: J
(1)
2 + J

(2)
2 .

It is clear that J
(2)
2 <∞. To estimate J

(1)
2 observe that by Proposition 1.2.4 we have

J
(1)
2 ≤ (1 + a)‖w−1χw−1>1‖Lp− ([0,a]) ≤ (1 + a)‖w−q(·)/q−χw−1>1‖Lp− ([0,a])

≤ (1 + a)‖w−q(·)/q−‖Lp− ([0,a]) <∞.

Since M−
α is bounded from Lpcw ([a,∞)) to Lqcw ([a,∞)) we have the Hardy inequality( ∞∫

a

(x− a)(α−1)qcwqc(x)

( x∫
a

|f(t)|dt
)qc

dx

)1/qc

≤ c

( ∞∫
a

|f(x)|pcwpc(x)dx

)1/pc

.

From this inequality it follows that (see, e.g., [35], [63])

∞∫
2a

(x− a)(α−1)qc(w(x))qcdx <∞.
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1.5 Generalized Fractional Maximal Operators. Two-

weight Problem

Let I = [a, b] be a bounded interval and let I+ := [b, 2b− a); I− := [2a− b, a).

Let Q = I1 × I2 × · · · × In be a cube in Rn. We denote:

Q+ := I+
1 × I+

2 × · · · × I+
n , Q− := I−1 × I−2 × · · · × I−n .

Let α be a measurable function on Rn, 0 < α− ≤ α(x) ≤ α+ < n. Let us define

one-sided dyadic fractional maximal functions on Rn:

(
M

+,(d)
α(·) f

)
(x) = sup

x∈Q
Q∈D(Rn)

1

|Q|1−
α(x)
n

∫
Q+

|f(y)|dy;

(
M
−,(d)
α(·) f

)
(x) = sup

x∈Q
Q∈D(Rn)

1

|Q|1−
α(x)
n

∫
Q−

|f(y)|dy.

If α(x) ≡ 0, then we have one-sided Hardy-Littlewood dyadic maximal functions

M+,(d), M−,(d).

In the paper [72] the two-weight weak-type inequality was proved in the classical

Lebesgue spaces for the one-sided dyadic Hardy-Littlewood maximal functions defined

on Rn.

Theorem 1.5.1. Let p be constant and let 1 < p < q− ≤ q+ <∞, 0 < α− ≤ α+ < n

where q and α are measurable functions on Rn. Suppose that w−p
′ ∈ RD(d)(Rn). Then

M
+,(d)
α(·) is bounded from Lpw(Rn) to L

q(·)
v (Rn) if and only if

A := sup
Q,Q∈D(Rn)

∥∥χQ(·)|Q|
α(·)
n
−1v(·)

∥∥
Lq(·)(Rn)

∥∥χQ+w−1
∥∥
Lp′ (Rn)

<∞. (1.5.1)

Proof. Necessity. Assuming f = χQ+w−p
′

(Q ∈ D(Rn) ) in the inequality

∥∥M+,(d)
α(·) f

∥∥
L
q(·)
v (Rn)

≤ C‖f‖Lpw(Rn) (1.5.2)
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we have that∥∥∥∥χQ(·)
(

1

|Q|1−
α(x)
n

∫
Q+

f

)∥∥∥∥
L
q(·)
v (Rn)

=
∥∥χQ(·)|Q|

α(·)
n
−1
∥∥
L
q(·)
v (Rn)

( ∫
Q+

w−p
′
(y)dy

)

≤
∥∥M+,(d)

α(·) f
∥∥
L
q(·)
v (Rn)

≤ C

( ∫
Q+

w−p
′
(y)dy

) 1
p

.

Thus, to show that (1.5.1) holds it remains to prove that for all dyadic cubes Q,

SQ =
∫
Q

w−p
′
(y)dy <∞. Indeed, suppose the contrary that SQ =∞ for some cube Q.

Then SQ = ‖w−1‖Lp′ (Q) =∞. This implies that there is a non-negative function g such

that g ∈ Lp(Q) and
∫
Q

g(y)w−1(y)dy = ∞. Further, let Q = Q̄+, where Q̄ ∈ D(Rn).

Then taking f = χQgw
−1 we have

‖f‖Lpw(Rn) =

( ∫
Q̄+

gp(x)dx

) 1
p

<∞;

and ∥∥M+,(d)
α(·) f

∥∥
L
q(·)
v (Rn)

≥
∥∥χQ̄(·)|Q̄|

α(·)
n
−1
∥∥
L
q(·)
v (Rn)

( ∫
Q̄+

f(y)dy

)

=
∥∥χQ̄(·)|Q̄|

α(·)
n
−1
∥∥
L
q(·)
v (Rn)

∫
Q̄+

g(y)w(y)−1dy =∞.

This contradicts (1.5.2).

Sufficiency. For every x ∈ Rn we take Qx ∈ D(Rn) ( x ∈ Qx) so that

|Qx|
α(x)
n
−1

∫
Q+
x

|f(y)|dy > 1

2

(
M

+,(d)
α(·) f

)
(x). (1.5.3)

Assume that f be non-negative bounded with compact support. Then it is easy to

see that we can take maximal cube Qx containing x for which (1.5.3) holds. Let

Q ∈ D(Rn) and let us introduce the set

FQ :=

{
x ∈ Q : Q is maximal for which |Q|

α(x)
n
−1

∫
Q+

f(y)dy >
1

2
M

+,(d)
α(·) f(x)

}
.
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Dyadic cubes have the following property: if Q1, Q2 ∈ D(Rn), and
o

Q1

⋂ o

Q2 6= ∅, then

Q1 ⊂ Q2 or Q2 ⊂ Q1, where
o

Q denotes the interior part of a cube Q.

Now observe that FQ1

⋂
FQ2 6= ∅ if Q1 6= Q2. Indeed, if

o

Q1

⋂ o

Q2 = ∅, then it is clear.

If
o

Q1

⋂ o

Q2 6= ∅, then Q1 ⊂ Q2 or Q2 ⊂ Q1. Let us take x ∈ FQ1

⋂
FQ2 . Then x ∈ Q1,

x ∈ Q2 and

1

|Q1|1−
α(x)
n

∫
Q+

1

f(y)dy >
1

2

(
M

+,(d)
α(·) f

)
(x);

1

|Q2|1−
α(x)
n

∫
Q+

2

f(y)dy >
1

2

(
M

+,(d)
α(·) f

)
(x).

If Q1 ⊂ Q2, then Q2 would be the maximal cube for which (1.5.3) holds. Consequently

x 6∈ FQ1 and x ∈ FQ2 . Analogously we have that if Q2 ⊂ Q1, then x ∈ FQ1 and

x 6∈ FQ2 . Further, it is clear that FQ ⊂ Q and
⋃

Q∈Dm(Rn)

FQ = Rn, where Dm(Rn) ={
Q : Q ∈ D(Rn), FQ 6= ∅

}
.

Suppose that ‖f‖Lpw(Rn) ≤ 1 and that r is a number satisfying the condition p < r <

q−. We have

∥∥M+,(d)
α(·) f

∥∥r
L
q(·)
v (Rn)

=
∥∥vr(M+,(d)

α(·) f
)r∥∥

L
q(·)
r (Rn)

= sup

∫
Rn

vr(x)

(
M

+,(d)
α(·) f

)r
(x)h(x)dx,

where the supremum is taken over all functions h, ‖h‖
L

(
q(·)
r

)′
(Rn)

≤ 1. Now for such

an h, using Lemma 1.2.10, we have that∫
Rn

vr(x)

(
M

+,(d)
α(·) f

)r
(x)h(x)dx =

∑
Q∈Dm(Rn)

∫
FQ

vr(x)

(
M

+,(d)
α(x) f

)r
(x)h(x)dx

≤ C
∑

Q∈Dm(Rn)

(∫
FQ

vr(x)|Q|(
α(x)
n
−1)rh(x)dx

)( ∫
Q+

f(y)dy

)r

≤ C
∑

Q∈Dm(Rn)

∥∥vr(·)|Q|(α(·)
n
−1)rχQ(·)

∥∥
L
q(·)
r (Rn)

∥∥h∥∥
L

(
q(·)
r

)′
(Rn)

( ∫
Q+

f(y)dy

)r
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= C
∑

Q∈Dm(Rn)

∥∥v(·) |Q|
α(·)
n
−1χQ(·)

∥∥r
Lq(·)(Rn)

∥∥h∥∥
L

(
q(·)
r

)′
(Rn)

( ∫
Q+

f(y)dy

)r

≤ C Ar
∑

Q∈Dm(Rn)

( ∫
Q+

w−p
′
(y)dy

)− r
p
( ∫
Q+

f(y)dy

)r
≤ CAr‖f‖rLpw(Rn).

In the last inequality we used also the fact that Q+ ∈ D(Rn) if and only if Q ∈ D(Rn).

Let us pass now to an arbitrary f , where f ∈ Lpw(Rn). For such an f we take the

sequence fm = fχQ(0,km)χ{f<jm}, where

Q(0, km) := {(x1, · · · , xn) : |xi| < km, i = 1, · · · , n}.

and km, jm →∞ as m→∞. Then it is easy to see that fm → f in Lpw(Rn) and also

pointwise. Moreover, fm(x) ≤ f(x). On the other hand,
{
M

+,(d)
α(·) fm

}
is a Cauchy

sequence in L
q(·)
v (Rn), because∥∥Mα(·)fm −Mα(·)fj

∥∥
L
q(·)
v (Rn)

≤
∥∥Mα(·)

(
fm − fj

)∥∥
L
q(·)
v (Rn)

≤ C
∥∥fm − fj∥∥Lpw(Rn)

.

Since L
q(·)
v (Rn) is a Banach space, there exists g ∈ Lq(·)v (Rn) such that∥∥(Mαfm

)
− g
∥∥
L
q(·)
v (Rn)

→ 0.

Taking Proposition 1.2.1 into account we can conclude that there is a subsequence

Mα(·)fmk which converges to g in L
q(·)
v (Rn) and also almost everywhere. But fmk

converges to f in Lpw(Rn) and almost everywhere. Consequently,

‖g‖
L
q(·)
v (Rn)

≤ C‖f‖Lpw(Rn), (1.5.4)

where the positive constant C does not depend on f . Now observe that since fmk is

non-decreasing, for fixed x ∈ Q, Q ∈ D(Rn), we have that

|Q|
α(x)
n
−1

∫
Q+

f(y)dy = lim
k→∞
|Q|

α(x)
n
−1

∫
Q+

fmk(y)dy

≤ lim
k→∞

sup
x∈Q
|Q|

α(x)
n
−1

∫
Q+

fmk(y)dy = lim
k→∞

(
M

+,(d)
α(·) fmk

)
(x)
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and the last limit exists because it converges to g almost everywhere. Hence,(
M

+,(d)
α(·) f

)
(x) ≤ lim

k→∞

(
M

+,(d)
α(·) fmk

)
(x) = g(x),

for almost every x. Finally, (1.5.4) yields∥∥M+,(d)
α(·) f

∥∥
L
q(·)
v (Rn)

≤ C‖f‖Lpw(Rn).

The proof of the next statement is similar to that of Theorem 1.5.1; therefore it

is omitted.

Theorem 1.5.2. Let 1 < p < q− ≤ q+ <∞, 0 < α− ≤ α+ < n, where p is constant

and q, α are measurable functions on Rn. Suppose that w−p
′ ∈ RD(d)(Rn). Then

M
−,(d)
α(·) is bounded from Lpw(Rn) to L

q(·)
v (Rn) if and only if

sup
Q,Q∈D(Rn)

∥∥χQ(·)|Q|
α(·)
n
−1v(·)

∥∥
Lq(·)(Rn)

∥∥w−1(·)χQ−(·)
∥∥
Lp′ (Rn)

<∞.

Let us now consider the case when p ≡ q ≡ const.

Theorem 1.5.3. Let 1 < p <∞, where p is constant. Suppose that 0 < α− ≤ α+ <

n. Then M
+,(d)
α(·) is bounded from Lpw(Rn) to Lpv(Rn) if and only if∫

Rn

vp(x)

(
M

+,(d)
α(·)

(
w−p

′
χQ
)
(x)

)p
dx ≤ C

∫
Q

w−p
′
(x)dx <∞,

for all dyadic cubes Q ⊂ Rn.

Proof. Sufficiency. It is enough to show that the inequality∥∥∥v M+,(d)
α(·),u f

∥∥∥
Lp(Rn)

≤ C
∥∥∥u 1

p f
∥∥∥
Lp(Rn)

(1.5.5)

holds if for all Q ∈ D(Rn),∫
Rn

vp(x)

(
M

+,(d)
α(·),u χQ

)p
(x) dx ≤ C

∫
Q

|f(x)|pu(x) dx,
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where (
M

+,(d)
α(·),u f

)
(x) = M

+,(d)
α(·)

(
fu
)
(x).

To prove (1.5.5) we argue in the same manner as in the proof of Theorem 1.5.1. Let

us construct the set FQ for Q ∈ D(Rn). We have∫
Rn

vp(x)

(
M

+,(d)
α(·),u

)p
(x) dx

≤ 2p
∑
Q∈Dm

∫
FQ

vp(x)

(
1

|Q|1−
α(x)
n

∫
Q+

f(y)u(y)dy

)p
dx

= C
∑
Q∈Dm

(∫
FQ

vp(x) |Q|
(
α(x)
n
−1
)
p dx

)( ∫
Q+

f(y)u(y)dy

)p

= C
∑
Q∈Dm

(∫
FQ

vp(x) |Q|
(
α(x)
n
−1
)
p dx

)(
u(Q+)

)p( 1

u(Q+)

∫
Q+

f(y)u(y)dy

)p
.

Taking Lemma 1.2.11 into account it is enough to show that

S :=
∑

j: Qj⊂Q
F
Q−
j
6=∅

Qj∈D(Rn)

∫
F
Q−
j

vp(x)

(∣∣Q−j ∣∣α(x)
n
−1
∫
Qj

u(y)dy

)p
dx ≤ c

∫
Q

u(y)dy.

Indeed, we have

S ≤
∑

j: Qj⊂Q
F
Q−
j
6=∅

Qj∈D(Rn)

∫
F
Q−
j

vp(x)
(
M+,(d)

(
u χQ

)
(x)
)p
dx

=

∫
⋃
Qj⊂Q

F
Q−
j

vp(x)
(
M+,(d)

(
u χQ

)
(x)
)p
dx

≤
∫
Rn

vp(x)
(
M+,(d)

(
u χQ

)
(x)
)p
dx ≤ C

∫
Q

u(y)dy.

Necessity. Taking the test function fQ = χQw
−p′ in the two-weight inequality∥∥∥v (M+,(d)

α(·) f
)∥∥∥

Lp(Rn)
≤ C

∥∥∥f w∥∥∥
Lp(Rn)
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and observing that
∫
Q

w−p
′
(y)dy < ∞ for every Q ∈ D(Rn) we have the desired

result.

The proof of the next statement is similar to that of the previous theorem. The

proof is omitted.

Theorem 1.5.4. Suppose that 1 < p < ∞, where p is constant. Then M
−,(d)
α(·) is

bounded from Lpw(Rn) to Lpv(Rn) if and only if there is a positive constant C such that

for all Q ∈ D(Rn),∫
Rn

vp(x)

(
M
−,(d)
α(·)

(
w−p

′
χQ

))p
(x)dx ≤ C

∫
Q

w−p
′
(x)dx <∞.

Let us now discuss the two–weight problem for the one-sided maximal functions

M+
α(·), M

−
α(·) defined on R.

Recall that by M
+,(d)
α(·) and M

−,(d)
α(·) we denote the one-sided dyadic maximal functions.

Now we assume that they are defined on R.

Together with these operators we need the following maximal operators:

(
M̄+

α(·)f
)

(x) = sup
h>0

1

(h/2)1−α(x)

x+h∫
x+h

2

|f(y)|dy;

(
M̄−

α(·)f
)

(x) = sup
h>0

1

(h/2)1−α(x)

x−h
2∫

x−h

|f(y)|dy;

(
M̃+

α(·)f
)

(x) = sup
j∈Z

1

2(j−1)(1−α(x))

x+2j∫
x+2j−1

|f(y)|dy.

To prove the next statements we need some lemmas.

Lemma 1.5.5. . Let f ∈ Lloc(R). Then the following pointwise estimates hold:

(
M+

α(·)f
)
(x) ≤ 2α+−1

1− 2α+−1

(
M̄+

α(·)f
)
(x);
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(
M−

α(·)f
)
(x) ≤ 2α+−1

1− 2α+−1

(
M̄−

α(·)f
)
(x) (1.5.6)

for every x ∈ R.

Proof. Observe that

1

h1−α(x)

x+h∫
x

|f(t)|dt =
1

h1−α(x)

x+h
2∫

x

|f(t)|dt+
1

h1−α(x)

x+h∫
x+h

2

|f(t)|dt

= 2α(x)−1 1

(h/2)1−α(x)

x+h
2∫

x

|f(t)|dt+ 2α(x)−1 1

(h/2)1−α(x)

x+h∫
x+h

2

|f(t)|dt

≤ 2α(x)−1
(
M+

α(·)f
)
(x) + 2α(x)−1

(
M̄+

α(·)f
)
(x).

