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Abstract

Two—weight criteria of various type for one—sided maximal functions and one—sided
potentials are established in variable exponent Lebesgue spaces. Among other re-
sults we derive the Hardy-Littlewood, Fefferman—Stein and trace inequalities in these
spaces. Weighted estimates for Hardy—type, maximal, potential and singular opera-
tors defined by means of a quasi-metric and a doubling measure are derived in LP(®)
spaces. In some cases examples of weights guaranteeing the appropriate weighted

estimates are given.
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Introduction

The thesis is devoted to weighted estimates with general-type weights for Hardy-type,
maximal, potential and singular operators in variable exponent Lebesgue spaces.

In the last two decades a considerable interest of researchers was attracted to
the study of mapping properties of differential and integral operators in variable
exponent Lebesgue spaces. In the mid-80s, V. V. Zhikov ([93]) started a new line of
investigation that was to become related to the study of variable exponent spaces,
namely he considered variational integrals with non-standard growth conditions (see
also the papers by O. Kovécik in the 80s and 90s). V. V. Zhikov’s work was continued
by X.-L. Fan from around 1995 and by Yu. A. Alkhutov since 1997. Regularity

properties of functionals of the type

/F(:E, \Vu|)dz, F(z,z)~ 2P@,

Q
have been intensively investigated by E. Acerbi and G. Mingione and their collabo-
rators. M. Ruzicka [77] studied the problems in the so called rheological and elec-
trorheological fluids, which lead to the spaces with variable exponent. Differential
equations with non-standard growth and corresponding function spaces with variable
exponents have been a very active field of investigation in recent years (see the survey
papers [80], [37], [81], [32], the monograph [17] and the papers cited therein for the
related topics).

The variable exponent Lebesgue spaces first appeared in 1931 in the paper by W.



Orlicz [74], where the author established some properties of LP®®) spaces on the real
line. Further development of these spaces was connected with the theory of modular
spaces. The first systematic study of modular spaces is due to H. Nakano [70]. The
basis of the variable exponent Lebesgue and Sobolev spaces were developed by J.
Musielak (see [69], [68]); H. Hudzik; I. I. Sharapudinov; S. Samko; O. Kovacik and J.
Rékosnik; D. E. Edmunds and J. Rakosnik; D. E. Edmunds, J. Lang and A. Nekvinda
etc. For the boundary value problems for analytic and harmonic functions in the
framework of variable exponent analysis we refer to the papers by V. Kokilashvili
and V. Paatashvili; V. Kokilashvili, V. Paatashvili and S. Samko.

The boundedness of Hardy- Littlewood maximal functions in LP(*) spaces first
was established by L. Diening under the log-Holder continuity condition on p. For
mapping properties of maximal functions, singular integrals and potentials in LP(®)
spaces we emphasize the papers by S. Samko; L. Diening; A. Nekvinda; L. Diening
and M. Ruzicka; D. Cruz-Uribe, A. Fiorenza and Neugebauer; D. Cruz-Uribe, A.
Fiorenza, J. M. Martell and C. Perez; D. E. Edmunds, V. Kokilashvili and A. Meskhi;
P. Harjulehto, P. P. Hasto and M. Pere; C. Capone, D. Cruz-Uribe, A. Fiorenza; T.
Kopaliani; A. Almeida and S. Samko; A. Almeida and H. Rafeiro, etc.

For the weighted inequalities for the classical integral operators in variable expo-
nent function spaces we refer to the papers by V. Kokilashvili and S. Samko; D. E.
Edmunds, V. Kokilashvili and A. Meskhi; V.Kokilashvili and A. Meskhi; U. Ashraf,
V. Kokilashvili and A. Meskhi; M. Asif, V. Kokilashvili and A. Meskhi; T. Kopaliani;
L. Diening and S. Samko; H. Rafeiro and S. Samko; S. Samko and B. Vakulov; S.
Samko, E. Shargorodsky and B. Vakulov; V. Kokilashvili, N. Samko and S. Samko;
A. Harman and F. I. Mamedov, etc (see also the survey papers [80], [37],[81] and
references cited therein).

The One-weight problem under the Muckenhoupt-type condition for the Hardy-

Littlewood maximal operator in LP(*) spaces was solved by L. Diening and P. Hasto



[18]. Sawyer-type two-weight criteria for maximal operators were derived in [43].

The thesis is divided into two parts. In the first part various type of two-weight
criteria are derived for one-sided operators in variable exponent Lebesgue spaces.

D. E. Edmunds, V. Kokilashvili and A. Meskhi [23] studied the boundedness
problems of the unilateral (one-sided) operators in variable exponent Lebesgue spaces
on an interval I C R. In that paper the authors proved that the boundedness of
maximal, fractional integral and Calderén-Zygmund type operators with unilateral
nature holds in the space LP(*) under the weaker assumptions on p(z) than in the case
of bilateral operators. From the results obtained in the latter paper it follows that the
unilateral nature of an operator permits the development of better results within the
frameworks of variable exponents. This difference between unilateral and bilateral
forms of operators was not so essential in the case of constant exponents. It should
be emphasized that criteria governing the LP(*) — L@ boundedness/compactness
for the Riemann-Liouville transform were derived in the paper by U. Ashraf, V.
Kokilashvili and A. Meskhi [5] (see also [65], ch.5). One of the novelties of this
thesis is to study the two-weight problem for one—sided operators in variable exponent
Lebesgue spaces.

The second part of the thesis is devoted to two-weight estimates of integral op-
erators (Hardy-type transforms, maximal functions, potentials, singular integrals)
defined on quasi-metric measure spaces in the framework of variable exponent anal-
ysis. We derive various type of two-weight sufficient conditions (written in the form
of mudulars ) ensuring the boundedness of these operators in weighted LP(*) spaces.
The derived conditions are simultaneously necessary and sufficient for appropriate
two—weight inequalities when exponents of spaces are constants.