Hence, (
M+

α(·)f
)
(x) ≤ 2α(x)−1

(
M+

α(·)f
)
(x) + 2α(x)−1

(
M̄+

α(·)f
)
(x).

Consequently, (
1− 2α(x)−1

)(
M+

α(·)f
)
(x) ≤ 2α(x)−1

(
M̄+

α(·)f
)
(x),

which implies

(
M+

α(·)f
)
(x) ≤ 2α(x)−1

1− 2α(x)−1

(
M̄+

α(·)f
)
(x) ≤ 2α+−1

1− 2α+−1

(
M̄+

α(·)f
)
(x).

Analogously the inequality (1.5.6) follows.

Lemma 1.5.6. The following inequality

(
M̄+

α(·)f
)
(x) ≤ C

(
M̃+

α(·)f
)
(x) (1.5.7)

holds with a positive constant C independent of f and x.
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Proof. Let us take h > 0. Then h ∈ [2j−1, 2j) for some j ∈ Z. Consequently,

1

(h/2)1−α(x)

x+h
2∫

x+h

|f(t)|dt ≤ 1

(2j−2)1−α(x)

x+2j∫
x+2j−2

|f(t)|dt

=
1

2(j−2)1−α(x)

x+2j−1∫
x+2j−2

|f(t)|dt+
1

2(j−2)(1−α(x))

x+2j∫
x+2j−1

|f(t)|dt

=
1

2(j−2)(1−α(x))

x+2j−1∫
x+2j−2

|f(t)|dt+
2α(x)−1

2(j−1)(1−α(x))

x+2j∫
x+2j−1

|f(t)|dt

≤
(
M̃+

α(·)f
)
(x) + 2α+−1

(
M̃+

α(·)f
)
(x) =

(
1 + 2α+−1

)(
M̃+

α(·)f
)
(x).

Hence, (1.5.7) holds for C = 1 + 2α+−1.

Lemma 1.5.7. There exists a positive constant C depending only on α such that for

all f, f ∈ Lloc(R), and x ∈ R,

(
M̃+

α(·)f
)
(x) ≤ C

(
M

+,(d)
α(·) f

)
(x). (1.5.8)

Proof. Let h = 2j for some integer j. Suppose that I and I ′ are dyadic intervals

such that I
⋃
I ′ is again dyadic, |I| = |I ′| = 2j−1 and [x+ h

2
, x+ h) ⊂ (I

⋃
I ′). Then

x ∈ (I
⋃
I ′)−, where (I

⋃
I ′)− is dyadic and

x+h∫
x+h

2

|f(t)|dt ≤
∫

I
⋃
I′

|f(t)|dt ≤ 2j(1−α(x))
(
M

+,(d)
α(·) f

)
(x),

whence (
M̃+

α(·)f
)
(x) ≤ 21−α−

(
M

+,(d)
α(·) f

)
(x).

If I
⋃
I ′ is not dyadic, then we take I1 ∈ D(R) with length 2j containing I ′. Conse-

quently, x ∈ (I1)−, where I−1 is dyadic. Observe that x ∈ I−, where I− is also dyadic.
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Consequently,

x+h∫
x+h

2

|f(t)|dt ≤
∫

I
⋃
I1

|f(t)|dt =

∫
I

|f(t)|dt+

∫
I1

|f(t)|dt ≤ C h1−α(x)
(
M

+,(d)
α(·) f

)
(x),

with positive constant C independent of j. Finally, we have (1.5.8).

Lemma 1.5.8. There exists a positive constant C depending only on α such that

(
M

+,(d)
α(·) f

)
(x) ≤ C

(
M+

α(·)f
)
(x) (1.5.9)

for all f, f ∈ Lloc(R), x ∈ R.

Proof. Let x ∈ I, I ∈ D(R).Denote I = [a, b). Then I+ = [b, 2b−a). Let h = 2b−a−x.

We have

1

|I|1−α(x)

∫
I+

|f(t)|dt ≤ 21−α(x)

|I
⋃
I+|1−α(x)

x+h∫
x

|f(t)|dt

≤ 21−α− 1

h1−α(x)

x+h∫
x

|f(t)|dt ≤ 21−α−M+
α(·)f(x).

Since I is an arbitrary dyadic cube containing x, then (1.5.9) holds for C = 21−α− .

Summarizing Lemmas 1.5.5− 1.5.8, we have the next statement:

Proposition 1.5.9. There exists positive constants C1 and C2 such that for all f ,

f ∈ Lloc(R) and x ∈ R the two-sided inequality

C1

(
M+

α(·)f
)
(x) ≤

(
M

+,(d)
α(·) f

)
(x) ≤ C2

(
M+

α(·)f
)
(x)

holds

Now Theorem1.5.1 (for n = 1) and Proposition 1.5.9 yield the following theorem:
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Theorem 1.5.10. Let p, q and α be measurable functions on I = R, 1 < p− < q− ≤

q+ < ∞, 0 < α− ≤ α+ < 1. Suppose also that p ∈ G(I). Further, assume that

w−(p−)′ ∈ RD(d)(I). Then M+
α(·) is bounded from L

p(·)
w (I) to L

q(·)
v (I) if

B := sup
a∈R
h>0

∥∥χ(a−h,a)(·) hα(·)−1
∥∥
L
q(·)
v (R)

∥∥χ(a,a+h)w
−1
∥∥
L(p−)′ (R)

<∞.

Proof. By using Theorem 1.5.1 we have that the condition B <∞ implies

‖M+,(d)
α(·) f‖Lq(·)(R) ≤ C‖fw‖Lp− (R)

Now Propositions 1.2.5 and 1.5.9 complete the proof.

Analogously the next statement can be proved:

Theorem 1.5.11. Let p, q and α be measurable functions on I := R, 1 < p− < q− ≤

q+ <∞, 0 < α− ≤ α+ < 1. Suppose also that p ∈ G(I) and that w−(p−)′ ∈ RD(d)(I).

Then M−
α(·) is bounded from Lpw(I) to L

q(·)
v (I) if

B1 := sup
a∈I
h>0

∥∥χ(a,a+h)(·)hα(·)−1v(·)
∥∥
Lq(·)(I)

∥∥χ(a−h,a)w
−1
∥∥
L(p−)′ (I)

<∞.

The results of this section imply the following corollaries:

Corollary 1.5.12. Let I := R and 1 < p < q− ≤ q+ <∞, 0 < α− ≤ α+ < 1, where

p is constant. Assume that w−p
′ ∈ RD(d)(R). Then M+

α(·) is bounded from Lpw(I) to

L
q(·)
v (I) if and only if

sup
a∈I
h>0

∥∥χ(a−h,a)(·) hα(·)−1
∥∥
L
q(·)
v (I)

∥∥χ(a,a+h)w
−1
∥∥
Lp′ (I)

<∞.

Corollary 1.5.13. Let I := R and let 1 < p < q− ≤ q+ < ∞, where p is constant.

Suppose that α is a measurable function on R satisfying 0 < α− ≤ α+ < 1. Suppose
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also that w−(p−)′ ∈ RD(d)(I). Then M−
α(·) is bounded from from Lpw(I) to L

q(·)
v (I) if

and only if

sup
a∈I
h>0

∥∥χ(a,a+h)(·)hα(·)−1v(·)
∥∥
Lq(·)(I)

∥∥χ(a−h,a)w
−1
∥∥
Lp′ (I)

<∞.

Corollary 1.5.14. Let I = R, 1 < p− < q− ≤ q+ < ∞, 0 < α− ≤ α+ < 1. Suppose

that p− = p(∞) and p ∈ P∞(I). Assume that w−(p−)′ ∈ RD(d)(R). Then:

(i) M+
α(·) is bounded from Lpw(I) to L

q(·)
v (I) if B <∞;

(ii) M−
α(·) is bounded from Lpw(I) to L

q(·)
v (I) if B1 <∞.

Proof of Corollary 1.5.12. Sufficiency is a direct consequence of Theorem 1.5.10.

Necessity follows immediately by applying the two-weight inequality for the test func-

tion f(x) = χ(a,a+h)(x)w−p
′
(x) (see also necessity of the proof of Theorem 1.5.1 for

the details).

The proof of Corollary 1.5.13 is similar to that of Corollary 1.5.12.

Proof of Corollary 1.5.14. (i) The result follows from Theorem 1.5.10 because the

condition p ∈ P∞(I) implies that∫
I

Kp(x)p(∞)/|p(x)−p(∞)|dx <∞.

Hence, by using the assumption p(∞) = p− we have that p ∈ G(I).

The second part of the corollary is obtained in a similar manner; therefore it is

omitted.

The next statement gives the boundedness of M+
α(·) in the diagonal case p ≡ q ≡

const.

Theorem 1.5.15. Let I := R and let 1 < p <∞, where p is constant. Suppose that

0 < α− ≤ α+ < ∞. Then M+
α(·) is bounded from Lpw(I) to Lpv(I) if and only if there
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is a positive constant C such that for all bounded intervals J ⊂ R,∫
R

vp(x)

(
M+

α(·)

(
w−p

′
χJ

)
(x)

)p
dx ≤ C

∫
J

w−p
′
(x)dx <∞.

Proof. Sufficiency follows from Proposition 1.5.9 and Theorem 1.5.3 for n = 1.

Necessity. For necessity we take f = χJ w
p′ in the two weight inequality∥∥v M+

α(·) f
∥∥
Lpv(I)

≤ C
∥∥w f

∥∥
Lpv(I)

and we are done.

Analogously the following theorem follows:

Theorem 1.5.16. Let I := R and let 1 < p <∞, where p is constant. Suppose that

0 < α− ≤ α+ <∞.. Then M−
α(·) is bounded from Lpw(I) to Lpv(I) if and only if∫

R

vp(x)

(
M−

α(·)

(
w−p

′
χJ

)
(x)

)p
dx ≤ C

∫
J

w−p
′
(x)dx <∞

for all bounded intervals J ⊂ R.

Finally we mention that the results similar to those of this section were derived

in [40] for generalized two-sided fractional maximal functions and Riesz potentials.

1.6 Fefferman-Stein Type Inequality

In this section we derive Fefferman-Stein type inequality for the operators M−
α(·), M

+
α(·).

Notice that this inequality for the classical Riesz potentials for the diagonal case was

established by E. Sawyer (see, e.g., [85]).

Theorem 1.6.1. Let α, p and q be measurable functions on I = R. Suppose that

1 < p− < q− ≤ q+ <∞ and 0 < α− ≤ α+ < 1/p−. Suppose that p ∈ G(I). Then the

following inequalities hold:

‖v(·)(M+
α(·)f)(·)‖Lq(·)(R) ≤ c‖f(·)(Ñ−α(·)v)(·)‖Lp(·)(R); (1.6.1)
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‖v(·)(M−
α(·)f)(·)‖Lq(·)(R) ≤ c‖f(·)(Ñ+

α(·)v)(·)‖Lp(·)(R), (1.6.2)

where

(
Ñ−α(·)v

)
(x) = sup

h>0
h−1/p−‖v(·)hα(·)χ(x−h,x)(·)‖Lq(·)(R),(

Ñ+
α(·)v

)
(x) = sup

h>0
h−1/p−‖v(·)hα(·)χ(x,x+h)(·)‖Lq(·)(R).

Proof. We prove (1.6.1). The proof of (1.6.2) is the same. First we show that the

inequality

‖v(·)(M+,(d)
α(·) f)(·)‖Lq(·)(R) ≤ c‖f(·)(Ñ−α(·)v)(·)‖Lp(·)(R)

holds. We repeat the arguments of the proof of Theorem 1.5.1 for one-dimensional

dyadic intervals J and construct the sets FJ . Taking h, ‖h‖L(q(·)/r)′ (R) ≤ 1, where

p− < r < q−, by using Lemma 1.2.10 and Proposition 1.2.5 we have that∫
R

vr(x)
(
M

+,(d)
α() f(x)

)r
h(x)dx =

∑
J∈Dm(R)

∫
FJ

v(x)r
(
M

+,(d)
α(·) f

)r
(x)h(x)dx

≤ c
∑

J∈Dm(R)

(∫
FJ

vr(x)|J |(α(x)−1)rh(x)dx

)(∫
J+

f(t)dt

)r

≤ c
∑

J∈Dm(R)

∥∥∥vr(·)|J |(α(·)−1)rh(·)χFJ (·)
∥∥∥
Lq(·)/r(R)

∥∥∥h∥∥∥
L(q(·)/r)′ (R)

(∫
J+

f(t)dt

)r

≤ c
∑

J∈Dm(R)

∥∥∥vr(·)|J |(α(·)−1)rχFJ (·)
∥∥∥
Lq(·)/r(R)

(∫
J+

f(t)dt

)r

= c
∑

J∈Dm(R)

(∫
J+

f(x)
∥∥∥v(·)|J |α(·)−1χFJ (·)

∥∥∥
Lq(·)(R)

dx

)r

= c
∑

J∈Dm(R)

|J |−r/(p−)′
(∫

J+

f(x)
∥∥∥v(·)|J |α(·)−1/p−χFJ (·)

∥∥∥
Lq(·)(R)

dx

)r

≤ c
∑

J∈Dm(R)

|J |−r/(p−)′
(∫

J+

f(x)
(
Ñ−α(·)v

)
(x)dx

)r
≤ c‖f(·)

(
Ñ−α(·)v

)
(·)‖rLp− (R) ≤ c‖f(·)Ñ−α(·)v(·)‖rLp(·)(R).
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Here we used the inequality∥∥∥v(·)|J |α(·)−1/p−χFJ (·)
∥∥∥
Lq(·)(R)

≤ Cα,p
(
Ñ−α(·)v

)
(x), x ∈ J+,

which follows in the same manner as Lemma 1.5.8 was proved. Now Proposition 1.5.9

completes the proof.

1.7 The Trace Inequality for One-sided Potentials

Let

Rα(·)f(x) =

x∫
−∞

f(t)

(x− t)1−α(x)
dt; x ∈ R,

Wα(·)f(x) =

∞∫
x

f(t)

(t− x)1−α(x)
dt; x ∈ R,

where α is a measurable function on R with 0 < α− ≤ α+ < 1. Here we establish

criteria which guarantees the boundedness of Rα(·) and Wα(·) from Lp(·)(I) to L
q(·)
v (I).

It would be useful to have the next result.

Theorem 1.7.1 ([40]). Suppose that 1 < p < q− ≤ q+ < ∞, where p is constant,

and q is a measurable function on R. Let 0 < α− ≤ α+ < 1. Then the generalized

Riesz potential

Tα(·)f(x) =

∫
R

f(y)

|x− y|1−α(x)
dy, x ∈ R,

is bounded from Lp(R) to L
q(·)
v (R) if and only if

sup
J⊂R

∥∥χJ(·) |J |α(·)∥∥
L
q(·)
v (R)

|J |−
1
p <∞, (1.7.1)

where the supremum is taken over all bounded intervals J ⊂ R.

Now we discuss the main results of this section:
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Theorem 1.7.2. Let I := R and let measurable functions p, q, and α satisfy the

conditions 1 < p− < q− ≤ q+ < ∞, 0 < α− ≤ α+ < 1. Further, suppose that

p ∈ G(I).

If

sup
J⊂R

∥∥χJ(·) |J |α(·)∥∥
L
q(·)
v (R)

|J |−
1
p− <∞,

where the supremum is taken over all bounded intervals J ⊂ R, then Rα(·) and Wα(·)

are bounded from Lp(·)(I) to L
q(·)
v (I).

Proof. The result is a direct consequence of the inequalities(
Rα(·)f

)
(x) ≤

(
Tα(·)f

)
(x),

(
Wα(·)f

)
(x) ≤

(
Tα(·)f

)
(x) (f ≥ 0),

Theorem 1.7.1 and Proposition 1.2.5.

Theorem 1.7.3. Let I := R and let p, q and α satisfy the conditions of Theorem

1.7.1. Then the following conditions are equivalent:

(i) Rα(·) is bounded from Lp(I) to L
q(·)
v (I);

(ii) Wα(·) is bounded from Lp(I) to L
q(·)
v (I);

(iii) condition (1.7.1) holds.

Proof. The implications (iii)⇒ (i), (iii)⇒ (ii) follow from Theorems 1.7.2 and 1.7.1.

Let us now show that (i) ⇒ (iii). Let f(x) = χ(a,a+h)(x), where a ∈ R and h > 0.

Then ‖f‖Lp(R) = h
1
p . On the other hand,

∥∥Rα(·)f
∥∥
L
q(·)
v (R)

≥
∥∥∥χ(a,a+h)(·)

( a∫
a−h

dt

(x− t)1−α(x)

)∥∥∥
L
q(·)
v (R)

≥ C
∥∥χ(a,a+h)(·)hα(·)∥∥

L
q(·)
v (R)

.

Hence, (i) implies that ∥∥χ(a,a+h)(·)hα(·)∥∥
L
q(·)
v (R)

h−
1
p ≤ C
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for all a ∈ R and h > 0. This implies (iii). Analogously the implication (ii)⇒(iii) can

be derived.

1.8 Hardy-Littlewood Type Inequalities

The results of the previous section enable us to formulate necessary and sufficient

conditions governing the Hardy-Littlewood ( see [30]) type inequalities for the one-

sided potentials. For these inequalities in the classical Lebesgue spaces we refer also

to [82]. In particular, we give necessary and sufficient conditions on q, p and α for

which Rα(·) and Wα(·) are bounded from Lp to Lq(·), where p is constant.

Theorem 1.8.1. Let I = R and let p, q and α satisfy the conditions of Theorem

1.7.1. Then the following conditions are equivalent:

(i) Rα(·) is bounded from Lp(I) to Lq(·)(I);

(ii) Wα(·) is bounded from Lp(I) to Lq(·)(I);

(iii) sup
J⊂R

∥∥χJ(·) |J |α(·)∥∥
Lq(·)(J)

|J |−
1
p <∞,

where the supremum is taken over all bounded intervals J in R.

1.9 Two-weight Inequalities for Monotonic Weights

This section deals with the two-weight estimates of the one-sided maximal functions

and one-sided potentials defined on R+ := [0,∞).

Let us consider the following Hardy-type operators:

(Tv,wf)(x) = v(x)

∫ x

0

f(y)w(y)dy, x ∈ R+,

and

(T ′v,wf)(x) = v(x)

∫ ∞
x

f(y)w(y)dy, x ∈ R+.
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In the sequel we will use the following notation:

vα(x) :=
v(x)

x1−α , w̃(x) :=
1

w(x)
, w(x) :=

1

w(x)x
, wα(x) :=

1

x1−αw(x)
.

Let us fix a positive number a and let

p0(x) := p−([0, x]), p̃0(x) :=

 p0(x), if x ≤ a;

pc = const, if x > a,

p1(x) := p−([x, a]); p̃1(x) :=

 p1(x), if x ≤ a;

pc = const, if x > a,

Ik := [2k−1, 2k+2]; k ∈ Z, Ek = [2k, 2k+1]; k ∈ Z,

where (0, x) and [0, x] are open and close intervals respectively.

The following two results were obtained in [22]:

Theorem 1.9.1. Let 1 < p̃0(x) ≤ p(x) ≤ p+ <∞, and p is a measurable function on

R+. Suppose that there exists a positive number a such that p(x) = pc = const when

x > a. If

sup
t>0

∫ ∞
t

(
v(x)

)p(x)
(∫ t

0

w(y)(p̃0)′(x)dy

) p(x)

(p̃0)′(x)

dx <∞,

then Tv,w is bounded in Lp(·)(R+).

Theorem 1.9.2. Let 1 < p̃1(x) ≤ p(x) ≤ p+ <∞,and p is a measurable function on

R+. Suppose that there exists a positive number a such that p(x) = pc = const, when

x > a. If

sup
t>0

∫ t

0

(v(x))p(x)

(∫ ∞
t

w(y)(p̃1)′(x)dy

) p(x)

(p̃1)′(x)

dx <∞,

then T ′v,w is bounded in Lp(·)(R+).

The next two lemmas will be useful for us.
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Lemma 1.9.3 ([5]). Let 1 ≤ p− ≤ p(x) ≤ q(x) ≤ q+ < ∞, p ∈ LH(R+) and let

p(x) = pc = const, q(x) = qc = const when x > a for some positive number a. Then

there exist a positive constant c such that

∑
i

‖ fχIi ‖Lp(·)(R+)‖ gχIi ‖Lq′(·)(R+)≤ c ‖ f ‖Lp(·)(R+)‖ g ‖Lq′(·)(R+)

for all fand g with f ∈ Lp(·)(R+) and g ∈ Lq′(·)(R+).

Lemma 1.9.4 ([12]). Let p ∈ LH(R+). Then there exist a positive constant c such

that for all open intervals I in R+ satifying the condition | I |> 0 we have

| I |p− (I)−p+ (I)≤ c.

Now we prove some lemmas.

Lemma 1.9.5. Let 1 < p− ≤ p0(x) ≤ p(x) ≤ p+ < ∞, where p is a measurable

function on R+, and let p(x) ≡ pc ≡ const if x > a for some positive constant a.

Suppose that v and w are positive increasing functions on R+ satisfying the condition

B := sup
t>0

∫ ∞
t

(v(x)

x

)p(x)
(∫ t

0

w(y)−(p̃0)′(x)dy

) p(x)

(p̃0)′(x)

dx <∞. (1.9.1)

Then v(4x) ≤ cw(x) for all x > 0, where the positive constant c is independent of x.

Proof. First assume that 0 < t < a. The fact that c = lim
t→0

v(4t)
w(t)

<∞ follows from the

inequalities:

∫ ∞
t

(
v(x)

x

)p(x)(∫ t

0

w(y)−(p̃0)′(x)dy

) p(x)

(p̃0)′(x)

dx

≥
∫ 8t

4t

(
v(4t)

w(t)

)p(x)

· t
p(x)

(p̃0)′(x) · x−p(x)dx

≥
(
v(4t)

w(t)

)p− ∫ 8t

4t

t
p(x)

(p̃0)′(x) · x−p(x)dx ≥ c

(
v(4t)

w(t)

)p−
,
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where the positive constant c is independent of a small positive number t.

Further, suppose that δ is a positive number such that v(4t) ≤ (c+1)w(t) when t < δ.

If δ < a, then for all δ < t < a, we have that

v(4t) ≤ v(4a) ≤ c̃w(δ) ≤ c̃w(t),

where c depends on v, w and δ. Now it is enough to take c = max{(c+ 1), c}.

Let now a ≤ t <∞. Then p(x) ≡ pc ≡ const for x > t and, consequently,

B ≥ sup
t>0

(∫ ∞
t

(
v(x)

x

)pc
dx

)(∫ t

0

w(x)−p
′
cdx

)pc−1

≥ c

(
v(4t)

w(t)

)pc
.

The lemma is proved.

The proof of the next lemma is similar to that of the previous one; therefore we

omit it.

Lemma 1.9.6. Let 1 < p− ≤ p1(x) ≤ p(x) ≤ p+ < ∞, and let p(x) ≡ pc ≡ const

if x > a for some positive constant a. Suppose that v and w are positive decreasing

functions on R+. If

B̃ := sup
t>0

∫ t

0

(v(x))p(x)

(∫ ∞
t

(w(y))(p̃1)′(x) dy

) p(x)

(p̃1)′(x)

dx <∞, (1.9.2)

then v(x) ≤ cw(4x), where the positive constant c does not depend on x > 0.

Theorem 1.9.7. Let 1 < p− ≤ p+ < ∞ and let p ∈ LH(R+). Suppose that p(x) ≡

pc ≡ const if ∈ (a,∞) for some positive number a. Let v and w be weights on R+

such that

(a) Tv0,w̃ is bounded in Lp(·)(R+);

(b) there exists a positive constant b such that one of the following two conditions

hold:

(i) ess sup
y∈[x

4
,4x]

v(y) ≤ bw(x) for almost all x ∈ R+;
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(ii) v(x) ≤ b ess inf
y∈[x

4
,4x]

w(y) for almost all x ∈ R+.

Then M− is bounded from L
p(·)
w (R+) to L

p(·)
v (R+).

Proof. Suppose that ‖g‖Lp′(·)(R+) ≤ 1. We have

∫ ∞
0

(
M−f(x)

)
v(x)g(x)dx ≤

∑
k∈Z

∫ 2k+1

2k

(
M−f1,k(x)

)
v(x)g(x)dx

+
∑
k∈Z

∫ 2k+1

2k

(
M−f2,k(x)

)
v(x)g(x)dx+

∑
k∈Z

∫ 2k+1

2k

(
M−f3,k(x)

)
v(x)g(x)dx=:S1 + S2 + S3,

where f1,k = f · χ[0,2k−1], f2,k = f · χ[2k+1,∞], f3,k = f · χ[2k−1,2k+2].

If y ∈ [0, 2k−1) and x ∈ [2k, 2k+1], then y < x/2. Hence x/2 ≤ x− y. Consequently, if

h < x/2, then for x ∈ [2k−1, 2k+2], we have

1

h

∫ x

x−h
| f1,k(y) | dy =

1

h

∫ x

x−h
| f · χ[0,2k−1] | dy = 0.

Further, if h > x
2
, then

1

h

∫ x

x−h
| f1,k(y) | dy =

1

h

∫ x

x−h
| f · χ[0,2k−1] | dy ≤ c

1

x

∫ x

0

| f(y) | dy.

This yields that

M−f1,k(x) ≤ c
1

x

∫ x

0

| f(y) | dy for x ∈ [2k, 2k+1].

Hence, due to the boundedness of Tv0,w̃ in Lp(x)(R+) we have that

S1 ≤ c

∞∫
0

(Tv0,1|f |) (x) g(x)dx

≤ c ‖Tv0,1|f | ‖Lp(·)(R+) · ‖g‖Lp′(·)(R+) ≤ c ‖fw‖Lp(·)(R+).

Observe now that S2 = 0 because f2,k = f · χ[2k+2,∞]. Let us estimate S3. By using

condition (i) of (b), boundedness of the operator M− in Lp(·)(R+) and Lemma 1.9.3
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we have that

S3 ≤ c
∑
k

(ess sup
Ek

v)‖M−f3,k(·)‖Lp(·)(R+) · ‖g(·)χEk‖Lp′(·)(R+)

≤ c
∑
k

(ess sup
Ek

v)‖f(·)χIk‖Lp(·)(R+) · ‖g(·)χEk‖Lp′(·)(R+)

≤ c ‖f(·)w(·)‖Lp(·)(R+).

If condition (ii) of (b) holds, then

v(z) ≤ b ess inf
y∈[ z

4
,4z]
w(y) ≤ b ess inf

y∈(2k−1,2k+2)
w(y) ≤ bw(x),

for z ∈ Ek and x ∈ Ik. Hence,

ess sup
Ek

≤ bw(x),

if x ∈ Ik. Consequently, taking into account this inequality and the estimate of S3 in

the previous case we have the desired result for M−.

Theorem 1.9.8. Let 1 < p− ≤ p+ < ∞ and let p ∈ LH(R+). Suppose that p(x) ≡

pc ≡ const if x > a, where a is some positive number. Let v and w be weight functions

on R+ such that

(a) T ′v,w is bounded in Lp(·)(R+);

(b) there exists a positive constant b such that one of the following two conditions

holds:

(i) ess sup
y∈[x

4
,4x]

v(y) ≤ bw(x) for almost all x ∈ R+;

(ii) v(x) ≤ b ess inf
y∈[x

4
,4x]

w(y) for almost all x ∈ R+.

Then M+ is bounded from L
p(·)
w (R+) to L

p(·)
v (R+).
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Proof. Suppose that ‖g‖Lp′(·)(R+) ≤ 1. We have∫ ∞
0

(
M+f(x)

)
v(x)g(x)dx ≤

∑
k∈Z

∫ 2k+1

2k

(
M+f1,k(x)

)
v(x)g(x)dx

+
∑
k∈Z

∫ 2k+1

2k

(
M+f2,k(x)

)
v(x)g(x)dx+

∑
k∈Z

∫ 2k+1

2k

(
M+f3,k(x)

)
v(x)g(x)dx=:S1 + S2 + S3,

where fi,k, i = 1, 2, 3 are defined in the proof of the previous theorem. It is easy to

see that S1 = 0. To estimate S2 observe that

M+f · χ[2k+1,∞)(x) ≤ c sup
j≥k+2

2−j
∫
Ej

|f(y)|dy, x ∈ Ek. (1.9.3)

Indeed, notice that if y ∈ (2k+2,∞) and x ∈ Ek, then y − x ≥ 2k+1. Hence,

1

h

∫ x+h

x

| f2,k(y) | dy ≤ 1

h

∫
{y:y−x<h,y−x>2k+1}

|f(y)|dy = 0

for h ≤ 2k+1 and x ∈ Ik.

Let now h > 2k+1. Then h ∈ [2j, 2j+1) for some j ≥ k + 1. If y − x < h, then it is

clear that y = y − x+ x ≤ h+ x ≤ 2j+1 + 2k+1 ≤ 2j+1 + 2j ≤ 2j+2. Consequently, for

such an h we have that

1

h

x+h∫
x

|f2,k(y)|dy =
1

h

x+h∫
x

|f · χ[2k+2,∞)(y)|dy ≤ 1

h

∫
{y:y−x<h,y>2k+2}

|f(y)|dy

≤ 1

x

∫
{y: y∈[2k+2,2j+2]}

|f(y)|dy ≤
j+1∑
i=k+2

2−j
2i+1∫
2i

|f(y)|dy

which proves inequality (1.9.3).

Taking into account estimate (1.9.3) and the boundedness of T ′v,w in Lp(·)(R+) we find

that

S2 ≤ c
∑
k

∫
Ek

v(x)g(x)

(
sup
j≥k+1

2−j
∫
Ej

|f(y)|dy
)
dx
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≤ c
∑
k

(∫
Ik

v(x)g(x)dx

)( ∞∑
j=k+1

2−j
∫
Ej

|f(y)|dy
)

= c
∑
j

2−j
(∫
Ej

|f(y)|dy
) j−1∑
k=−∞

(∫
Ek

v(x)g(x)dx

)

= c
∑
j

2−j
(∫
Ej

|f(y)|dy
)( 2j∫

0

v(x)g(x)dx

)
≤ c

∑
j

∫
Ej

|f(y)| y−1

( y∫
0

v(x)g(x)dx

)
dy

= c

∫
R+

|f(y)| y−1

( y∫
0

v(x)g(x)dx

)
dy = c

∫
R+

v(x)g(x)

( ∞∫
x

|f(y)| y−1dy

)
dx

≤ c ‖g‖Lp′(·)R+
· ‖T ′v(·),1/·f‖Lp(·)R+

≤ c‖fw‖Lp(·)R+
.

To estimate S3 assume that condition (i) of (b) is satisfied. By Lemma 1.9.3 and the

boundedness of the operator M+ in Lp(·)(R+) we conclude that

S3 ≤ c
∑
k

(ess sup
Ek

v)‖M+f3,k(·)‖Lp(·)(R+) · ‖g(·)χEk‖Lp′(·)(R+)

≤ c
∑
k

(ess sup
Ek

v)‖f(·)χIk‖Lp(·)(R+) · ‖g(·)χEk‖Lp′(·)(R+)

≤ c
∑
k

‖f(·)w(·)χIk(·)‖Lp(·)(R+) · ‖g(·)χEk‖Lp′(·)(R+)

≤ c ‖f(·)w(·)‖Lp(·)(R+) · ‖g(·)‖Lp′(·)(R+) ≤ c ‖f(·)w(·)‖Lp(·)(R+).

Theorem 1.9.9. Let 1 < p− ≤ p0(x) ≤ p(x) ≤ p+ < ∞ and let p ∈ LH(R+).

Suppose that p(x) ≡ pc ≡ const if x > a, where a is a positive constant. Assume that

v and w are positive increasing weights on (0,∞). If condition (1.9.1) is satisfied,

then M− is bounded from L
p(·)
w (R+) to L

p(·)
v (R+).

Proof. The proof follows by using Lemma 1.9.5 and Theorem 1.9.7.
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Theorem 1.9.10. Let 1 < p− ≤ p1(x) ≤ p(x) ≤ p+ < ∞, and let p ∈ LH(R+).

Suppose that p(x) ≡ pc ≡ const if x > a, where a is some positive constant. Let v

and w be positive decreasing weights on (0,∞). If condition (1.9.2) is satisfied, then

M+ is bounded from L
p(·)
w (R+) to L

p(·)
v (R+).

Proof. The proof follows immediately from Lemma 1.9.6 and Theorem 1.9.8.

Now we discuss two-weight estimates for the one-sided potentials defined on R+:

Rαf(x) =

x∫
0

f(t)

(x− t)1−αdt;

Wαf(x) =

∞∫
x

f(t)

(t− x)1−αdt,

where x > 0 and 0 < α < 1.

The following two statements were proved in [23]:

Theorem 1.9.11. Let I = R+and let p ∈ P+(I). Suppose that there exists a positive

constant a such that p ∈ P∞((a,∞)). Suppose that α is a constant on I, 0 < α < 1
p+
I

and q(x) = p(x)
1−αp(x)

. Then Wα is bounded from Lp(·)(I) to Lq(·)(I).

Theorem 1.9.12. Let I = R+ and let p ∈ P−(I). Let α be a constant on I, 0 < α <

1
p+
I

and let q(x) = p(x)
1−αp(x)

. Suppose that p ∈ P∞((a,∞)) for some positive number a.

Then Rα is bounded from Lp(·)(I) to Lq(·)(I).

Remark 1.9.1. Theorems 1.9.11 and 1.9.12 are true if we replace the condition p ∈

P∞((a,∞)) by the condition: p is constant outside an interval (0, a) for some positive

number a.

Now we are going to prove the main results regarding the one-sided potentials:
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Theorem 1.9.13. Let 1 < p− ≤ p+ < ∞, α < 1/p+, q(x) = p(x)
1−αp(x)

, p ∈ LH(R+).