It should be stressed that there is a wide range of problems of Mathematical
Physics whose solutions are closely connected to the weight problems of integral op-

erators acting between Banach function spaces. We emphasize, for example the very



profound impact of trace inequalities on spectral problems of differential operators,
and in particular on eigenvalue estimates for Schrodinger operators (see the papers
by C. Fefferman; R. Kerman and E. Sawyer; the monograph [27]); and the close con-
nection with the solubility of certain semilinear differential operators with minimal
restrictions on the regularity of the coefficients and data. In fact, the existence of
positive solutions of certain nonlinear differential equations is equivalent to the va-
lidity of a certain two-weighted inequality for a potential-type operator, in which the
weights are expressed in terms of coefficients and data (see the papers by K. Hansson;
D. R. Adams and M. Pierre; P. Baras and M. Pierre; V. G. Mazya and I. E. Verbitsky;
I. E. Verbitsky and R.L. Wheeden). We refer the monographs [63], [28], [38], [82],
[73], [59], [20] and references cited therein for the weight theory of integral operators
of various type in the classical Lebesgue spaces.

The main results of the thesis are contained in the papers [44], 45 146, [66], 67]



Chapter 1

Weighted Estimates for One-sided
Operators in Variable Exponent
Lebesgue Spaces.

1.1 Introduction

This chapter deals with the boundedness of one-sided maximal functions and poten-
tials in weighted Lebesgue spaces with variable exponent. In particular, we derive
one-weight inequality for one-sided maximal functions; sufficient conditions (in some
cases necessary and sufficient conditions) governing two-weight inequalities for one-
sided maximal and potential operators; criteria for the trace inequality for one-sided
fractional maximal functions and potentials; Fefferman-Stein type inequality for one-
sided fractional maximal functions; generalization of the Hardy-Littlewood theorem
for the Riemann-Liouville and Weyl transforms; the one-weight modular inequality
for the Riemann-Liouville transform on the cone of decreasing functions from the
variable exponent viewpoint. It is worth mentioning that some results of this chapter
implies the following fact: the one-weight inequality for one-sided maximal functions
automatically holds when both the exponent of the space and the weight are mono-

tonic functions.



Solution of the one-weight problem for one-sided operators in classical Lebesgue
spaces was given in [86, [3]. Trace inequalities for one-sided potentials in LP spaces
were characterized in [64] [75], [39]. It should be emphasized that a solution of the two-
weight problem in the classical Lebesgue spaces under transparent integral conditions
on weights for one-sided maximal functions and potentials in the non-diagonal case
are given in the monographs [29](Chapters 2 and 3) and [20](Chapter 2). For Sawyer-

type two-weight criteria for one-sided fractional operators we refer to [62], [61], [60].

1.2 Preliminaries

Let 2 be an open set in R™ and let p be a measurable function on 2. Suppose that
1<p_ <p;y <00, (1.2.1)

where p_ and p, are the infimum and the supremum respectively of p on §2. Suppose
that p is a weight function on 2, i.e. p is an almost everywhere positive locally

integrable function on 2. We say that a measurable function f on €2 belongs to

LE(Q) (or LH™(Q)) if

Spal) = [ |f@)pla) P < .
Q

It is known that (see, e.g., [57), 49, 48, [78]) Lg(')(Q) is a Banach space with the norm

||f||Lg<'>(Q) = inf{)\ >0 Sp(-),p(f/A) < 1}'

If p = 1, then we use the symbol LPO)(Q2) (resp. S,) instead of Lg(')(Q) (resp. Sp(y.p)-
It is clear that ||f||sz,(.)(Q) = ||fpllo¢) (- Tt should be also emphasized that when p is
constant, then Lﬁ(')(Q) coincides with the classical weighted Lebesgue space.

We will use the following notation:

p_(E) = i%fp; p+(F) :=supp, EcCQ.
E



The following statement is well-known:

Proposition 1.2.1 ([57,[78]). Let E be a measurable subset of Q2. Then the following

imequalities hold:

A58 < Spo(Fxe) < 1Ay, 17wy < 1
7155y < S () < ||f||m) Mo = 1
1
| E/ F()g(e)dr| < (p_(E) + ) Moo ol
p(z)

where p'(x) = and 1 < p_ <p, < o0.

p(z)—1
Let I be an open set in R. In the sequel we shall use the notation:
I.(x,h):=[z,c+hNI, I (x,h):=][x—hx]NI;
I(x,h) =[x —h,x+h]NI.

Now we introduce the following maximal operators with variable parameter:

(Magyf)(z) = ili% W / |f()|dt,

I(z,h)

(M) f) (@) = sup 5 1a @ / | f(t)]dt,

h>0
I_(z,h)
1
(M@ =swp s [ 150l
IJr(zvh‘)

where 0 < a_ < ay <1, I is an open set in R and x € I.
If « =0, then M and M ) are the one-sided Hardy-Littlewood maximal operators
which are denoted by M~ and M™ respectively.

To prove the main results we need some statements:



Theorem 1.2.2 ([12]). Let Q2 be a bounded open set in R™. Then the mazximal oper-

ator

(Maf)(x) = sup — / FW)ldy, e,

r>0 re
B(z,r) 2

is bounded in LPV)(Q) if p € P(Q), that is,

(a) 1<p- <p(r) <py < oo

(b)  p satisfies the log-Holder continuity (Dini-Lipschitz) condition (p € LH(Q)):
there exists a positive constant A such that for all x,y € Q with 0 < |z —y| < % the

mequality

i (1.2.2)
holds.

Theorem 1.2.3 ([9]). Let Q be an open subset of R™. Suppose that 1 < p_ < p; <

oo. Then the maximal operator Mg is bounded in LPO)(Q) if
(i) peP();
C
.. B R O
(i) |p(z) —p(y)] < (e + 2]

for all x,y € Q, |y| > |z|.

(1.2.3)

We shall also make use of the next two results:

Proposition 1.2.4 ([57, [78]). Let 1 < p(z) < q(z) < ¢+ < co. Suppose that € is

an open set in R™ with |Q] < oo, where |Q| is the measure of ). Then the inequality

[l zeor ) < (LISl 2ao 0
holds.

Proposition 1.2.5 ([12]). Let Q be an open set in R™ and let p and q be bounded

exponents on ). Then

LQ(')(Q) SN LP(')(Q)



if and only if p(x) < q(x) almost everywhere on Q0 and there is a constant 0 < K < 1
such that
/ FP@a@)/ (9@ 2@ gy < o0, (1.2.4)
Q

Remark 1.2.1. In the previous statement it is used the convention K/ := 0.