Suppose that p(x) ≡ pc ≡ const if x > a, where a is some positive number. Let v and

w be a.e. positive measurable functions on R+ satisfying the conditions:

(a) Tvα,w̃ is bounded in Lp(·)(R+),

(b) there exists a positive constant b such that one of the following two conditions

hold:

(i) ess sup
y∈[x

4
,4x]

v(y) ≤ bw(x) for almost all x ∈ R+;

(ii) v(x) ≤ b ess inf
y∈[x

4
,4x]

w(y) for almost all x ∈ R+.

Then Rα is bounded from L
p(·)
w (R+) to L

q(·)
v (R+).

Theorem 1.9.14. Let 1 < p− ≤ p+ < ∞, α < 1/p+, q(x) = p(x)
1−αp(x)

, p ∈ LH(R+).

Suppose that p(x) ≡ pc ≡ const if x > a, where a is some positive number. Let v and

w be a.e. positive measurable functions on R+ satisfying the conditions:

(a) T ′v,wα is bounded in Lp(·)(R+),

(b) there exists a positive constant b such that one of the following two conditions

hold:

(i) ess sup
y∈[x

4
,4x]

v(y) ≤ bw(x) for almost all x ∈ R+;

(ii) v(x) ≤ b ess inf
y∈[x

4
,4x]

w(y) for almost all x ∈ R+.

Then Wα is bounded from L
p(·)
w (R+) to L

q(·)
v (R+).

Proof of Theorem 1.9.13. Let f ≥ 0 and let ‖g‖Lq′(·)(R+) ≤ 1. It is obvious that∫ ∞
0

(Rαf(x)) v(x)g(x)dx ≤
∑
k∈Z

∫ 2k+1

2k
(Rαf1,k(x)) v(x)g(x)dx

+
∑
k∈Z

∫ 2k+1

2k
(Rαf2,k(x)) v(x)g(x)dx+

∑
k∈Z

∫ 2k+1

2k
(Rαf3,k(x)) v(x)g(x)dx

=: S1 + S2 + S3,
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where fi,k, i = 1, 2, 3 are defined in the proof of Theorem 1.9.7.

If y ∈ [0, 2k−1) and x ∈ [2k, 2k+1], then y < x
2
. Hence

Rαf1,k(x) ≤ c

x1−α

∫ x

0

f(t)dt, x ∈ [2k−1, 2k+2].

By using Hölder’s inequality, Theorem 1.9.1, Remark 1.9.1 we find that condition (i)

guarantees the estimate

S1 ≤ c‖fw‖Lp(·)(R).

Further, observe that if x ∈ [2k, 2k+1), then Rαf2,k(x) = 0. Hence S2 = 0.

To estimate S3 we argue as in the case of the proof of Theorem 1.9.7.

The proof of Theorem 1.9.14. is similar to that of Theorem 1.9.13; therefore it is

omitted.

Now we formulate other results of this section:

Theorem 1.9.15. Let 1 < p− ≤ p+ < ∞ and let α be a constant satisfying the

condition α < 1/p+. Suppose that q(x) = p(x)
1−αp(x)

and p ∈ LH(R+). Assume that

p(x) ≡ pc ≡ const outside some interval [0, a], where a is a positive constant. Let v

and w be positive increasing functions on R+ satisfying the condition

∞∫
t

(vα(x))q(x)

 t∫
0

w−(p̃0)′(x)(y)dy


q(x)

(p̃0)′(x)

dx <∞.

Then Rα is bounded from L
p(·)
w (R) to L

q(·)
v (R).

Theorem 1.9.16. Let 1 < p− ≤ p+ < ∞ and let α be a constant satisfying the

condition α < 1/p+. Suppose that q(x) = p(x)
1−αp(x)

and p ∈ LH(R+). Suppose also that

p(x) ≡ pc ≡ const outside some interval [0, a], where a is a positive constant and that

v and w are positive decreasing functions on R+ satisfying the condition

sup
t>0

∫ t

0

(v(x))p(x)

(∫ ∞
t

(wα(y))(p̃1)′(x) dy

) p(x)

(p̃1)′(x)

dx <∞.
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Then Wα is bounded from L
p(·)
w (R) to L

q(·)
v (R).

The proofs of Theorems 1.9.15 and 1.9.16 are based on Theorems 1.9.13, 1.9.14

and the following lemmas:

Lemma 1.9.17. Let the conditions of Theorem 1.9.15 be satisfied. Then there is a

positive constant c such that for all t > 0 the inequality

v(4t) ≤ cw(t)

is satisfied.

Lemma 1.9.18. Let the conditions of Theorem 1.9.16 be satisfied. Then there is a

positive constant b such that for all t > 0 the inequality

v(t) ≤ bw(4t)

holds.

The proof of Lemma 1.9.17 (resp 1.9.18) is similar to that of Lemma 1.9.5; there-

fore we omit it.

1.10 Riemann-Liouville Operators on the Cone of

Decreasing Functions

In this section necessary and sufficient conditions governing the one-weight inequality

for the Riemann-Liouville transform on the cone of decreasing functions for variable

exponent are obtained. First we show that the two-sided pointwise estimate

c1Tf(x) ≤ R̄αf(x)) ≤ c2Tf(x),
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holds on the class of functions f : R+ → R+ which are non-negative and decreasing,

where

Tf(x) =
1

x

x∫
0

f(t)dt and R̄αf(x) =
1

xα

x∫
0

f(t)

(x− t)1−αdt, 0 < α < 1.

By the symbol Tf ≈ Kf, where T and K are linear positive operators defined on

appropriate classes of functions, we mean that there are positive constants c1 and c2

independent of f and x such that

c1Tf(x) ≤ Kf(x) ≤ c2Tf(x).

Let p : R+ −→ R+ be a measurable function, satisfying the conditions

p− = ess inf
x∈R+

p(x) > 0, p+ = ess sup
x∈R+

p(x) <∞.

Suppose that u is a weight on (0,∞). Let us define the following local oscillation of

p :

ϕp(·),u(δ) = ess sup
x∈(0,δ)∩suppu

p(x)− ess inf
x∈(0,δ)∩suppu

p(x).

We observe that ϕp(·),u(δ) is non-decreasing and positive function such that

lim
δ→∞

ϕp(·),u(δ) = p+
u − p−u ,

where p+
u and p−u denote, respectively the essential supremum and infimum of p on

the support of u.

Definition 1.10.1. Let D be the class of all non–negative decreasing functions on

R+. Suppose that u is a measurable a.e. positive function (weight) on R+. We denote

by Lp(x)(u,R+) the class of all non–negative functions on R+ for which

Sp(f, u) =

∫
R+

|f(x)|p(x)u(x)dx <∞.

By the symbol L
p(x)
dec (u,R+) we mean the class Lp(x)(u,R+) ∩ D.
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Now we list the well-known results regarding the one-weight inequality for the

operator T. For the following statement we refer to [4].

Theorem 1.10.1. Let r be constant such that 0 < r <∞. Then the inequity

∞∫
0

u(x)(Tf(x))rdx ≤ C

∞∫
0

u(x)(f(x))rdx, f ∈ Lrdec(u,R+)

holds, if and only if there exists a positive constant C such that for all s > 0

∞∫
s

(
s

x

)r
u(x)dx ≤ C

s∫
0

u(x)dx. (1.10.1)

Condition (1.10.1) is called the Br condition and was introduced in [4].

Theorem 1.10.2 ([6]). Let u be a weight on (0,∞) and p : R+ −→ R+ such that

0 < p− ≤ p+ <∞, and assume that ϕp(·),u(δ) = 0. The following facts are equivalent:

(a) There exists a positive constant C such that for any positive and non-increasing

function f,
∞∫

0

(
Tf(x)

)p(x)
u(x)dx ≤ C

∞∫
0

(
f(x)

)p(x)
u(x)dx.

(b) For any r, s > 0,
∞∫
r

(
r

sx

)p(x)

u(x) ≤ C

r∫
0

u(x)

sp(x)
dx.

(c) p|supp u ≡ p0 a.e and u ∈ Bp0 .

Our result in this section is the following statement:

Proposition 1.10.3. Let u be a weight on (0,∞) and p : R+ −→ R+ such that

0 < p− ≤ p+ <∞. Assume that ϕp(·),u(δ) = 0. The following facts are equivalent:

(i) R̄α is bounded from L
p(x)
dec (u,R+) to Lp(x)(u,R+);

(ii) condition (b) of Theorem 1.10.2 holds;

(iii) condition (c) of Theorem 1.10.2 holds.
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Proof. In view of Theorem 1.10.2 it is enough to show that the following relation

concerning the operators R̄α and T holds:

R̄αf ≈ Tf, 0 < α < 1, f ∈ D.

Upper estimate. Represent R̄αf as follows:

R̄αf(x) =
1

xα

x/2∫
0

f(t)

(x− t)1−αdt+
1

xα

x∫
x/2

f(t)

(x− t)1−αdt = S1(x) + S2(x).

Observe that if t < x/2, then x/2 < x− t. Hence,

S1(x) ≤ c
1

x

x/2∫
0

f(t)dt ≤ cTf(x),

where the positive constant c does not depend on f and x. Using the fact that f is

non-increasing we find that

S2(x) ≤ cf(x/2) ≤ cTf(x).

The lower estimate follows immediately by using the fact that f is non-negative

and the obvious estimate x− t ≤ x where 0 < t < x.



Chapter 2

Integral Operators in Lp(x) Spaces
Defined on Spaces of Homogeneous
Type.

2.1 Introduction

In this chapter we study the two-weight problem for Hardy-type, maximal, poten-

tial and singular operators in Lebesgue spaces with non-standard growth defined on

quasi-metric measure spaces. In particular, we derive sufficient conditions for the

boundedness of these operators in weighted Lp(·) spaces which enable us effectively to

construct examples of appropriate weights. The conditions are simultaneously nec-

essary and sufficient for corresponding inequalities when the weights are of special

type and the exponent p of the space is constant(see, e.g.,[20]). We assume that the

exponent p satisfies local log-Hölder continuity condition and if the diameter of X is

infinite, then we suppose that p is constant outside some ball. In the framework of

variable exponent analysis such a condition first appeared in the paper [12], where

the author established the boundedness of the Hardy-Littlewood maximal operator

in Lp(·)(Rn). As far as we know, unfortunately, even in the unweighted case, an ana-

log of the log-Hölder condition (at infinity) for p : X → [1,∞) which is well-known

52
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and natural for the Euclidean spaces is not available. (see [9], [71], [7]). The local

log-Hölder continuity condition for the exponent p together with the log-Hölder decay

condition guarantees the boundedness of operators of harmonic analysis in Lp(·)(Rn)

spaces (see e.g., [10]).

It should be emphasized that in the classical Lebesgue spaces the two-weight

problem for fractional integrals is already solved (see [38], [36]) but it is often use-

ful to construct concrete examples of weights from transparent and easily verifiable

conditions.

Finally we mention that some examples of weights for appropriate two–weight

inequalities are given.

2.2 Preliminaries

Let X := (X, d, µ) be a topological space with a complete measure µ such that the

space of compactly supported continuous functions is dense in L1(X,µ) and there

exists a non-negative real-valued function (quasi-metric) d on X × X satisfying the

conditions:

(i) d(x, y) = 0 if and only if x = y;

(ii) there exists a constant a1 > 0, such that d(x, y) ≤ a1(d(x, z) + d(z, y)) for all

x, y, z ∈ X;

(iii) there exists a constant a0 > 0, such that d(x, y) ≤ a0d(y, x) for all x, y,∈ X.

We assume that the balls B(x, r) := {y ∈ X : d(x, y) < r} are measurable and

0 ≤ µ(B(x, r)) < ∞ for all x ∈ X and r > 0; for every neighborhood V of x ∈ X,

there exists r > 0, such that B(x, r) ⊂ V. Throughout the chapter we also suppose

that µ{x} = 0 and that

B(x,R) \B(x, r) 6= ∅ (2.2.1)
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for all x ∈ X, positive r and R with 0 < r < R < L, where

L := diam (X) = sup{d(x, y) : x, y ∈ X}.

We call the triple (X, d, µ) a quasi-metric measure space. If µ satisfies the doubling

condition

µ(B(x, 2r)) ≤ cµ(B(x, r)),

where the positive constant c does not depend on x ∈ X and r > 0, then (X, d, µ)

is called a space of homogeneous type (SHT). For the definition, examples and some

properties of an SHT see, e.g., the monographs [89], [8], [26].

A quasi-metric measure space, where the doubling condition is not assumed is

called a non-homogeneous space.

Notice that the condition L < ∞ implies that µ(X) < ∞ because we assumed

that every ball in X has a finite measure.

Definition 2.2.1. We say that the measure µ satisfies the doubling condition at the

point x0 (µ ∈ DC(x0)) if there are positive constants D and D1 (which might be

depended on x0) such that for all 0 < r < D1, the inequality

µ(B(x0, 2r)) ≤ Dµ(B(x0, r)),

holds.

Definition 2.2.2. We say that the measure µ is upper Ahlfors Q- regular if there is

a positive constant c1 such that µB(x, r) ≤ c1r
Q for for all x ∈ X and r ∈ (0, L).

Definition 2.2.3. We say that the measure µ is lower Ahlfors q− regular if there is

a positive constant c2 such that µB(x, r) ≥ c2r
q for all x ∈ X and r ∈ (0, L).

It is easy to check that if (X, d, µ) is a quasi-metric measure space and L < ∞,

then µ is lower Ahlfors regular (see also, e.g., [31] for the case when d is a metric).
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Despite the fact that the definitions and some properties of the variable exponent

Lebesgue spaces defined on Ω ⊆ Rn are given in Section 1.2, it would be convenient

for the reader to repeat them for quasi-metric measure spaces.

Let p be a non–negative µ− measurable function on X. Suppose that E is a µ−

measurable set in X. We use the following notation:

p−(E) := inf
E
p; p+(E) := sup

E
p; p− := p−(X); p+ := p+(X);

Bxy := B(x, d(x, y)); gB :=
1

µ(B)

∫
B

|g(x)|dµ(x);

kB(x, r) := B(x, kr);Bxy := B(x, d(x, y));

B(x, r) := {y ∈ X : d(x, y) ≤ r}.

Assume that 1 ≤ p− ≤ p+ < ∞. The variable exponent Lebesgue space Lp(·)(X)

(sometimes it is denoted by Lp(x)(X)) is the class of all µ-measurable functions f

on X for which Sp(f) :=
∫
X

|f(x)|p(x)dµ(x) < ∞. The norm in Lp(·)(X) is defined as

follows:

‖f‖Lp(·)(X) = inf{λ > 0 : Sp(f/λ) ≤ 1}.

We need some definitions for the exponent p which will be useful to derive the

main result.

Definition 2.2.4. Let (X, d, µ) be a quasi-metric measure space and let N ≥ 1 be

a constant. Suppose that p satisfy the condition 0 < p− ≤ p+ < ∞. We say that

p belongs to the class P(N, x), where x ∈ X, if there are positive constants b and c

(which might be depend on x) such that

µ(B(x,Nr))p−(B(x,r))−p+(B(x,r)) ≤ c (2.2.2)

holds for all r, 0 < r ≤ b. Further, p ∈ P(N) if there are a positive constants b and c

such that (2.2.2) holds for all x ∈ X and all r satisfying the condition 0 < r ≤ b.
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Definition 2.2.5. Let (X, d, µ) be an SHT . Suppose that 0 < p− ≤ p+ < ∞. We

say that p ∈ LH(X, x) ( p satisfies the log-Hölder- type condition at a point x ∈ X)

if there are positive constants b and c (which might be depend on x) such that

|p(x)− p(y)| ≤ c

− ln
(
µ(Bxy

)) (2.2.3)

holds for all y satisfying the condition d(x, y) ≤ b. Further, p ∈ LH(X) ( p satisfies

the log-Hölder type condition on X)if there are positive constants b and c such that

(2.2.3) holds for all x, y with d(x, y) ≤ b.

We shall also need another form of the log-Hölder continuity condition given by

the following definition:

Definition 2.2.6. Let (X, d, µ) be a quasi-metric measure space and let 0 < p− ≤

p+ < ∞. We say that p ∈ LH(X, x) if there are positive constants b and c (which

might be depended on x) such that

|p(x)− p(y)| ≤ c

− ln d(x, y)
(2.2.4)

for all y with d(x, y) ≤ b. Further, p ∈ LH(X) if (2.2.4) holds for all x, y with

d(x, y) ≤ b.

It is easy to see that if a measure µ is upper Ahlfors Q-regular and p ∈ LH(X)

(resp. p ∈ LH(X, x)), then p ∈ LH(X) (resp. p ∈ LH(X, x). Further, if µ is lower

Ahlfors q-regular and p ∈ LH(X) (resp. p ∈ LH(X, x)), then p ∈ LH(X) (resp.

p ∈ LH(X, x)).

Remark 2.2.1. It can be checked easily that if (X, d, µ) is an SHT, then µBx0x ≈

µBxx0 .