To state more results we need the following definitions:

Definition 1.2.1. Let P_(I) be the class of all measurable positive functions p : I —
R satisfying the following condition: there exist a positive constant C such that for

aer€landaeyelwithO<z—y< % the inequality

Cy
p(@) <ply) + ——— (1.2.5)
In (;)

T—y
holds. Further, we say that p belongs to P, (I) if p is a positive function on I and there
exists a positive constant Cy such that fora.ex € T andaey € [ with0 <y—x < %
the inequality

Cy
p() <py) + —— (1.2.6)
In <L>

Yy—x

is fulfilled.

Definition 1.2.2. We say that a measurable positive function on I belongs to the

class Poo(I) (p € Poo(I)) if (1.2.3) holds for all z,y € I with |y| > |z|.

Definition 1.2.3. Let p be a measurable function on an unbounded interval I in R.

We say that p € G(I) if there is a constant 0 < K < 1 such that
/ K@ /0@ ) gy < o0,
I

The next result was obtained in [23].
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Theorem 1.2.6. Let I be a bounded interval in R. Suppose that 1 < p_ < p, < o0.
Then

(i) ifp€ P_(I), then M~ is bounded in LPV)(I);

(ii) ifp € Py (1), then M* is bounded in LPV)(I).

In the case of an unbounded set we have

Theorem 1.2.7 ([23]). Let I be an arbitrary open set in R. Suppose that 1 < p_ <
py < 00. If p € Po(I)NPs(I), then the operator M~ is bounded in LPC)(I). Further,
if p € P_(I) N Pu(I), then the operator M~ is bounded in LP)(I).

In particular, the previous statement yields

Theorem 1.2.8 ([23]). Let I = Ry and let 1 < p_ < p; < oo. Suppose that
p € Py(I) and there is a positive number a such that p € Ps((a,00)). Then M is
bounded in LPV)(I). Further, if p € P_(I) and there is a positive number a such that
p € Po((a,00)), then M~ is bounded in LPO)(I).

The next statement gives one-weight criteria for the one-sided maximal operators

in classical Lebesgue spaces (see [86], [3]).

Theorem 1.2.9 ([3]). Let I C R be an interval. Assume that 0 < a < 1 and
1 <p < 1/a, wherep and a are constants (1/a = o0 ifa =0). Weset1/q=1/p—a.
(i) Let T := M. Then the inequality

[ / \Tf(x)]qv(a:)da:} v < c{ / | f(x)]pvp/q(x)dx} v (1.2.7)

holds if and only if

ili%(% / v(t)dt);<% / v_p'/q(t)dt)p < 0. (1.2.8)

I (z,z+h) I_(z—h,z)

=



11

(i) Let T := M. Then (1.2.7) holds if and only if
1 i1 v
sup (— / v(t)dt) (— / vpl/q(t)dt) < 00. (1.2.9)
h>0 h h
I_(z—h,x) Iy (z,x+h)
Definition 1.2.4. Let I C R be an interval. Suppose that 1 < p < g < oo, where

p and q are constants. We say that the weight v € AJ (I) (resp. v € AF (1)) if

EZ8) ( resp. (TZ9)) holds.
If p = ¢, then we denote the class A} (I) (resp. Aj (1)) by Af(I) (vesp. A, (1)).

. + —_ . . o .
Notice that v € AJ (I) (resp. v € Aj (I)) is equivalent to the condition v €

ALy (vesp. v € A7, (D).
Further, we denote by D(R) (resp. D(R,)) a dyadic lattice in R (resp. in Ry).

Definition 1.2.5. We say that a measure u belongs to the class RD@(R") (dyadic
reverse doubling condition) if there exists a constant § > 1, such that for all dyadic

cubes Q and Q', Q C @, |Q| = |§—nl|, the inequality

(@) > op(Q)
holds.

Definition 1.2.6. We say that a measure p on R" satisfies the doubling condition
(u € DC(R™)) if there is a positive number b such that

uB(x2r) < bpB(x,v)
for all z € R™ and r > 0.

It is known ( see [89], p. 11) that if p € DC(R™), then p € RD(R™), i.e., there

are positive constants 7; and 72, 0 < 11,72 < 1, such that

uB(z,mr) < mpB(x,v),
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for all z € R™ and r > 0. It is easy to check that if u € DC(R™), then p € RD¥(R).

We shall need some lemmas giving Carleson-Hormander type inequalities.

Lemma 1.2.10 ([90]). Let 1 < p < r < oo and let p™ € RDD(R™), where p
1s a weight function on R™. Then there is a positive constant C' such that for all

non-negative f the inequality
Qg(;n) ( Q/ p""(r)dw)_p/ < Q/ f(y)dyy < O( R/ ( f(a:)p(x))m)

holds.

Lemma 1.2.11 ([87, 91]). Let u(z) > 0 on R"™; {Q;}ica be a countable collection of

dyadic cubes in R™ and {a;}ica, {bi}ica be positive numbers satisfying

(i) /u(x)dx < Ca; for all i€ A;
Qi
(ii) Z bj < Ca, forallie A.
Ji Q5CQ:
Then . N
(Zezlbl(alZ /g(x)u(x)dx) )p <G, (HJ gp(x)u(x)dx) ’

forallg>0 onR" and 1 < p < o0.

1.3 Hardy-Littlewood One-sided Maximal Func-
tions. One-weight Problem

In this section we discuss the one-weight problem for the one-sided Hardy-Littlewood

maximal operators.

We shall apply the following lemma in the proof of the main results of this section:
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Lemma 1.3.1 ([23]). Let I be a bounded interval and let p be a measurable function
on I such that (L.2.1) hold on I. If p € Py(I), then there is a positive constant
depending only on p such that for all f, || f|le¢)r) < 1, the inequality

(MFf)" < € (L4 M (1f10) ()
holds.
The following two theorems are the main results of this section:

Theorem 1.3.2. Let I be a bounded interval in R and let p be a measurable function
on R such that 1 < p_ < py < o0.

(i) If p € P(I) and a weight function w satisfies the condition w(-)P") € A¥ (I),
then for all f € LZ(')(I) the inequality

||(Nf)w||1;p(-)(1) < Cwa”Lp(J([) (1.3.1)

holds, where N = M™.
(i) Let p € P_(I) and let w(-)P") € A; (I). Then inequality || holds for all
fe qu(')(f), where N = M~

The result similar to Theorem has been derived in [51], [53] for Mg, where
2 C R" is a bounded domain.

In the case of unbounded intervals we have the next statement:

Theorem 1.3.3. Let I = R, and let p be a measurable function on R, such that
1 < p_ < py <oo. Suppose that there is a positive number a such that p(z) = p. =
const outside (0, a).

(i) If p € P+(I) and w(-)*V) € Af (1), then (1.3.1) holds for N = M*.
(i) If p € P_(I) and w(-)*") € AZ (I), then 1} holds for N = M~.

Theorem yields the following corollaries:
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Corollary 1.3.4. Let p be an increasing function on an interval I = (a,b) such that
1 < p(a) < p(b) < co. Suppose that w is an increasing positive function on I. Then

the one-weight inequality
[w! PO F) O oo 1y < ellw!P F )z
holds.

Corollary 1.3.5. Let p be a decreasing function on an interval I = (a,b) such that
1 < p(b) < pla) < oco. Suppose that w is a decreasing positive function on I. Then

the one-weight inequality

”wl/P(‘)(M_f)(‘)||LP(')(I) < C||w1/p(')f(‘)||LP<‘>(1)

holds.

Now we prove Theorems [1.3.2| and [1.3.3]

Proof of Theorem [1.3.2] Since the proof of the second part is similar to the first one,

we prove only (i). It is enough to show that

Sy (wM*(f/w)) <C
for f satisfying the condition || f|| e y < 1.

First we prove that S, (f) < 00, where p*(z) = p(@),

w .

By using Holder’s inequality we find that

5, ( g ) _ / el @ (2)d < ( / | f($)|p<x>d$) = ( /w(w)pm)(l—(p)')dx) W

because w?V)(-) € Af ().
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Thus Lemma might be applied for p*. Consequently,

5,(wfw) = [ [M+ (i) @]p”) W) (2)da

w

= [(prr g @) e @

< c / (1 +M+(}£ ’”'))u))p (w(@))") da
< ¢ / ()" da + C / (M+ (\g v ) (:c))pwp(@ (2)dx

C+ C/ ‘f/w!p(x)wp@)(x)dx <C.
I

IA

]

Proof of Theorem [1.3.3]. First we prove (i). Without loss of generality we can assume
that M* f(a) < oo. Since M™ is a sub-linear operator it is enough to prove that

Spw(MTf) < oo, whenever S, ,(f) < oo. We have
/ (M-Ff)p(w) (x)w(x)l’(w)dx <c |: /a (M+fX[0,a])p(I) (x)w(m)p(‘r)dx
Ry 0
+ /0 (M (f Xjape)))"™ (2w ()7 dze + / (M*(Fxpa)"™™ (@)w(z)P) da

+ / (M+f)([a7oo))p(z) (x)w(x)p(“”)dx} =c[l1 + I+ I3 + Iy

Since M*f(z) = M*(fxp.a)(z) for x € [0,a], using the assumptions w(-)*") €
Al ([0,a]), py € P4((0,a)) and Theoremvve find that I, < oc.

Further, the condition w(-)P*) € AY (I) implies that w(-)**) € Al ((a,00)). Conse-
quently, since p = p. = const on (a, 00), by Theorem we have [; < oc.

Now observe that M™*(fx0,q))(2) = 0 when z € (a,00). Therefore I3 = 0.

It remains to estimate I,. For this notice that if € (0,a), then

1 z+h 1 z+h
M (F o) @) =503 [ 1) )y = 5w 5 [0 N ()

h>0 h h>a—x

1

+(z+h—a)
= t+h—a a00)(y)dy < MT .
_hilil_)x:wrh—a/a [f W) Xaso0) (9)dy < M f(a) < o0



16

Hence,

I, < c/ w(z)?@dr < oo
0

because w(-)P") is locally integrable on R,
To prove (ii) we use the notation of the proof of (i) substituting M* by M~. In

fact, the proof is similar to that of (i). The only difference is in the estimates of

I := / (M_(fX[mo)))p(z) (z)w(x)P @ dx
0
and
Iy = / (M~ (f - xpo.a)) ()" (@) (2)"® da.
Obviously, we have that [y, = 0. Further, we represent /3 as follows:
L= [T o))l de

(e 9]

:/ O xpa) @) (@l dot / (M™(f - Xppa) ()" (2)w(@)dz

a

= IV 4+ 1.

Observe that for = € (a, 24,

. 1 a )
M™(f - Xpa)(z) < sup —/ |f(y)ldy < M~ f(a) < oo.
z—a<h<z @ T+ h a—(a—z+h)

Hence,
LY < (M~ f)"(a) / B (w(z)) dr < co.
If x > 2a, then '
(M= 1) ( y)ldy.
Therefore by using Holder’s inequahty with respect to the exponent p(-) (see Propo-
sition we find that

b </m (w(@))" (a - x>—pcdx) ( | ’f(:):)|dx>pc

<c (/ (w(z))P (a — m)_pcdx) || fw [P ) ||w _1“21’” =:¢cty - Jy- Ja.
2

a al) ([0,a])
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It is clear that J, < co. Further, since w(-)?") € A ((a,00)), by Hélder’s inequality
we have that w(-)P() € A;c((a, oo)), because p. > p_. Hence, by applying Theorem
(for a« = 0) we have that the operator M~ f := M~ (fX(4,0)) is bounded in

LPe((a,00)). Consequently, the Hardy operator

1

Tr—a

Haf<m) =

/ Otz € (a,00),

is bounded in LP¢((a,00)). This implies (see, e.g., [35], [63]) that J; < co.
It remains to see that J; < oco. Indeed, Proposition yields

IIw_1||L§)['O<;;]) < (1t a)lw™M e g0
< ety (w™ Ollo-roga + 1< Ow™ Ollooroa
< CHX{w*zl}<'>w—%(x)HL<P—)'([07a]) te
< ( /a wp(m(l—(p)’)(x)dx) e te
0
Thus IéQ) < o0. -

1.4 One-sided Fractional Maximal Operators. One-
weight Problem

In this section we derive the one-weight inequality for the one-sided fractional maximal

operators. Concerning this section the main results are the following statements:

Theorem 1.4.1. Let I be a bounded interval and let 1 < p_ < p, < co. Suppose that

p(x)
1—ap(z)

(i) If p € P+(I) and a weight w satisfies the condition w(-)4") € A¥  (I), then

a 1s constant satisfying 0 < o < 1/p,. Let q(x) =

the inequality
”(Naf)wHLq(‘)(I) < C||wf||LP('>(I)7 IS qu(')(]% (1.4.1)
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holds for N, = M} .