Remark 2.2.2. Let (X, d, µ) be an SHT with L <∞. It is known (see, e.g., [31], [41])

that if p ∈ LH(X), then p ∈ P(1). Further, if µ is upper Ahlfors Q-regular, then the

condition p ∈ P(1) implies that p ∈ LH(X).
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Proposition 2.2.1. Let c be a positive constant and let 1 < p−(X) ≤ p+(X) < ∞

and p ∈ LH(X) ( resp. p ∈ LH(X) ), then the functions cp(·), 1/p(·) and p′(·) belong

to LH(X) ( resp. LH(X) ). Further if p ∈ LH(X, x) (resp. p ∈ LH(X, x)) then

cp(·), 1/p(·) and p′(·) belong to LH(X, x) ( resp. p ∈ LH(X, x) ).

The proof of the latter statement can be checked immediately using the definitions

of the classes LH(X, x), LH(X), LH(X, x), LH(X).

Proposition 2.2.2. Let (X, d, µ) be an SHT and let p ∈ P(1). Then (µBxy)
p(x) ≤

c(µByx)
p(y) for all x, y ∈ X with µ(B(x, d(x, y))) ≤ b, where b is a small constant and

the constant c does not depend on x, y ∈ X.

Proof. Due to the doubling condition for µ, Remark 2.2.1, the condition p ∈ P(1)

and the fact x ∈ B(y, a1(a0 + 1)d(y, x)) we have the following estimates:

µ(Bxy)
p(x) ≤ µ

(
B(y, a1(a0+1)d(x, y))

)p(x)≤ cµB(y, a1(a0+1)d(x, y))p(y)≤ c(µByx)
p(y),

which proves the statement.

The proof of the next statement is trivial and follows directly from the definition

of the classes P(N, x) and P(N). Details are omitted.

Proposition 2.2.3. Let (X, d, µ) be a quasi-metric measure space and let x0 ∈ X.

Suppose that N ≥ 1 be a constant. Then the following statements hold:

(i) If p ∈ P(N, x0) (resp. p ∈ P(N)), then there are positive constants r0, c1

and c2 such that for all 0 < r ≤ r0 and all y ∈ B(x0, r) (resp. for all x0, y with

d(x0, y) < r ≤ r0), we have that

µ
(
B(x0, Nr)

)p(x0) ≤ c1µ
(
B(x0, Nr)

)p(y) ≤ c2µ
(
B(x0, Nr)

)p(x0)
.

(ii) Let p ∈ P(N, x0). Then there are positive constants r0, c1 and c2 (in general,

depending on x0) such that for all r (r ≤ r0) and all x, y ∈ B(x0, r) we have

µ
(
B(x0, Nr)

)p(x) ≤ c1µ
(
B(x0, Nr)

)p(y) ≤ c2µ
(
B(x0, Nr)

)p(x)
.
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(iii) Let p ∈ P(N). Then there are positive constants r0, c1 and c2 such that for

all balls B with radius r (r ≤ r0) and all x, y ∈ B, we have that

µ(NB)p(x) ≤ c1µ(NB)p(y) ≤ c2µ(NB)p(x).

It is known that (see, e.g., [57], [78]) if f is a measurable function on X and E is

a measurable subset of X, then the following inequalities hold:

‖f‖p+(E)

Lp(·)(E)
≤ Sp(fχE) ≤ ‖f‖p−(E)

Lp(·)(E)
, ‖f‖Lp(·)(E) ≤ 1;

‖f‖p−(E)

Lp(·)(E)
≤ Sp(fχE) ≤ ‖f‖p+(E)

Lp(·)(E)
, ‖f‖Lp(·)(E) > 1.

Further, Hölder’s inequality in the variable exponent Lebesgue spaces has the

following form:∫
E

fgdµ ≤
(

1/p−(E) + 1/(p′)−(E)
)
‖f‖Lp(·)(E)‖g‖Lp′(·)(E).

Lemma 2.2.4. Let (X, d, µ) be an SHT.

(i) If β is a measurable function on X such that β+ < −1 and if r is a small

positive number, then there exists a positive constant c independent of r and x such

that ∫
X\B(x0,r)

(µBx0y)
β(x)dµ(y) ≤ c

β(x) + 1

β(x)
µ(B(x0, r))

β(x)+1.

(ii) Suppose that p and α are measurable functions on X satisfying the conditions

1 < p− ≤ p+ <∞ and α− > 1/p−. Then there exists a positive constant c such that

for all x ∈ X the inequality∫
B(x0,2d(x0,x))

(
µB(x, d(x, y))

)(α(x)−1)p′(x)
dµ(y) ≤ c

(
µB(x0, d(x0, x))

)(α(x)−1)p′(x)+1
,

holds.
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Proof. Part (i) was proved in [41] (see also [20], p.372, for constant β). The proof of

Part (ii) is given in [20] (Lemma 6.5.2, p. 348) for constant α and p but repeating

those arguments we can see that it is also true for variable α and p. Details are

omitted.

Lemma 2.2.5. Let (X, d, µ) be an SHT . Suppose that 0 < p− ≤ p+ < ∞. Then p

satisfies the condition p ∈ P(1) (resp. p ∈ P(1, x)) if and only if p ∈ LH(X) ( resp.

p ∈ LH(X, x) ).

Proof. We follow [12]. Necessity. Let p ∈ P(1) and let x, y ∈ X with d(x, y) < c0 for

some positive constant c0. Observe that x, y ∈ B, where B := B(x, 2d(x, y)). By the

doubling condition for µ we have that

(
µBxy

)−|p(x)−p(y)| ≤ c
(
µB
)−|p(x)−p(y)| ≤ c

(
µB
)p−(B)−p+(B) ≤ C,

where C is a positive constant which is greater than 1. Taking now the logarithm

in the last inequality we have that p ∈ LH(X). If p ∈ P(1, x), then by the same

arguments we find that p ∈ LH(X, x).

Sufficiency. Let B := B(x0, r). First observe that If x, y ∈ B, then µBxy ≤

cµB(x0, r). Consequently, this inequality and the condition p ∈ LH(X) yield |p−(B)−

p+(B)| ≤ C

− ln
(
c0µB(x0,r)

) . Further, there exists r0 such that 0 < r0 < 1/2 and

c1 ≤
ln
(
µ(B)
)

− ln
(
c0µ(B)

) ≤ c2, 0 < r ≤ r0, where c1 and c2 are positive constants. Hence

(
µ(B)

)p−(B)−p+(B) ≤
(
µ(B)

) C

ln

(
c0µ(B)

)
= exp

(
C ln

(
µ(B)

)
ln
(
c0µ(B)

)) ≤ C.

Let now p ∈ LH(X, x) and let Bx := B(x, r) where r is a small number. We have that

p+(Bx) − p(x) ≤ c

− ln
(
c0µB(x,r)

) and p(x) − p−(Bx) ≤ c

− ln
(
c0µB(x,r)

) for some positive
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constant c0. Consequently,

(µ(Bx))
p−(Bx)−p+(Bx) =

(
µ(Bx)

)p(x)−p+(Bx)(
µ(Bx)

)p−(Bx)−p(x)

≤ c
(
µ(Bx)

) −2c
− ln(c0µBx)) ≤ C.

To present more results we need the following definition:

Definition 2.2.7. A measure µ on X is said to satisfy the reverse doubling condition

(µ ∈ RDC(X)) if there exist constants A > 1 and B > 1 such that the inequality

µ
(
B(a,Ar)

)
≥ Bµ

(
B(a, r)

)
holds.

Remark 2.2.3. It is known that if all annuli in X are not empty (i.e. condition (2.2.1)

holds), then µ ∈ DC(X) implies that µ ∈ RDC(X) (see, e.g., [89], p. 11, Lemma

20).

Lemma 2.2.6. Let (X, d, µ) be an SHT. Suppose that there is a point x0 ∈ X such

that p ∈ LH(X, x0). Let A be the constant defined in Definition 2.2.7. Then there

exist positive constants r0 and C ( which might depend on x0 ) such that for all r,

0 < r ≤ r0, the inequality

(µBA)p−(BA)−p+(BA) ≤ C

holds, where BA := B(x0, Ar) \B(x0, r) and the constant C is independent of r.

Proof. Taking into account condition (2.2.1) and Remark 2.2.3 we have that µ ∈

RDC(X). Let B := B(x0, r). By the doubling and reverse doubling conditions we

have that

µBA = µB(x0, Ar)− µB(x0, r) ≥ (B − 1)µB(x0, r) ≥ cµ(AB).
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Suppose that 0 < r < c0, where c0 is a sufficiently small constant. Then by using

Lemma 2.2.5 we find that

(
µBA

)p−(BA)−p+(BA) ≤ c
(
µ(AB)

)p−(BA)−p+(BA) ≤ c
(
µ(AB)

)p−(AB)−p+(AB) ≤ c.

In the sequel we will use the notation:

I1,k :=

 B(x0, A
k−1L/a1) if L <∞

B(x0, A
k−1/a1) if L =∞,

I2,k :=

 B(x0, A
k+2a1L) \B(x0, A

k−1L/a1) if L<∞
B(x0, A

k+2a1) \B(x0, A
k−1/a1) if L =∞,

I3,k :=

 X \B(x0, A
k+2La1) if L <∞

X \B(x0, A
k+2a1) if L =∞,

Ek :=

 B(x0, A
k+1L) \B(x0, A

kL) if L <∞
B(x0, A

k+1) \B(x0, A
k) if L =∞

,

where the constants A and a1 are taken respectively from Definition 2.2.7 and the

triangle inequality for the quasi-metric d, and L is the diameter of X.

Lemma 2.2.7. Let (X, d, µ) be an SHT and let 1 < p−(x) ≤ p(x) ≤ q(x) ≤ q+(X) <

∞. Suppose that there is a point x0 ∈ X such that p, q ∈ LH(X, x0). Assume that if

L = ∞, then p(x) ≡ pc ≡ const and q(x) ≡ qc ≡ const outside some ball B(x0, a).

Then there exists a positive constant C such that

∑
k

‖fχI2,k‖Lp(·)(X)‖gχI2,k‖Lq′(·)(X) ≤ C‖f‖Lp(·)(X)‖g‖Lq′(·)(X)

for all f ∈ Lp(·)(X) and g ∈ Lq′(·)(X).
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Proof. Suppose that L = ∞. To prove the lemma first observe that µ(Ek) ≈

µB(x0, A
k) and µ(I2,k) ≈ µB(x0, A

k−1). This holds because µ satisfies the reverse

doubling condition and, consequently,

µEk = µ
(
B(x0, A

k+1) \B(x0, A
k)
)

= µB(x0, A
k+1)− µB(x0, A

k)

= µB(x0, AA
k)− µB(x0, A

k) ≥ BµB(x0, A
k)− µB(x0, A

k) = (B − 1)µB(x0, A
k)

Moreover, the doubling condition yields µEk ≤ µB(x0, AA
k)≤ cµB(x0, A

k), where

c > 1. Hence, µEk ≈ µB(x0, A
k).

Further, since we can assume that a1 ≥ 1, we find that

µI2,k = µ
(
B(x0, A

k+2a1) \B(x0, A
k−1/a1)

)
= µB(x0, A

k+2a1)− µB(x0, A
k−1/a1)

= µB(x0, AA
k+1a1)− µB(x0, A

k−1/a1) ≥ BµB(x0, A
k+1a1)− µB(x0, A

k−1/a1)

≥ B2µB(x0, A
k/a1)− µB(x0, A

k−1/a1) ≥ B3µB(x0, A
k−1/a1)− µB(x0, A

k−1/a1)

= (B3 − 1)µB(x0, A
k−1/a1).

Moreover, using the doubling condition for µ we have that

µI2,k ≤ µB(x0, A
k+2r) ≤ cµB(x0, A

k+1r) ≤ c2µB(x0, A
k/a1) ≤ c3µB(x0, A

k−1/a1).

This gives the estimates

(B3 − 1)µB(x0, A
k−1/a1) ≤ µ(I2,k) ≤ c3µB(x0, A

k−1/a1).

For simplicity assume that a = 1. Suppose that m0 is an integer such that Am0−1

a1
> 1.

Let us split the sum as follows:∑
i

‖fχI2,i‖Lp(·)(X) · ‖gχI2,i‖Lq′(·)(X) =
∑
i≤m0

(
· · ·
)

+
∑
i>m0

(
· · ·
)

=: J1 + J2.

Since p(x) ≡ pc = const, q(x) = qc = const outside the ball B(x0, 1), by using

Hölder’s inequality and the fact that pc ≤ qc, we have

J2 =
∑
i>m0

‖fχI2,i‖Lpc (X) · ‖gχI2,i‖L(qc)′ (X) ≤ c‖f‖Lp(·)(X) · ‖g‖Lq′(·)(X).
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Let us estimate J1. Suppose that ‖f‖Lp(·)(X) ≤ 1 and ‖g‖Lq′(·)(X) ≤ 1. Also, by

Proposition 2.2.1 we have that 1/q′ ∈ LH(X, x0). Therefore by Lemma 2.2.6 and the

fact that 1/q′ ∈ LH(X, x0) we obtain that

µ
(
I2,k

) 1
q+(I2,k) ≈ ‖χI2,k‖Lq(·)(X) ≈ µ

(
I2,k

) 1
q−(I2,k)

and

µ
(
I2,k

) 1
q′+(I2,k) ≈ ‖χI2,k‖Lq′(·)(X) ≈ µ

(
I2,k

) 1
q′−(Ik) ,

where k ≤ m0. Further, observe that these estimates and Hölder’s inequality yield

the following chain of inequalities:

J1 ≤ c
∑
k≤m0

∫
B(x0,Am0+1)

‖fχI2,k‖Lp(·)(X) · ‖gχI2,k‖Lq′(·)(X)

‖χI2,k‖Lq(·)(X) · ‖χI2,k‖Lq′(·)(X)

χEk(x)dµ(x)

= c

∫
B(x0,Am0+1)

∑
k≤m0

‖fχI2,k‖Lp(·)(X) · ‖gχI2,k‖Lq′(·)(X)

‖χI2,k‖Lq(·)(X) · ‖χI2,k‖Lq′(·)(X)

χEk(x)dµ(x)

≤ c
∥∥∥ ∑
k≤m0

‖fχI2,k‖Lp(·)(X)

‖χI2,k‖Lq(·)(X)

χEk(x)
∥∥∥
Lq(·)(B(x0,Am0+1))

×
∥∥∥ ∑
k≤m0

‖gχI2,k‖Lq′(·)(X)

‖χI2,k‖Lq′(·)(X)

χEk(x)
∥∥∥
Lq
′(·)(B(x0,Am0+1))

=: cS1(f) · S2(g).

Now we claim that S1(f) ≤ cI(f), where

I(f) :=
∥∥∥ ∑
k≤m0

‖fχI2,k‖Lp(·)(X)

‖χI2k‖Lp(·)(X)

χEk(·)

∥∥∥
Lp(·)(B(x0,Am0+1))

and the positive constant c does not depend on f . Indeed, suppose that I(f) ≤ 1.

Then taking into account Lemma 2.2.6 we have that

∑
k≤m0

1

µ(I2,k)

∫
Ek

‖fχI2,k‖
p(x)

Lp(·)(X)
dµ(x)

≤ c

∫
B(x0,Am0+1)

( ∑
k≤m0

‖fχI2,k‖Lp(·)(X)

‖χI2,k‖Lp(·)(X)

χEk(x)

)p(x)

dµ(x) ≤ c.
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Consequently, since p(x) ≤ q(x), Ek ⊆ I2,k and ‖f‖Lp(·)(X) ≤ 1, we find that

∑
k≤m0

1

µ(I2,k)

∫
Ek

‖fχI2,k‖
q(x)

Lp(·)(X)
dµ(x) ≤

∑
k≤m0

1

µ(I2,k)

∫
Ek

‖fχI2,k‖
p(x)

Lp(·)(X)
dµ(x)≤c.

This implies that S1(f) ≤ c. Thus the desired inequality is proved. Further, let us

introduce the following function:

P(y) :=
∑
k≤2

p+(χI2,k)χEk(y).

It is clear that p(y) ≤ P(y) because Ek ⊂ I2,k. Hence

I(f) ≤ c
∥∥∥ ∑
k≤m0

‖fχI2,k‖Lp(·)(X)

‖χI2k‖Lp(·)(X)

χEk(·)

∥∥∥
LP(·)(B(x0,Am0+1))

for some positive constant c. Then by using this inequality, the definition of the

function P, the condition p ∈ LH(X) and the obvious estimate ‖χI2,k‖
p+(I2,k)

Lp(·)(X)
≥

cµ(I2,k), we find that

∫
B(x0,Am0+1)

( ∑
k≤m0

‖fχI2,k‖Lp(·)(X)

‖χI2,k‖Lp(·)(X)

χEk(x)

)P(x)

dµ(x)

=

∫
B(x0,Am0+1)

( ∑
k≤m0

‖fχI2,k‖
p+(I2,k)

Lp(·)(X)

‖χI2,k‖
p+(I2,k)

Lp(·)(X)

χEk(x)

)
dµ(x)

≤ c

∫
B(x0,Am0+1)

( ∑
k≤m0

‖fχI2,k‖
p+(I2,k)

Lp(·)(X)

µ(I2,k)
χEk(x)

)
dµ(x) ≤ c

∑
k≤m0

‖fχI2,k‖
p+(I2,k)

Lp(·)(X)

≤ c
∑
k≤m0

∫
I2,k

|f(x)|p(x)dµ(x) ≤ c

∫
X

|f(x)|p(x)dµ(x) ≤ c.