(ii) Let p € P_(I) and let w(-)®) € A, , (I). Then inequality 1} holds for
Ny =M, .
Theorem 1.4.2. Let [ =R, , 1 < p_ < p, < oo and let p(x) = p. = const outside

some interval (0,a). Suppose that q(z) = 1—130(;)(35)’

where « 1s constant satisfying
0<a<l1/py.

(i) If p € P+ (I) and w(-)1) € Al (I), then holds for N, = M} .

(i) If p € P—(I) and w(-)1) € A, (I), then holds for N, = M .
Proof of Theorem [1.4.1, We prove (i). The proof of (ii) is the same. First we show

that the inequality

M (f fw) (@) < (M*(frO/0w100) (@) 1/ </f ) ,
holds, where s(x) = 14+¢(z)/p'(x). Indeed, denoting g(-) := (f(+))P)/50) (a(-))=20)/s0)
we see that f()/w(.) — (g())s()/p()wq()/p()f — (g(.))1*0493(')/P(')+04*1U)QQ(')‘
By using Holder’s inequality with respect to the exponent (1 — «)~! and the facts
that s(-)/¢(-) =1 —«a, (s(y)/p(y) + o — 1)/a = s(-) we have

1 / f()
—=dy
ht=e I (xz,z+h) ’UJ(y)

1 11—« e a
< (ﬁ/ g(y)dy) (/ gEW/Pw a1 ey, 0) )dy)
I (z,z+h) I+ (z,z+h)

< (M+g<x>>3‘”””q(”( [ o <y>)
I+ (z,z+h)

< (M*g(a))" /@ ( /pr(y)@)dy)a‘

Now we prove that S, (wM:{(f/w)) < C, when S,(f) < 1. By applying the above-

derived inequality we find that
Sy(wM(f/w)) < ¢ / (M (fPO 0= O/ ) ()01 ()
I

= ¢S, <M+(fp(~)/8(~)w—q(~)/s(-))wq(.)/s(.)) '
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Observe now that the condition on the weight w is equivalent to the assumption
w?(-) € Af (I). On the other hand, || f70/*0)|| i) ;) < 1. Therefore taking Theorem

[[.3.2] into account we have the desired result. O

Proof of Theorem [1.4.2] (i) Let f > 0 and let S, ,(f) < co. We have

Squw(M f) = / (M /)™ (2)w(x)" @ dx

1

< C|:/Oa (Mo—j_fX[O,a} (x))q(z) (m)w(x)q(’”)dx + /Oa (M;_(f . X[a,oo))(l’))q(x) («T)w(l’)q(x)daj
[ M 0 @)™ @@ e [ (047 (o) @) ()

= C[Il +IQ + [3 + 14]

It is easy to see that I; < oo because of Theorem and the condition w?)(.) €
Al ([0,a]). Further, it is obvious that I3 < oo because MJ (fxjo,a)(7) = 0 for

x > a. Further, observe that
I, < c/ w(x)1@dr < oo,
0

where the positive constant depends on «, f, p, a.

It is easy to check that by Holder’s inequality with respect to the power

((pe)'/gc) / ((p-)'/a-)
the condition w(-)% € Af  ([a,00)) implies w(-)% € A}  ([a,00)). Hence, by using
Theorem [1.2.9 we find that Iy < co.
(ii) We keep the notation of the proof of (i) but substitute M by M, . The only
difference between the proofs of (i) and (ii) is in the estimates of I and I3.

It is obvious that I = 0, while for I3 we have

I = /(M;(f-x[o,ap(:v))q‘””) ()w(z)?@ dz+ /(M;(fma])(x))% (@)w(z)*dz

)



20

If x > a, then
Mg < s 1 [y < e fa)
r—a<h<z
x—h
Consequently,
2a

Iél) < c(Maf(a))qc/(w(a;))chx < 00.

a

Now observe that when x > a we have the following pointwise estimates:

M (Froa)(@) < (@ —a)* / F@)ldy

< (o= a)* M fwll po qoap 0™ oo = (x —a)* - .

Hence,
oo

L O [ARATS

2a
It is obvious that J; < co. Further,

_ _ 1 2
J2 < fJw 1<')Xw_1>1<')HLP'(‘)([O,a]) + flw 1<')Xw_1§1<')HLP'(‘)([O,a]) = Jz( L ,]2( )
It is clear that JQ(Q) < 00. To estimate J2(1) observe that by Proposition we have

J5)

IN

(1+ a)[w™ Xu-151 [l o.a < (1+ @)™ xy1sallr- o)

< (14 a) w1 | - 0,0 < 00

Since M is bounded from LP¢([a,c0)) to L% ([a,o0)) we have the Hardy inequality

< 7 (& — @)@ Vet () ( ] | f(t)|dt) chx> 1/ge -, < 7|f(x)|pcwpc(a:)dx) 1/pc‘

a

From this inequality it follows that (see, e.g., [35], [63])

o0

/(x — a) @ Ve (y(2)) e dr < oco.

2a
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1.5 Generalized Fractional Maximal Operators. Two-
weight Problem

Let I = [a,b] be a bounded interval and let I :=[b,2b — a); [~ := [2a — b, a).
Let Q =1, x Iy x --- x I, be a cube in R". We denote:

Q=L xIIx---xIt Q =17 xI; x---x1I,.

Let a be a measurable function on R", 0 < a— < a(x) < a; < n. Let us define
one-sided dyadic fractional maximal functions on R™:
+,(d
(Ma(.() )f) ("E) = sup 1 a(z) / |f |dy7

reQ
QeD(R™)

(M) (@) = w / F()|dy.
QeD(R™)

If a(z) = 0, then we have one-sided Hardy-Littlewood dyadic maximal functions
_Z\4+7(d)7 va(d)'

In the paper [72] the two-weight weak-type inequality was proved in the classical
Lebesgue spaces for the one-sided dyadic Hardy-Littlewood maximal functions defined

on R™.