Consequently, I(f) ≤ c‖f‖Lp(·)(X). Hence, S1(f) ≤ c‖f‖Lp(·)(X). Analogously taking

into account the fact that q′ ∈ DL(X) and arguing as above we find that S2(g) ≤
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c‖g‖Lq′(·)(X). Thus summarizing these estimates we conclude that

∑
i≤m0

‖fχIi‖Lp(·)(X)‖gχIi‖Lq′(·)(X) ≤ c‖f‖Lp(·)(X)‖g‖Lq′(·)(X).

Lemma 2.2.7 for Lp(·)([0, 1]) spaces defined with respect to the Lebesgue measure

was derived in [55] (see also [24] for X = Rn, d(x, y) = |x− y| and dµ(x) = dx).

2.3 Hardy-type Transforms

This section is devoted to the sufficient conditions governing two-weight inequalities

for Hardy-type operators Tv,w, T
′
v,w defined on quasi-metric measure spaces,where

Tv,wf(x) = v(x)

∫
Bx0x

f(y)w(y)dµ(y)

and

T ′v,wf(x) = v(x)

∫
X\Bx0x

f(y)w(y)dµ(y).

Let a is a positive constant and let p be a measurable function defined on X. Let

us introduce the notation:

p0(x) := p−(Bx0x); p̃0(x) :=

 p0(x) if d(x0, x) ≤ a;

pc = const if d(x0, x) > a.

p1(x) := p−
(
B(x0, a) \Bx0x

)
; p̃1(x) :=

 p1(x) if d(x0, x) ≤ a;

pc = const if d(x0, x) > a.

Remark 2.3.1. If we deal with a quasi-metric measure space with L < ∞, then we

will assume that a = L. Obviously, p̃0 ≡ p0 and p̃1 ≡ p1 in this case.
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Theorem 2.3.1. Let (X, d, µ) be a quasi-metric measure space . Assume that p and

q are measurable functions on X satisfying the condition 1 < p− ≤ p̃0(x) ≤ q(x) ≤

q+ < ∞. In the case when L = ∞ suppose that p ≡ pc ≡ const, q ≡ qc ≡ const,

outside some ball B(x0, a). If the condition

A1 := sup
0≤t≤L

∫
t<d(x0,x)≤L

(
v(x)

)q(x)
( ∫
d(x0,x)≤t

w(p̃0)′(x)(y)dµ(y)

) q(x)

(p̃0)′(x)

dµ(x) <∞,

hold, then Tv,w is bounded from Lp(·)(X) to Lq(·)(X).

Proof. Here we use the arguments of the proofs of Theorem 1.1.4 in [20] (see p. 7)

and of Theorem 2.1 in [22]. First we notice that p− ≤ p0(x) ≤ p(x) for all x ∈ X.

Let f ≥ 0 and let Sp(f) ≤ 1. First assume that L <∞. We denote

I(s) :=

∫
d(x0,y)<s

f(y)w(y)dµ(y) for s ∈ [0, L].

Suppose that I(L) < ∞. Then I(L) ∈ (2m, 2m+1] for some m ∈ Z. Let us de-

note sj := sup{s : I(s) ≤ 2j}, j ≤ m, and sm+1 := L. Then
{
sj
}m+1

j=−∞ is a non-

decreasing sequence. It is easy to check that I(sj) ≤ 2j, I(s) > 2j for s > sj,

and 2j ≤
∫

sj≤d(x0,y)≤sj+1

f(y)w(y)dµ(y). If β := lim
j→−∞

sj, then d(x0, x) < L if and

only if d(x0, x) ∈ [0, β] ∪
m⋃

j=−∞
(sj, sj+1]. If I(L) = ∞ then we take m = ∞. Since

0 ≤ I(β) ≤ I(sj) ≤ 2j for every j, we have that I(β) = 0. It is obvious that

X =
⋃
j≤m
{x : sj < d(x0, x) ≤ sj+1}.

Further, we have that

Sq(Tv,wf) =

∫
X

(Tv,wf(x))q(x)dµ(x) =

∫
X

(
v(x)

∫
B(x0, d(x0,x))

f(y)w(y)dµ(y)

)q(x)

dµ(x)

=

∫
X

(v(x))q(x)

( ∫
B(x0, d(x0,x))

f(y)w(y)dµ(y)

)q(x)

dµ(x)
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≤
m∑

j=−∞

∫
sj<d(x0,x)≤sj+1

(
v(x)

)q(x)
( ∫

d(x0,y)<sj+1

f(y)w(y)dµ(y)

)q(x)

dµ(x).

Let us denote

Bj(x0) := {x ∈ X : sj−1 ≤ d(x0, x) ≤ sj}.

Notice that

I(sj+1) ≤ 2j+1 ≤ 4

∫
Bj(x0)

w(y)f(y)dµ(y).

Consequently, by this estimate and Hölder’s inequality with respect to the exponent

p0(x) we find that

Sq
(
Tv,wf

)
≤ c

m∑
j=−∞

∫
sj<d(x0,x)≤sj+1

(
v(x)

)q(x)
( ∫
Bj(x0)

f(y)w(y)dµ(y)

)q(x)

dµ(x)

≤ c
m∑

j=−∞

∫
sj<d(x0,x)≤sj+1

(
v(x)

)q(x)
Jk(x)dµ(x)

where

Jk(x) :=

( ∫
Bj(x0)

f(y)p0(x)dµ(y)

) q(x)
p0(x)

( ∫
Bj(x0)

w(y)(p0)′(x)dµ(y)

) q(x)

(p0)′(x)

.

Observe now that q(x) ≥ p0(x). Hence, this fact and the condition Sp(f) ≤ 1 imply

that

Jk(x) ≤ c

( ∫
Bj(x0)∩{y:f(y)≤1}

f(y)p0(x)dµ(y) +

∫
Bj(x0)∩{y:f(y)>1}

f(y)p(y)dµ(y)

) q(x)
p0(x)

×
( ∫
Bj(x0)

w(y)(p0)′(x)dµ(y)

) q(x)

(p0)′(x)

≤ c

(
µ
(
Bj(x0)

)
+

∫
Bj(x0)∩{y:f(y)>1}

f(y)p(y)dµ(y)

)( ∫
Bj(x0)

w(y)(p0)′(x)dµ(y)

) q(x)

(p0)′(x)

.
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It follows now that

Sq(Tv,wf) ≤ c

( m∑
j=−∞

µ
(
Bj(x0)

) ∫
sj<d(x0,x)≤sj+1

v(x)q(x)

×
( ∫
Bj(x0)

w(y)(p′0)(x)dµ(y)

) q(x)

(p0)′(x)

dµ(x) +
m∑

j=−∞

( ∫
Bj(x0)∩{y:f(y)>1}

f(y)p(y)dµ(y)

)

×
∫

sj<d(x0,x)≤sj+1

v(x)q(x)

( ∫
Bj(x0)

w(y)(p0)′(x)dµ(y)

) q(x)

(p0)′(x)

dµ(x)

)
=: c

(
N1 +N2

)
.

Since L <∞ it is obvious that

N1 ≤ A1

m+1∑
j=−∞

µ
(
Bj(x0)

)
≤ CA1

and

N2 ≤ A1

m+1∑
j=−∞

∫
Bj(x0)

f(y)p(y)dµ(y) ≤ C

∫
X

(
f(y)

)p(y)
dµ(y) = A1Sp(f) ≤ A1.

Finally Sq(Tv,wf) ≤ c
(
CA1 + A1

)
<∞. Thus Tv,w is bounded if A1 <∞.

Let us now suppose that L =∞. We have

Tv,wf(x) = χB(x0,a)(x)v(x)

∫
Bx0x

f(y)w(y)dµ(y)+χX\B(x0,a)(x)v(x)

∫
Bx0x

f(y)w(y)dµ(y)

=: T (1)
v,wf(x) + T (2)

v,wf(x).

By using already proved result for L <∞ and the fact that diam
(
B(x0, a)

)
<∞ we

find that

‖T (1)
v,wf‖Lq(·)

(
B(x0,a)

) ≤ c‖f‖
Lp(·)
(
B(x0,a)

) ≤ c,

because

A
(a)
1 := sup

0≤t≤a

∫
t<d(x0,x)≤a

(
v(x)

)q(x)
( ∫
d(x0,x)≤t

w(p0)′(x)(y)dµ(y)

) q(x)

(p0)′(x)

dµ(x) ≤ A1 <∞.
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Further, observe that

T (2)
v,wf(x)=χX\B(x0,a)(x)v(x)

∫
Bx0x

f(y)w(y)dµ(y) = χX\B(x0,a)(x)v(x)

∫
d(x0,y)≤a

f(y)w(y)dµ(y)

+χX\B(x0,a)(x)v(x)

∫
a≤d(x0,y)≤d(x0,x)

f(y)w(y)dµ(y) =: T (2,1)
v,w f(x) + T (2,2)

v,w f(x).

It is easy to see that (see also Theorem 1.1.3 or 1.1.4 of [20]) the condition

A
(a)

1 := sup
t≥a

( ∫
d(x0,x)≥t

(
v(x)

)qc
dµ(x)

) 1
qc
( ∫
a≤d(x0,y)≤t

w(y)(pc)′dµ(y)

) 1
(pc)′

<∞

guarantees the boundedness of the operator

Tv,wf(x) = v(x)

∫
a≤d(x0,y)<d(x0,x)

f(y)w(y)dµ(y)

from Lpc
(
X\B(x0, a)

)
to Lqc

(
X\B(x0, a)

)
. Thus T

(2,2)
v,w is bounded. It remains to

prove that T
(2,1)
v,w is bounded. We have

‖T (2,1)
v,w f‖Lp(·)(X) =

( ∫
(
B(x0,a)

)c v(x)qcdµ(x)

) 1
qc
( ∫
B(x0,a)

f(y)w(y)dµ(y)

)

≤

( ∫
(
B(x0,a)

)c v(x)qcdµ(x)

) 1
qc

‖f‖
Lp(·)
(
B(x0,a)

)‖w‖
Lp
′(·)
(
B(x0,a)

).
Observe now that the condition A1 <∞ guarantees that the integral∫

(
B(x0,a)

)c v(x)qcdµ(x)

is finite. Moreover, N := ‖w‖
Lp
′(·)
(
B(x0,a)

) <∞. Indeed, we have that

N ≤



( ∫
B(x0,a)

w(y)p
′(y)dµ(y)

) 1(
p−(B(x0,a))

)′
if ‖w‖Lp′(·)(B(x0,a)) ≤ 1,( ∫

B(x0,a)

w(y)p
′(y)dµ(y)

) 1(
p+(B(x0,a))

)′
if ‖w‖Lp′(·)(B(x0,a) > 1.
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Further,∫
B(x0,a)

w(y)p
′(y)dµ(y) =

∫
B(x0,a)∩{w≤1}

w(y)p
′(y)dµ(y) +

∫
B(x0,a)∩{w>1}

w(y)p
′(y)dµ(y) =: I1 + I2.

For I1, we have that I1 ≤ µ
(
B(x0, a)) < ∞. Since L = ∞ and condition (2.2.1)

holds, there exists a point y0 ∈ X such that a < d(x0, y0) < 2a. Consequently,

B(x0, a) ⊂ B(x0, d(x0, y0)) and p(y) ≥ p−
(
B(x0, d(x0, y0))

)
= p0(y0), where y ∈

B(x0, a). Consequently, the condition A1 <∞ yields I2 ≤
∫

B(x0,a)

w(y)(p0)′(y0)dy <∞.

Finally we have that ‖T (2,1)
v,w f‖Lp(·)(X) ≤ C. Hence, Tv,w is bounded from Lp(·)(X) to

Lq(·)(X).

The proof of the following statement is similar to that of Theorem 2.3.1; therefore

we omit it (see also the proofs of Theorem 1.1.3 in [20] and Theorems 2.6 and 2.7 in

[22] for similar arguments).

Theorem 2.3.2. Let (X, d, µ) be a quasi-metric measure space . Assume that p and

q are measurable functions on X satisfying the condition 1 < p− ≤ p̃1(x) ≤ q(x) ≤

q+ <∞. If L =∞, then we assume that p ≡ pc ≡ const, q ≡ qc ≡ const outside some

ball B(x0, a). If

B1 := sup
0≤t≤L

∫
d(x0,x)≤t

(
v(x)

)q(x)
( ∫
t≤d(x0,x)≤L

w(p̃1)′(x)(y)dµ(y)

) q(x)

(p̃1)′(x)

dµ(x) <∞,

then T ′v,w is bounded from Lp(·)(X) toLq(·)(X).

Remark 2.3.2. If p ≡ const and q ≡ const, then the condition A1 < ∞ in Theorem

2.3.1 (resp. B1 <∞ in Theorem 2.3.2) is also necessary for the boundedness of Tv,w

(resp. T ′v,w) from Lp(·)(X) to Lq(·)(X). See [20], pp.4-5, for the details.
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2.4 Potentials

In this section we discuss two-weight problem for the potential operators

Tα(·)f(x) =

∫
X

f(y)

µ(B(x, d(x, y)))1−α(x)
dµ(y), x ∈ X, 0 < α− ≤ α+ < 1,

and

Iα(·)f(x) =

∫
X

f(y)

d(x, y)1−α(x)
dµ(y), 0 < α− ≤ α+ < 1

on quasi-metric measure spaces, where 0 < α− ≤ α+ < 1. If α ≡ const, then we

denote Tα(·) and Iα(·) by Tα and Iα respectively.

The boundedness of the Riesz potential operators in Lp(·)(Ω) spaces, where Ω is a

domain in Rn was established in [13], [79], [10], [7].

The following result was obtained in [53]:

Theorem 2.4.1. Let (X, d, µ) be an SHT. Suppose that 1 < p− ≤ p+ < ∞ and

p ∈ P(1). Assume that if L = ∞, then p ≡ const outside some ball. Let α be a

constant satisfying the condition 0 < α < 1/p+. We set q(x) = p(x)
1−αp(x)

. Then Tα is

bounded in Lp(·)(X).

Theorem 2.4.2 ([42]). Let (X, d, µ) be a non-homogeneous space with L < ∞ and

let N be a constant defined by N = a1(1 + 2a0), where the constants a0 and a1 are

taken from the definition of the quasi-metric d. Suppose that 1 < p− < p+ < ∞,

p, α ∈ P(N) and that µ is upper Ahlfors 1-regular. We define q(x) = p(x)
1−α(x)p(x)

,

where 0 < α− ≤ α+ < 1/p+. Then Iα(·) is bounded from Lp(·)(X) to Lq(·)(X).

For the statements and their proofs of this section we keep the notation of the
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previous sections and, in addition, introduce the new notation:

v(1)
α (x) := v(x)(µBx0x)

α−1, w(1)
α (x) := w−1(x); v(2)

α (x) := v(x);

w(2)
α (x) := w−1(x)(µBx0x)

α−1;

Fx :=

 {y ∈ X : d(x0,y)L
A2a1

≤ d(x0, y) ≤ A2La1d(x0, x)}, if L <∞

{y ∈ X : d(x0,y)
A2a1

≤ d(x0, y) ≤ A2a1d(x0, x)}, if L =∞,
,

where A and a1 are constants defined in Definition 2.2.7 and the triangle inequality

for d respectively.

The following are the main results in this section:

Theorem 2.4.3. Let (X, d, µ) be an SHT without atoms. Suppose that 1 < p− ≤

p+ < ∞ and α is a constant satisfying the condition 0 < α < 1/p+. Let p ∈ P(1).

We set q(x) = p(x)
1−αp(x)

. Further, if L = ∞, then we assume that p ≡ pc ≡ const

outside some ball B(x0, a). Then the inequality

‖v(Tαf)‖Lq(·)(X) ≤ c‖wf‖Lp(·)(X) (2.4.1)

holds if the following three conditions are satisfied:

(a) T
v

(1)
α ,w

(1)
α

is bounded from Lp(·)(X) to Lq(·)(X) ;

(b) T
v

(2)
α ,w

(2)
α

is bounded from Lp(·)(X) to Lq(·)(X);

(c) there is a positive constant b such that one of the following inequality holds:

(1) v+(Fx) ≤ bw(x) for µ− a.e.x ∈ X; (2) v(x) ≤ bw−(Fx) for µ− a.e.x ∈ X.