Theorem 1.5.1. Let p be constant and let 1 <p<q_  <q. <00, 0<a_<a, <n

where ¢ and o are measurable functions on R™. Suppose that w™ € RD@(R"). Then

M:(’.()d) is bounded from LP (R™) to Lg(')(Rn) if and only if

’Q() 1

A= sup |xo()|@Q .)HLQ(‘)(R")HXQ+U)71||LP’(R”)<OO' (1.5.1)

Q,QeDR™)

Proof. Necessity. Assuming f = yo+w™ (Q € D(R") ) in the inequality

HM+ X fHLq O(rny = CHf”Lﬁ(Rn) (1.5.2)
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we have that

Hm(-)(mf - / /)

o = HXQ |Q|(1’(L)_1HL3<'>(RW)</w_pl(y)dy)
£10) (rn)

Q+

HM f||Lq<) &y S C(/w_p,(y)dy>p~

Q+
Thus, to show that (1.5.1) holds it remains to prove that for all dyadic cubes Q,

IN

S = fw P (y)dy < oo. Indeed, suppose the contrary that Sg = oo for some cube Q.

Then SQ = [Jw™!| o' (@) = o°. This implies that there is a non-negative function g such
that g € LP(Q) and [ g(y)w™(y)dy = oc. Further, let Q = Q, where Q € D(R").
Q

Then taking f = xgogw ™' we have

1l = ( / gﬁ(x)da:)” < oo

Q+

and

a()

HMJ("()d)fHLZM(Rn) > HXQ QI 1 HLg«)(Rn)(/f(y)dy)
Q+

al) _
= |IxoM)IQI™ HLg<»>(Rn)/9(y)w(y) 'dy = oo
Q+
This contradicts ((1.5.2)).

Sufficiency. For every x € R"™ we take Q, € D(R") ( z € Q,) so that

@15 [Uwlay > 5 (1) @) (1.5.3)

Assume that f be non-negative bounded with compact support. Then it is easy to
see that we can take maximal cube @), containing = for which (1.5.3) holds. Let
@ € D(R™) and let us introduce the set

1
Fy = {x € @ : Q is maximal for which |Q| = o fy)dy >3 M, )d)f( )}
Q+
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Dyadic cubes have the following property: if Q1, Q2 € D(R"), and 651 N 652 # (), then
@1 C Qo or Q3 C @1, where 52 denotes the interior part of a cube Q.

Now observe that Fg, () Fg, # 0 if Q1 # Q2. Indeed, if 651 N C§2 = (), then it is clear.
If 651 ﬂéz # 0, then Q1 C Q2 or Q2 C Qy. Let us take x € Fy, () Fg,. Then z € Q,

T € (2 and
(Mi(’.()d)f) ();
(MJJ) >f> ().

If @1 C @2, then Q2 would be the maximal cube for which ([1.5.3]) holds. Consequently

-
2
Sy
%
—~
<
N~—
QU
<
vV
DO | =

—_
2
o
~
—~
SN—
QU
<
\Y
N =

x & Fg, and z € Fj,. Analogously we have that if ()2 C @4, then z € Fy, and
x & Fp,. Further, it is clear that F; C Q and |J Fp = R", where D,,(R") =

QED, (R™)
{Q:Q € DR"), Fg # 0}.
Suppose that || f]|;z &) < 1 and that r is a number satisfying the condition p < r <
q—. We have

90) (gmy = Hv M;“(()d)f) H Q(r')(Rn):SUP/UT(x) (M;F(v.()d)f> (x)h(z)dz,

R

o) < 1. Now for such

where the supremum is taken over all functions h, ||A| ( )/
L [ (Rn)

an h, using Lemma |1.2.10] we have that

[ (M&%d’f)T<x>h<x>dx:QeDZ(Rn / 0 (4755 Wiy
<c ¥ ([ewererwa) ([ rwa)
Fa o

<C Z HUT('>|Q|($_1)TXQ(')”LL R")“hH (Rn </f dy)

QD (R™)
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QEDy (R™)

con ¥ ( / w—p/<y>dy>_; ( / f(y)dy)r < CA| Iy o
J

QEDm(R™) Q+

—c 3 e |@ra,s)1XQ<.>H;<,>(MHhHL(MW( / f(y)dy)
Q+

In the last inequality we used also the fact that QT € D(R") if and only if @ € D(R™).

Let us pass now to an arbitrary f, where f € LP(R™). For such an f we take the

sequence fr, = fXQ(0,kn)X{f<jm}> Where
Q0, k) :={(x1, - ,xn) || <k, i=1,--+ ,n}.

and ki, j;m, — 00 as m — o0o. Then it is easy to see that f,, — f in LP (R™) and also
pointwise. Moreover, f,,(x) < f(z). On the other hand, {M;L(’.()d) fm} is a Cauchy

sequence in LZ(')(R”), because

[ Mo = Moty F5]| 1o @y < [ Moy (£ = £)]

LO®n S Cllfm = ff”Lﬁ(R")'

Since Lg(')(R”) is a Banach space, there exists g € Lg(')(R”) such that

H (Man) - g”LZ<‘>(Rn) — 0.

Taking Proposition [1.2.1] into account we can conclude that there is a subsequence
M) fm, which converges to g in Lg(')(Rn) and also almost everywhere. But f,,,

converges to f in LP (R™) and almost everywhere. Consequently,

||9||Lg<->(Rn) < Ol fllzz @nys (1.5.4)

where the positive constant C' does not depend on f. Now observe that since f,,, is

non-decreasing, for fixed x € ), @ € D(R™), we have that
a@) 4 . al@)
Q™ fly)dy = lim |Q] F W)y
QT QT

. o) .
< lim sup Q[+ ! / Fon(y)dy = lim (M;(’.()d)fmk>(x)
Q+

k—oo z€Q
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and the last limit exists because it converges to g almost everywhere. Hence,
d . (d
(MJ(S )f) (z) < fm (Mi(é )fmk) (v) = g(a),
for almost every . Finally, (1.5.4) yields
(d
HMOT(() )fHLg() (Rn) = CHf“Lp (R™)-
O

The proof of the next statement is similar to that of Theorem [1.5.1} therefore it

is omitted.

Theorem 1.5.2. Let 1 <p<q. < qy <00, 0 < a_ <ay <n, where p is constant
and q, a are measurable functions on R™. Suppose that w7 € RD(d)(R”). Then
M D s bounded from LP (R™) to LZ(')(R") if and only if

()

. HXQ ()1QI" " o(-)

Q,QeD HLq() R™) Hw )XQ*(')HLPI(R,L) < 00.

Let us now consider the case when p = ¢ = const.

Theorem 1.5.3. Let 1 < p < oo, where p is constant. Suppose that 0 < a_ < ay <

n. Then M+( is bounded from LP (R™) to LE(R™) if and only if

o)
/vp(x) (M;r(’.()d) (w_p,XQ)(x)) dx < C/w_p/(x)dx < 00,
Q

R"

for all dyadic cubes QQ C R™.
Proof. Sufficiency. It is enough to show that the inequality

Hv M f’ (1.5.5)

<C‘

ur f‘

LP(R™) Lp(R™)

holds if for all @ € D(R"),

[0 (M xe) @ dr< ¢ [Iropue) do
Q

Rn
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where
(d ,(d
(M40 1) ) = M7 () ),
To prove we argue in the same manner as in the proof of Theorem _ Let
us construct the set F for @) € D(R™). We have

[ (3l ) @
<2 / <|Q|1 T /f dy) o

QEDm
e g (fomts ) freon)
- ¥ ( F/ () ) ) (u<@+>)p(u(§m¥ Py )

Taking Lemma [1.2.11]into account it is enough to show that

= ). / vP(x ( / )pdaz < c/u(y)dy.

J: Q;CQ
Fo oy 9

Qj ED(R")

Indeed, we have

S < Z /vp(x)(M+(d)(uX )(z))"dz

JQ;CQ g
R o
Q,eD(®")

— / v (2) (M D (u xg) (x)) da
Ug,coFo-

< /vp(x)(M+’(d) (u XQ)(x))pdx < C/u(y)dy.
R Q

Necessity. Taking the test function fgo = XQw_p' in the two-weight inequality

+,(d)
H” (M5 7)

L=l

Lo LP(R")
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and observing that [w™ (y)dy < oo for every @ € D(R") we have the desired
Q

result. O

The proof of the next statement is similar to that of the previous theorem. The

proof is omitted.

Theorem 1.5.4. Suppose that 1 < p < oo, where p is constant. Then Ma_(’.()d) 18
bounded from LP (R™) to LE(R™) if and only if there is a positive constant C' such that
for all Q € D(R™),

/Up<x) <M;(’.()d) (wp/XQ>) x)dr < C/ x)dr < 00.
R”L

Let us now discuss the two—weight problem for the one-sided maximal functions
Mt ()’ M deﬁned on R.
Recall that by M 9 and M ( ) we denote the one-sided dyadic maximal functions.
Now we assume that they are deﬁned on R.

Together with these operators we need the following maximal operators:

z+h

(315 1) @) =50 s [ 1wl

h
T+3

T—

(Mobf)(x):iglg Wg)lm / £ (y)ldy;

Ny

z—h
1 z+27
iVas —
(Ma(.)f> (z) = ?gg 9G-1)(1—a(z)) / |f(y)|dy.
z+27—1

To prove the next statements we need some lemmas.

Lemma 1.5.5. . Let f € L;,.(R). Then the following pointwise estimates hold:

2a+—l

(M;(.)f) (z) < W(M;(.)f) (z);
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_ 20471 =
for every x € R.
Proof. Observe that
] x+h ] x—l—% ) x+h
Tl / [fOldt = / [fOldt + o / |f(2)ldt
T T oc—l—%
7 T
_ 2a(x)1m / F(8)]d + 2a(@1m / F(8)]dt

x—i—g

< 2 (M ) (@) + 22600 (W ) o),

Hence,
(M7 f) (@) <2207 (M ) (@) + 22 (M f) ().
Consequently,
(1= 207 (M) f) (2) < 221 (M f) (),
which implies

4 20‘(95)*1 - 20:_,_71 3
(Ma(,)f)(x) S 1 — 2a()-1 (Ma(-)f)(x) < 1_ 901 M

Analogously the inequality ([1.5.6|) follows. ]
Lemma 1.5.6. The following inequality
(M f)(x) < C(M, ) (2) (1.5.7)

holds with a positive constant C' independent of f and x.
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Proof. Let us take h > 0. Then h € [2/71,27) for some j € Z. Consequently,

:H_% z+27
1 1
(h/z)l—a(a&) |f(t)|dt S <2j—2)1—_a(x) |f<t)|dt
x+h 2427 —2
x+29-1 2427
1 1
= 5 Ha@ Ol + oy [ 7Dl
3{7—‘,—2]‘*2 "E+2j71
1 z+2971 2a(z)—1 z+27
~ sy | Ol ey [ ol
x4+21-2 r+2i—1

< (M f) @) + 271 (M f) () = (1+ 2771 (M) ) (@),
Hence, holds for C' =1 + 29+~1, O

Lemma 1.5.7. There exists a positive constant C' depending only on « such that for

all f, f € Line(R), and x € R,

(M) 1) (@) < C(M 1) (@), (15.8)

Proof. Let h = 27 for some integer j. Suppose that I and I’ are dyadic intervals
such that 7 |J I’ is again dyadic, |I| = |I'| =2 and [z + %,z + h) C (IJI’). Then
xe (IYI'), where (I|JI')” is dyadic and

x+h
/ F(8)]dt < / (Bt < 20D (D ) (),
il gr

whence
— o (@
(M, f) (@) < 2072 (M0 f) (@),
If 7\J I is not dyadic, then we take I; € D(R) with length 2’ containing I’. Conse-

quently, € (I;)~, where I is dyadic. Observe that z € I~, where I~ is also dyadic.
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Consequently,
z+h
/ F(0)lat < / £l = [ 170l + [ 1701 < € B Qa0 ) o),
.T-‘r* Il 1 Il
with positive constant C' independent of j. Finally, we have ([1.5.8)). O

Lemma 1.5.8. There exists a positive constant C' depending only on a such that
(M ) @) < (M, f) (=) (1.5.9)
for all f, f € Li,.(R), z € R.

Proof. Letx € I, 1 € D(R). Denote I = [a,b). Then IT = [b,2b—a). Let h = 2b—a—=.
We have

z+h

! dt < 217 )|dt
m/’f@” t < T @ /|f )|
I+

z+h
- 1 —x
< 2! ‘m/!f(tﬂdtg? "M ().