Proof. For simplicity suppose that L < ∞. The proof for the case L = ∞ is similar

to that of the previous case. Recall that the sets Ii,k, i = 1, 2, 3 and Ek are defined

in Section 2.2. Let f ≥ 0 and let ‖g‖Lq′(·)(X) ≤ 1.
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We have∫
X

(Tαf)(x)g(x)v(x)dµ(x) =
0∑

k=−∞

∫
Ek

(Tαf)(x)g(x)v(x)dµ(x)

≤
0∑

k=−∞

∫
Ek

(Tαf1,k)(x)g(x)v(x)dµ(x) +
0∑

k=−∞

∫
Ek

(Tαf2,k)(x)g(x)v(x)dµ(x)

+
0∑

k=−∞

∫
Ek

(Tαf3,k)(x)g(x)v(x)dµ(x) =: S1 + S2 + S3,

where f1,k = f · χI1,k , f2,k = f · χI2,k , f3,k = f · χI3,k . Observe that if x ∈ Ek and

y ∈ I1,k, then d(x0, y) ≤ d(x0, x)/Aa1. Consequently, the triangle inequality for d

yields d(x0, x) ≤ A′a1a0d(x, y), where A′ = A/(A− 1). Hence, by using Remark 2.2.1

we find that µ(Bx0x) ≤ cµ(Bxy). Applying now condition (a) we have that

S1 ≤ c

∥∥∥∥(µBx0x

)α−1
v(x)

∫
Bx0x

f(y)dµ(y)

∥∥∥∥
Lq(x)(X)

‖g‖Lq′(·)(X) ≤ c‖f‖Lp(·)(X).

Further, observe that if x ∈ Ek and y ∈ I3,k, then µ
(
Bx0y

)
≤ cµ

(
Bxy

)
. By condition

(b) we find that S3 ≤ c‖f‖Lp(·)(X).

Now we estimate S2. Suppose that v+(Fx) ≤ bw(x). Theorem 2.4.1 and Lemma 2.2.7

yield

S2 ≤
∑
k

‖
(
Tαf2,k

)
(·)χEk(·)v(·)‖Lq(·)(X)‖gχEk(·)‖Lq′(·)(X)

≤
∑
k

(
v+(Ek)

)
‖(Tαf2,k)(·)‖Lq(·)(X)‖g(·)χEk(·)‖Lq′(·)(X)

≤ c
∑
k

(
v+(Ek)

)
‖f2,k‖Lp(·)(X)‖g(·)χEk(·)‖Lq′(·)(X)

≤ c
∑
k

‖f2,k(·)w(·)χI2,k(·)‖Lp(·)(X)‖g(·)χEk(·)‖Lq′(·)(X)

≤ c‖f(·)w(·)‖Lp(·)(X)‖g(·)‖Lq′(·)(X) ≤ c‖f(·)w(·)‖Lp(·)(X).

The estimate of S2 for the case when v(x) ≤ bw−(Fx) is similar to that of the previous

one. Details are omitted.
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Theorems 2.4.3, 2.3.1 and 2.3.2 imply the following statement:

Theorem 2.4.4. Let (X, d, µ) be an SHT. Suppose that 1 < p− ≤ p+ <∞ and α is a

constant satisfying the condition 0 < α < 1/p+. Let p ∈ P(1). We set q(x) = p(x)
1−αp(x)

.

If L = ∞, then we suppose that p ≡ pc ≡ const outside some ball B(x0, a). Then

inequality (2.4.1) holds if the following three conditions are satisfied:

(i) P1 := sup
0<t≤L

∫
t<d(x0,x)≤L

(
v(x)(

µ(Bx0x)
)1−α

)q(x)( ∫
d(x0,y)≤t

w−(p̃0)′(x)(y)dµ(y)

) q(x)

(p̃0)′(x)

dµ(x)<∞;

(ii) P2 :=sup
0<t≤L

∫
d(x0,x)≤t

(
v(x)

)q(x)
( ∫

t<d(x0,y)≤L

(
w(y)

(
µBx0y

)1−α
)−(p̃1)′(x)

dµ(y)

) q(x)

(p̃1)′(x)

dµ(x)<∞,

(iii) condition (c) of Theorem 2.4.3 holds.

Remark 2.4.1. If p = pc ≡ const on X, then the conditions Pi <∞, i = 1, 2, are neces-

sary for (2.4.1). Necessity of the condition P1 <∞ follows by taking the test function

f = w−(pc)′χB(x0,t) in (2.4.1) and observing that µBxy ≤ cµBx0x for those x and y

which satisfy the conditions d(x0, x) ≥ t and d(x0, y) ≤ t (see also [20], Theorem 6.6.1,

p. 418 for the similar arguments), while necessity of the condition P2 <∞ can be de-

rived by choosing the test function f(x) = w−(pc)′(x)χX\B(x0,t)(x)
(
µBx0x

)(α−1)((pc)′−1)

and taking into account the estimate µBxy ≤ µBx0y for d(x0, x) ≤ t and d(x0, y) ≥ t.

The next statement follows in the same manner as the previous one. In this case

Theorem 2.4.2 is used instead of Theorem 2.4.1. The proof is omitted.

Theorem 2.4.5. Let (X, d, µ) be a non-homogeneous space with L <∞. Let N be a

constant defined by N = a1(1 + 2a0). Suppose that 1 < p− ≤ p+ < ∞, p, α ∈ P(N)

and that µ is upper Ahlfors 1-regular. We define q(x) = p(x)
1−α(x)p(x)

, where 0 < α− ≤

α+ < 1/p+. Then the inequality

‖v(·)(Iα(·)f)(·)‖Lq(·)(X) ≤ c‖w(·)f(·)‖Lp(·)(X) (2.4.2)
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holds if

(i) sup
0≤t≤L

∫
t<d(x0,x)≤L

(
v(x)(

d(x0, x)
)1−α(x)

)q(x)( ∫
B(x0,t)

w−(p0)′(x)(y)dµ(y)

) q(x)

(p0)′(x)

dµ(x)<∞;

(ii) sup
0≤t≤L

∫
B(x0,t)

(
v(x)

)q(x)
( ∫
t<d(x0,y)≤L

(
w(y)d(x0, y)1−α(y)

)−(p1)′(x)
dµ(y)

) q(x)

(p1)′(x)

dµ(x)<∞,

(iii) condition (c) of Theorem 2.4.3 is satisfied.

Remark 2.4.2. It is easy to check that if p and α are constants, then conditions (i) and

(ii) in Theorem 2.4.5 are also necessary for (2.4.2). This follows easily by choosing

appropriate test functions in (2.4.2) (see also Remark 2.4.1)

Theorem 2.4.6. Let (X, d, µ) be an SHT without atoms. Let 1 < p− ≤ p+ <∞ and

let α be a constant with the condition 0 < α < 1/p+. We set q(x) = p(x)
1−αp(x)

. Assume

that p has a minimum at x0 and that p ∈ LH(X). Suppose also that if L =∞, then

p is constant outside some ball B(x0, a). Let v and w be positive increasing functions

on (0, 2L). Then the inequality

‖v(d(x0, ·))(Tαf)(·)‖Lq(·)(X) ≤ c‖w(d(x0, ·))f(·)‖Lp(·)(X) (2.4.3)

holds if

I1 := sup
0<t≤L

∫
t<d(x0,x)≤L

(
v(d(x0, x))(
µ(Bx0x)

)1−α

)q(x)(∫
d(x0,y)≤t

w−(p̃0)′(x)(d(x0, y))dµ(y)

) q(x)

(p̃0)′(x)

dµ(x) <∞

for L =∞;

J1:= sup
0<t≤L

∫
t<d(x0,x)≤L

(
v(d(x0, x))(
µ(Bx0x)

)1−α

)q(x)(∫
d(x0,y)≤t

w−p
′(x0)(d(x0, y))dµ(y)

) q(x)

p′(x0)

dµ(x)<∞

for L <∞.



76

Proof. We prove the theorem for L = ∞. The proof for the case when L < ∞ is

similar. Observe that by Lemma 2.2.5 the condition p ∈ LH(X) implies p ∈ P(1).

We will show that the condition I1 < ∞ implies the inequality v(A2a1t)
w(t)

≤ C for all

t > 0, where A and a1 are constants defined in Definition 2.2.7 and the triangle

inequality for d respectively. Indeed, let us assume that t ≤ b1, where b1 is a small

positive constant. Then, taking into account the monotonicity of v and w, and the

facts that p̃0(x) = p0(x) (for small d(x0, x)) and µ ∈ RDC(X), we have

I1(t) ≥
∫

A2a1t≤d(x0,x)<A3a1t

(
v(A2a1t)

w(t)

)q(x)(
µB(x0, t)

)(α−1/p0(x))q(x)
dµ(x)

≥
(
v(A2a1t)

w(t)

)q− ∫
A2a1t≤d(x0,x)<A3a1t

(
µB(x0, t)

)(α−1/p0(x))q(x)
dµ(x) ≥ c

(
v(A2a1t)

w(t)

)q−
.

Hence, c := lim
t→0

v(A2a1t)
w(t)

<∞. Further, if t > b2, where b2 is a large number, then since

p and q are constants, for d(x0, x) > t, we have that

I1(t) ≥
( ∫
A2a1t≤d(x0,x)<A3a1t

v(d(x0, x))qc
(
µB(x0, t)

)(α−1)qc
dµ(x)

)

×
( ∫
B(x0,t)

w−(pc)′(x)dµ(x)

)qc/(pc)′
dµ(x)

≥ C

(
v(A2a1t)

w(t)

)qc ∫
A2a1t≤d(x0,x)<A3a1t

(
µB(x0, t)

)(α−1/pc)qc
dµ(x) ≥ c

(
v(A2a1t)

w(t)

)qc
.

In the last inequality we used the fact that µ satisfies the reverse doubling condition.

Now we show that the condition I1 <∞ implies

sup
t>0

I2(t) := sup
t>0

∫
d(x0,x)≤t

(v(d(x0, x)))q(x)

( ∫
d(x0,y)>t

w−(p̃1)′(x)(d(x0, y))

×
(
µ(Bx0y)

)(α−1)(p̃1)′(x)
dµ(y)

) q(x)

(p̃1)′(x)

dµ(x) <∞.
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Due to monotonicity of functions v and w, the condition p ∈ LH(X), Proposition

2.2.1, Lemma 2.2.4, Lemma 2.2.5 and the assumption that p has a minimum at x0,

we find that for all t > 0,

I2(t) ≤
∫

d(x0,x)≤t

( v(t)

w(t)

)q(x)(
µ
(
B(x0, t)

))(α−1/p(x0))q(x)

dµ(x)

≤ c

∫
d(x0,x)≤t

( v(t)

w(t)

)q(x)(
µ
(
B(x0, t)

))(α−1/p(x0)
)
q(x0)

dµ(x)

≤ c

( ∫
d(x0,x)≤t

(v(A2a1t)

w(t)

)q(x)

dµ(x)

)(
µ
(
B(x0, t)

))−1

≤ C.

Now Theorem 2.4.4 completes the proof.

Theorem 2.4.7. Let (X, d, µ) be an SHT with L <∞. Suppose that p, q and α are

measurable functions on X satisfying the conditions: 1 < p− ≤ p(x) ≤ q(x) ≤ q+ <∞

and 1/p− < α− ≤ α+ < 1. Assume that α ∈ LH(X) and there is a point x0 ∈ X

such that p, q ∈ LH(X, x0). Suppose also that w is a positive increasing function on

(0, 2L).Then the inequality

‖
(
Tα(·)f

)
v‖Lq(·)(X) ≤ c‖w(d(x0, ·))f(·)‖Lp(·)(X)

holds if the following two conditions are satisfied:

Ĩ1 := sup
0<t≤L

∫
t≤d(x0,x)≤L

(
v(x)(

µBx0x

)1−α(x)

)q(x)

×
( ∫
d(x0,x)≤t

w−(p0)′(x)(d(x0, y))dµ(y)
) q(x)

(p0)′(x)
dµ(x) <∞;

Ĩ2 := sup
0<t≤L

∫
d(x0,x)≤t

(
v(x)

)q(x)
( ∫
t≤d(x0,x)≤L

(
w(d(x0, y))

×
(
µBx0y

)1−α(x)
)−(p1)′(x)

dµ(y)

) q(x)

(p1)′(x)

dµ(x) <∞.
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Proof. For simplicity assume that L = 1. First observe that by Lemma 2.2.5 we have

p, q ∈ P(1, x0) and α ∈ P(1). Suppose that f ≥ 0 and Sp
(
w(d(x0, ·))f(·)

)
≤ 1. We

will show that Sq
(
v(Tα(·)f)

)
≤ C.

We have

Sq
(
vTα(·)f

)
≤ Cq

[ ∫
X

(
v(x)

∫
d(x0,y)≤d(x0,x)/(2a1)

f(y)
(
µBxy

)α(x)−1
dµ(y)

)q(x)

dµ(x)

+

∫
X

(
v(x)

∫
d(x0,x)/(2a1)≤d(x0,y)≤2a1d(x0,x)

f(y)
(
µBxy

)α(x)−1
dµ(y)

)q(x)

dµ(x)

+

∫
X

(
v(x)

∫
d(x0,y)≥2a1d(x0,x)

f(y)
(
µBxy

)α(x)−1
dµ(y)

)q(x)

dµ(x)

]
=: Cq[I1 + I2 + I3].

First observe that by virtue of the doubling condition for µ, Remark 2.2.1 and simple

calculation we find that µ
(
Bx0x

)
≤ cµ

(
Bxy

)
. Taking into account this estimate and

Theorem 2.3.1 we have that

I1 ≤ c

∫
X

(
v(x)(

µBx0x

)1−α(x)

∫
d(x0,y)<d(x0,x)

f(y)dµ(y)

)q(x)

dµ(x) ≤ C.

Further, it is easy to see that if d(x0, y) ≥ 2a1d(x0, x), then the triangle inequality

for d and the doubling condition for µ yield that µBx0y ≤ cµBxy. Hence due to

Proposition 2.2.2 we see that

(
µBx0y

)α(x)−1 ≥ c
(
µBxy

)α(y)−1

for such x and y. Therefore, Theorem 2.3.2 implies that I3 ≤ C.

It remains to estimate I2. Let us denote:

E(1)(x) :=Bx0x \B
(
x0, d(x0, x)/(2a1)

)
; E(2)(x) := B

(
x0, 2a1d(x0, x)

)
\Bx0x.
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Then we have that

I2 ≤ C

[ ∫
X

[
v(x)

∫
E(1)(x)

f(y)
(
µBxy

)α(x)−1
dµ(y)

]q(x)

dµ(x)

+

∫
X

[
v(x)

∫
E(2)(x)

f(y)
(
µBxy

)α(x)−1
dµ(y)

]q(x)

dµ(x)

]
=: c[I21 + I22].

Using Hölder’s inequality for the classical Lebesgue spaces we find that

I21 ≤
∫
X

vq(x)(x)

( ∫
E(1)(x)

wp0(x)(d(x0, y))(f(y))p0(x)dµ(y)

)q(x)/p0(x)

×
( ∫
E(1)(x)

w−(p0)′(x)(d(x0, y))
(
µBxy

)(α(x)−1)(p0)′(x)
dµ(y)

)q(x)/(p0)′(x)

dµ(x).

Denote the first inner integral by J (1) and the second one by J (2).

By using the fact that p0(x) ≤ p(y), where y ∈ E(1)(x), we see that

J (1) ≤ µ(Bx0x) +

∫
E(1)(x)

(f(y))p(y)
(
w(d(x0, y))

)p(y)
dµ(y),

while by applying Lemma 2.2.4, for J (2), we have that

J (2) ≤ cw−(p0)′(x)
(d(x0, x)

2a1

) ∫
E(1)(x)

(
µBxy

)(α(x)−1)(p0)′(x)

dµ(y)

≤ cw−(p0)′(x)
(d(x0, x)

2a1

)(
µBx0x

)(α(x)−1)(p0)′(x)+1

.

Summarizing these estimates for J (1) and J (2) we conclude that

I21 ≤
∫
X

vq(x)(x)
(
µBx0x

)q(x)α(x)
w−q(x)

(d(x0, x)

2a1

)
dµ(x) +

∫
X

vq(x)(x)

×
( ∫
E(1)(x)

wp(y)(d(x0, y))(f(y))p(y)dµ(y)

)q(x)/p0(x)(
µBx0x

)q(x)(α(x)−1/p0(x))

× w−q(x)
(d(x0, x)

2a1

)
dµ(x) =: I

(1)
21 + I

(2)
21 .
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By applying monotonicity of w, the reverse doubling property for µ with the constants

A and B (see Remark 2.2.3), and the condition Ĩ1 <∞ we have that

I
(1)
21 ≤ c

0∑
k=−∞

∫
B(x0,Ak)\B(x0,Ak−1)

v(x)q(x)

( ∫
B
(
x0,

Ak−1

2a1

)w−(p0)′(x)(d(x0, y))dµ(y)

) q(x)

(p0)′(x)

×
(
µBx0,x

) q(x)
p0(x)

+(α(x)−1)q(x)
dµ(x) ≤ c

0∑
k=−∞

(
µB(x0, A

k)
)q−/p+

×
∫

B(x0,Ak)\B(x0,Ak−1)

v(x)q(x)

( ∫
B
(
x0,Ak

)w−(p0)′(x)(d(x0, y))dµ(y)

) q(x)

(p0)′(x)

×
(
µBx0,x

)q(x)(α(x)−1)
dµ(x) ≤ c

0∑
k=−∞

(
µB̄(x0, A

k) \B(x0, A
k−1)

)q−/p+

≤ c
0∑

k=−∞

∫
µB̄(x0,Ak)\B(x0,Ak−1)

(
µBx0,x

)q−/p+−1
dµ(y) ≤ c

∫
X

(
µBx0,x

)q−/p+−1
dµ(y) <∞.

Due to the facts that q(x) ≥ p0(x), Sp
(
w
(
d(x0, ·)f(·)

))
≤ 1, Ĩ1 < ∞ and w is

increasing, for I
(2)
21 , we find that

I
(2)
21 ≤ c

0∑
k=−∞

( ∫
µB̄(x0,Ak+1a1)\B(x0,Ak−2)

wp(y)(d(x0, y))(f(y))p(y)dµ(y)

)

×
( ∫
µB̄(x0,Ak)\B(x0,Ak−1)

vq(x)(x)

( ∫
B(x0,Ak−1)

w−(p0)′(x)(d(x0, y))dµ(y)

) q(x)

(p0)′(x)

×
(
µBx0,x

)(α(x)−1)q(x)
dµ(x)

)
≤ cSp(f(·)w(d(x0, ·)) ≤ c.

Analogously, it follows the estimate for I22. In this case we use the condition Ĩ2 <∞

and the fact that p1(x) ≤ p(y) when d(x0, x) ≤ d(x0, y) < 2a1d(x0, x). The details

are omitted. The theorem is proved.

Taking into account the proof of Theorem 2.4.7 we can easily derive the following

statement the proof of which is omitted:
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Theorem 2.4.8. Let (X, d, µ) be an SHT with L <∞. Suppose that p, q and α are

measurable functions on X satisfying the conditions 1 < p− ≤ p(x) ≤ q(x) ≤ q+ <∞

and 1/p− < α− ≤ α+ < 1. Assume that α ∈ LH(X). Suppose also that there is a

point x0 such that p, q ∈ LH(X, x0) and p has a minimum at x0. Let v and w be

positive increasing function on (0, 2L) satisfying the condition J1 <∞ ( see Theorem

2.4.6 ). Then inequality (2.4.3) is fulfilled.

Theorem 2.4.9. Let (X, d, µ) be an SHT with L < ∞ and let µ be upper Ahlfors

1-regular. Suppose that 1 < p− ≤ p+ < ∞ and that p ∈ LH(X). Let p have a

minimum at x0. Assume that α is constant satisfying the condition α < 1/p+. We

set q(x) = p(x)
1−αp(x)

. If v and w are positive increasing functions on (0, 2L) satisfying

the condition

E := sup
0≤t≤L

∫
t<d(x0,x)≤L

(
v(d(x0, x))(
d(x0, x)

)1−α

)q(x)( ∫
d(x0,x)≤t

w−(p0)′(x)(y)dµ(y)

) q(x)

(p0)′(x)

dµ(x) <∞,

then the inequality

‖v
(
d(x0, ·)

)
(Iαf)(·)‖Lq(·)(X) ≤ c‖w

(
d(x0, ·)

)
f(·)‖Lp(·)(X)

holds.

Proof. The proof is similar to that of Theorem 2.4.6. We only discuss some details.

First observe that due to Remark 2.2.2 we have that p ∈ P(N), where N = a1(1+2a0).

It is easy to check that the condition E <∞ implies that v(A2a1t)
w(t)

≤ C for all t, where

the constant A is defined in Definition 2.2.7 and a1 is from the triangle inequality

for d. Further, Lemmas 2.2.4, 2.2.5, the fact that p has a minimum at x0 and the

inequality ∫
d(x0,y)>t

(
d(x0, y)

)(α−1)(p1)′(x)
dµ(y) ≤ ct(α−1)(p1)′(x)+1,
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where the constant c does not depend on t and x, yield that

sup
0≤t≤L

∫
d(x0,x)≤t

(v(d(x0, x)))q(x)

( ∫
d(x0,y)>t

(
w(d(x0, y))(
d(x0, y)

)1−α

)−(p1)′(x)

dµ(y)

) q(x)

(p1)′(x)

dµ(x) <∞.

Theorem 2.4.5 completes the proof.

Example 2.4.10. Let v(t) = tγ and w(t) = tβ, where γ and β are constants satisfying

the condition 0 ≤ β < 1/(p−)′, γ ≥ max{0, 1 − α − 1
q+
− q−

q+
(−β + 1

(p−)′
)}. Then

(v, w) satisfies the conditions of Theorem 2.4.6.

2.5 Maximal and Singular Operators

In this section we deal with weighted estimates for the maximal and singular operators

defined on X:

Mf(x) := sup
x∈X,r>0

1

µ(B(x, r))

∫
B(x,r)

|f(y)|dµ(y)

and

Kf(x) = p.v.

∫
X

k(x, y)f(y)dµ(y),

where k : X × X \ {(x, x) : x ∈ X} → R be a measurable function satisfying the

conditions:

|k(x, y)| ≤ c

µB(x, d(x, y))
, x, y ∈ X, x 6= y;

|k(x1, y)− k(x2, y)|+ |k(y, x1)− k(y, x2)| ≤ cω
(d(x2, x1)

d(x2, y)

) 1

µB(x2, d(x2, y))

for all x1, x2 and y with d(x2, y) ≥ cd(x2, x1), where ω is a positive non-decreasing

function on (0,∞) which satisfies the ∆2 condition: ω(2t) ≤ cω(t) (t > 0); and the

Dini condition:
1∫
0

(
ω(t)/t

)
dt <∞.
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We also assume that for some constant s, 1 < s <∞, and all f ∈ Ls(X) the limit

Kf(x) exists almost everywhere on X and that K is bounded in Ls(X).

It is known (see, e.g., [29]) that if r is constant such that 1 < r <∞, (X, d, µ) is

an SHT and the weight function w ∈ Ar(X), i.e.

sup
B

(
1

µ(B)

∫
B

w(x)dµ(x)

)(
1

µ(B)

∫
B

w1−r′(x)dµ(x)

)r−1

<∞,

where the supremum is taken over all balls B in X, then the one-weight inequality

‖w1/rKf‖Lr(X) ≤ c‖w1/rf‖Lr(X) holds.

The boundedness of Calderón-Zygmund operators in Lp(·)(Rn) was establish in

[14].

Theorem 2.5.1 ([50]). Let 1 < p− ≤ p+ <∞ and let (X, d, µ) be an SHT. Suppose

that p ∈ P(1). Then the singular operator K is bounded in Lp(·)(X).

The next statement for metric measure spaces was proved in [31] (see also [41],

[42] for quasi-metric measure spaces).

Theorem 2.5.2. Let (X, d, µ) be an SHT and let µ(X) < ∞. Suppose that 1 <

p− ≤ p+ <∞ and p ∈ P(1). Then M is bounded in Lp(·)(X).

To prove the next theorem we need the following lemma which can be found in

[12] for Euclidian spaces and in [41] for quasi-metric measure spaces.

Lemma 2.5.3. Let 1 ≤ q− ≤ q+ <∞. Suppose that q ∈ P(1). Let µ(X) <∞.Then

there is a positive constant c depend on X such that

(Mf(x))q(x) ≤ c[M(|f |q(·))(x) + 1]

for all x ∈ X.

The next statement was given in the paper by M. Khabazi [34]:
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Theorem 2.5.4. Let (X, d, µ) be an SHT and let L = ∞. Suppose that 1 < p− ≤

p+ <∞ and p ∈ P(1). Suppose also that p = pc = const outside a ball B := B(x0, R)

for x0 ∈ X and r > 0. Then M is bounded in Lp(·)(X).

Before formulating the the next result we introduce the notation:

v(x) :=
v(x)

µ(Bx0x)
, w̃(x) :=

1

w(x)
, w̃1(x) :=

1

w(x)µ(Bx0x)
.

Theorem 2.5.5. Let (X, d, µ) be an SHT and let 1 < p− ≤ p+ < ∞. Suppose that

p ∈ LH(X). If L =∞, then we assume that p is constant outside a ball B(x0, a) for

some x0 ∈ X and a > 0. Then the inequality

‖v(Nf)‖Lp(·)(X) ≤ C‖wf‖Lp(·)(X), (2.5.1)

where N is M or K, holds if

(a) Tv,w̃ is bounded in Lp(·)(X);

(b) T ′v,w̃1
is bounded in Lp(·)(X);

(c) there is a positive constant b such that one of the following inequality holds:

(1) v+(Fx) ≤ bw(x) for µ− a.e.x ∈ X; (2) v(x) ≤ bw−(Fx) for µ− a.e.x ∈ X.

where Fx is defined in Section 2.4.

Proof. First notice that by Lemma 2.2.5 we have that p ∈ P(1). Suppose that L =∞

and let ‖g‖Lp′(·)(X) ≤ 1. Let us assume that

B := B(x, r); hB :=
1

µB

∫
B

|h(y)|dy.

We have∫
X

(Nf)(x)v(x)g(x)dµ(x) ≤
3∑
j=1

[∑
k∈Z

∫
Ek

(Nfj,k)(x)v(x)g(x)dµ(x)

]
=:

3∑
j=1

Sj,

where fj,k := fχIj,k (recall that the constant A is defined in Definition 2.2.7). We prove

the theorem for the case N = M . If x ∈ Ek and y ∈ I1,k, then d(x0,x)
A′
≤ d(x, y), where
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A′ := A/(A − 1). Further, if r ≤ d(x0,x)
A′

, then B(x, r) ∩
{
y : d(x0, y) ≥ d(x0,x)

A′

}
= ∅.

Consequently, (f1,k)B = 0. Let now r > d(x0,x)
A′

. Then taking into account Remark

2.2.1 we have

(f1,k)B ≤
c

µ(Bx0x)

∫
Bx0x

|f(y)|dµ(y)

for x ∈ Ek. Hence,

Mf1,k(x) ≤ c

µ(Bx0x)

∫
Bx0x

|f(y)|dµ(y).

Consequently, due to Theorem 2.3.1 and condition (a) we find that

S1 ≤ c

∫
X

(
Tv,1(|f |)(x)g(x)dx ≤ c‖(Tv,1(|f |)‖Lp(·)(X)‖g‖Lp′(·)(X) ≤ c‖fw‖Lp(·)(X).

To estimate S3, first observe that

M(fχI3,k)(x) ≤ c sup
j≥k+1

(
µB
(
x,Aj

))−1
∫
Dj

|f(y)|dµ(y), x ∈ Ek, (2.5.2)

where Dj := B(x0, a1A
j+1) \ B(x0, a1A

j). To prove (2.5.2) we take r so that 0 <

r < Ak. Then it is easy to see that B(x, r) ∩ I3,k = ∅. Consequently, (f3,k)B = 0.

Further, let r ≥ Ak. Then r ∈ [Am, Am+1) for some m ≥ k. If y ∈ B, then

d(x0, y) ≤ a1A
m+l+1 for the integer l defined by l =

[
ln 2
lnA

]
+ 1. On the other hand,

there are positive constants b1 and b2 such that the inequality

µB(x0, A
m) ≤ b1µB(x,Am) ≤ b2µB(x0, A

m),

when x ∈ Ek and m ≥ k. Consequently, applying the reverse doubling condition, for

such r we have

(f3,k)B ≤
1

µB(x,Am)

∫
a1Ak+1<d(x0,y)≤a1Am+l+2

|f(y)|dµ(y)

≤ 1

µB(x0, Am)

m+l+1∑
j=k+1

∫
Dj

|f(y)|dµ(y) ≤ c sup
j≥k+1

(
µB(x,Ai)

)−1
∫
Dj

|f(y)|dµ(y)=: sup
j≥k+1

Pj(f),
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where the positive constant c depends on the constant A.

Further, taking into account condition (b) and the inequality sup ≤
∑

, we find that

S3 ≤ c
∑
k

(∫
Ek

v(x)g(x)dµ(x)

)( ∞∑
j=k+1

Pj(f)
)

= c
∑
j

(
µB(x0, A

j)
)−1
(∫
Dj

|f(y)|dµ(y)

) j−1∑
k=−∞

(∫
Ek

v(x)g(x)dµ(x)

)

= c
∑
j

(
µB(x0, A

j)
)−1
(∫
Dj

|f(y)|dµ(y)

)( ∫
B(x0,Aj)

v(x)g(x)dµ(x)

)

≤ c
∑
j

(
µB(x0, A

j)
)−1
(∫
Dj

|f(y)|
(
µB(x0, d(x0, y))

)−1
( ∫
B(x0,d(x0,y))

v(x)g(x)dµ(x)

)
dµ(y)

)

≤ c

∫
X

v(x)g(x)

( ∫
d(x0,y)≥d(x0,x)

|f(y)|
(
µB(x0, d(x0, y)))

)−1

dµ(y)

)
dµ(x)

≤ ‖g‖Lp′(·)(X)

∥∥T ′v(·),d(x0,·)f
∥∥
Lp(·)(X)

≤ c‖f‖Lp(·)(X).

If, for example, (i) of condition (c) is satisfied, then Theorem 2.5.4 and Lemma 2.2.7

yield

S2 ≤
∑
k

(
v+(Ek)

)
‖Mf2,k(·)‖Lp(·)(X)‖g(·)χEk(·)‖Lp′(·)(X)

≤
∑
k

(
v+(Ek)

)
‖fχI2,k(·)‖Lp(·)(X)‖g(·)χEk(·)‖Lp′(·)(X)

≤ c
∑
k

‖fwχI2,k(·)‖Lp(·)(X)‖g(·)χEk(·)‖Lp′(·)(X) ≤ c‖fw(·)‖Lp(·)(X).

When (ii) is satisfied, then by the same arguments we have the desired result.

The proof of the theorem for the operator N = K is similar to that of the case

N = M . In this case Theorem 2.5.1 is used instead of Theorem 2.5.4 The details are

omitted.

The next two statements are direct consequences of Theorems 2.5.5, 2.3.1, 2.3.2

(see also appropriate statements in Section 2.4). Details are omitted.
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Theorem 2.5.6. Let (X, d, µ) be an SHT and let 1 < p− ≤ p+ <∞. Further suppose

that p ∈ LH(X). If L = ∞, then we assume that there is a x0 ∈ X and a positive

constant a such that p ≡ pc ≡ const outside B(x0, a). Let N be M or K. Then

inequality (2.5.1) holds if:

(a) sup
0≤t<L

∫
t≤d(x0,x)<L

(
v(x)

µBx0,x

)p(x)( ∫
B(x0,t)

w−(p̃0)′(x)(y)dµ(y)

) p(x)

(p̃0)′(x)

dµ(x) <∞,

(b) sup
0≤t<L

∫
B(x0,t)

(
v(x)

)p(x)
( ∫
t≤d(x0,x)<L

(
w(y)

µBx0y

)−(p̃1)′(x)

dµ(y)

) p(x)

(p̃1)′(x)

dµ(x) <∞,

(c) condition (c) of Theorem 2.5.5 is satisfied.

Theorem 2.5.7. Let (X, d, µ) be an SHT without atoms. Let 1 < p− ≤ p+ < ∞.

Assume that p has a minimum at x0 and that p ∈ LH(X). If L =∞ we also assume

that p ≡ pc ≡ const outside some ball B(x0, a). Let v and w be positive increasing

functions on (0, 2L). Then the inequality

‖v(d(x0, ·)(Nf)(·)‖Lp(·)(X) ≤ c‖w(d(x0, ·))f(·)‖Lp(·)(X), (2.5.3)

where N is M or K, holds if the following condition is satisfied:

sup
0<t<L

∫
t<d(x0,x)<L

(
v(d(x0, x))

µ(Bx0x)

)p(x)( ∫
B(x0,t)

w−(p̃0)′(x)(d(x0, y))dµ(y)

) p(x)

(p̃0)′(x)

dµ(x) <∞.

Example 2.5.8. Let (X, d, µ) be a quasi-metric measure space with L <∞. Suppose

that 1 < p− ≤ p+ < ∞ and p ∈ LH(X). Assume that the measure µ is both upper

and lower Ahlfors 1− regular. Let there exist x0 ∈ X such that p has a minimum at

x0. Then the condition

S := sup
0<t≤L

∫
t<d(x0,x)<L

(
v(d(x0, x))

µ(Bx0x)

)p(x)( ∫
B(x0,t)

w−p
′(x0)(d(x0, y))dµ(y)

) p(x)

p′(x0)

dµ(x) <∞
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is satisfied for the weight functions v(t) = t1/p
′(x0), w(t) = t1/p

′(x0) ln 2L
t

and, conse-

quently, by Theorem 2.5.7 inequality (2.5.3) holds, where N is M or K.

Indeed, first observe that v and w are both increasing on [0, L]. Further it is easy

to check that the condition p ∈ LH(X), Proposition 2.2.3 and Lemma 2.2.5 implies

that (
v(d(x0, x))

µ(Bx0x)

)p(x)

≤ c(d(x0, x))−1.

We have also( ∫
B(x0,t)

w−p
′(x0)(d(x0, y))dµ(y)

) p(x)

p′(x0)

=

( ∫
B(x0,t)

d(x0, y)−1

(
ln

2L

d(x0, y)

)−p′(x0)

dµ(y)

) p(x)

p′(x0)

≤ C ln−1 2L

t
.

Hence,

S ≤ c ln
2L

t
· ln−1 2L

t
= c <∞.

Example 2.5.8 for constant p andX = Rn was presented in [19] (see also [20],Chapter

8 for spaces of homogeneous type)
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