Since I is an arbitrary dyadic cube containing x, then ((1.5.9)) holds for C' = 27>, [
Summarizing Lemmas 1 1.5.8, we have the next statement:

Proposition 1.5.9. There exists positive constants Cy and Cy such that for all f,
f € Line(R) and x € R the two-sided inequality

Oy (M ) (@) < (MY ) () < Co(M L f) ()
holds

Now Theore (for n = 1) and Proposition yield the following theorem:
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Theorem 1.5.10. Let p, ¢ and o be measurable functions on I =R, 1 <p_ < q_ <
gr < 00, 0 < a_ < ayp < 1. Suppose also that p € G(I). Further, assume that
~r-)" ¢ RD(I). Then My, is bounded from LE(T) to LIO(D) if

w71||L(p*)/(lR) < 0.

B = sup | Xa-na () A
a€R
h>0

Proof. By using Theorem we have that the condition B < oo implies
(d
1M Fll oy < Clfwllar- o

Now Propositions [1.2.5) and [1.5.9| complete the proof. O

Analogously the next statement can be proved:

Theorem 1.5.11. Let p, g and « be measurable functions on I :=R, 1 <p_ < q_ <
g <00, 0<a_ <ay < 1. Suppose also that p € G(I) and that w=?-)" € RDW(I).
Then M, is bounded from L (I) to L1 (I) if

By = sup HX<a7a+h)(‘)h‘”‘(')_1”(')Hmou)HX(a—hﬂ)w_lHL@—)’(z) < oo0.
=

The results of this section imply the following corollaries:

Corollary 1.5.12. Let I :=R and 1 <p<q <qy <00, 0 < a_ < ay <1, where
p is constant. Assume that w™? € RDY(R). Then M

(y is bounded from L3 (I) to
Lg(')(I) if and only if

) HX(CW”L HLP < 0.

Sup || X (a-ha(-) hO !
ael
h>0

Corollary 1.5.13. Let I :=R and let 1 < p < q_ < g, < 00, where p is constant.

Suppose that o is a measurable function on R satisfying 0 < a_ < ay < 1. Suppose
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also that w=®-)" € RDYW(I). Then M,y is bounded from from L} (I) to L1y if

and only if

sup HX(a,a+h)(')ho‘(')‘1“(')Hm-)(z)HX<a—hva)w_1HLpf(I) < 0.
h>0

Corollary 1.5.14. Let [ =R, 1 <p_<q_- <qy <00, 0 < a_ <a; <1. Suppose
that p_ = p(c0) and p € Py (I). Assume that w=®-) € RDW(R). Then:

(i) M, is bounded from L%,(I) to L) if B < oo;
(ii) My, is bounded from L%,(I) to LI if B, < .

Proof of Corollary [1.5.12]. Sufficiency is a direct consequence of Theorem [1.5.10]
Necessity follows immediately by applying the two-weight inequality for the test func-

tion f(2) = X(aatm (z)w P (z) (see also necessity of the proof of Theorem for
the details). O

The proof of Corollary [1.5.13]is similar to that of Corollary [1.5.12]

Proof of Corollary [1.5.14] (i) The result follows from Theorem [1.5.10| because the

condition p € P (1) implies that
/ FP@p(e0)/p()-p(00)| 1 < o0
I

Hence, by using the assumption p(oo) = p_ we have that p € G(I).
The second part of the corollary is obtained in a similar manner; therefore it is

omitted. O

The next statement gives the boundedness of M~

() in the diagonal case p = q =

const.

Theorem 1.5.15. Let [ :=R and let 1 < p < 0o, where p is constant. Suppose that
0<a- <ay <oco. Then M;r(.) is bounded from LP (I) to LP(I) if and only if there
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15 a positive constant C' such that for all bounded intervals J C R,

/ WP (z) (M;(,) (w—p’xj) (x))pdx <C / w? (2)dz < oo,
R J

Proof. Sufficiency follows from Proposition [1.5.9] and Theorem for n = 1.

Necessity. For necessity we take f = y; w” in the two weight inequality

lo M5, /]

S C |w f]

Ly(I)
and we are done. O
Analogously the following theorem follows:

Theorem 1.5.16. Let [ :=R and let 1 < p < 0o, where p is constant. Suppose that
0 <a- <ay <oo.. Then My, is bounded from Li,(I) to Li(I) if and only if

/ W () (Moj(_) <w—p’XJ) (:v))pdm <C / w? (z)dz < o0
R J

for all bounded intervals J C R.

Finally we mention that the results similar to those of this section were derived

in [40] for generalized two-sided fractional maximal functions and Riesz potentials.

1.6 Fefferman-Stein Type Inequality

In this section we derive Fefferman-Stein type inequality for the operators M;(‘), M;“(A).

Notice that this inequality for the classical Riesz potentials for the diagonal case was

established by E. Sawyer (see, e.g., [85]).

Theorem 1.6.1. Let o, p and q be measurable functions on I = R. Suppose that
l<p_.<qg <qgi<ooand0<a_ <ay <1/p_. Suppose that p € G(I). Then the

following inequalities hold:

JoC AL DO oy < ellF O o) o (16.1)
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() My £ Ol zaorgy < el FENT ) Ol oo ), (1.6.2)
where

(Vo) @) = suph o o0 () o
>

(Nojr(-)v)(x) = iulghil/p_”U('>ha(.)X(z,x+h)(‘)HLq(~)(R)~
>

Proof. We prove . The proof of is the same. First we show that the
inequality

[ AL DOl @y < ellf O N0) o)
holds. We repeat the arguments of the proof of Theorem [1.5.1] for one-dimensional

dyadic intervals J and construct the sets F;. Taking h, |[h|| @cy/m @ < 1, where
p_ <r < q_, by using Lemma [1.2.10, and Proposition we have that

@O s hde = S [ o (UG8 @

R JE€Dm (R)

<c Y ( /F J vr(x)|J|<a<x>—1>rh(m)dm) ( /J . f(t)dt)r

JEDm(R)
<
<c Y N ) . ( /J ) f(t)dt)

JeD, (R)
t)dt
o[ 702)

<e 3 [ OMIEO e 0
e Y ( / f(a:)Hv<->|J|“<'>‘1><FJ<->HMR)“)T

’ Ur(.),J\(a(')*l)’”h(-)XFJ(')’

JEDm (R)

JEDm(R)
= —r/(p-) N 71a()=1/p— ) "
5 ([ s ] )
JEDm (R)
<c Z ]J‘r/(p—)z(/ f(x)(]va(,)v)(a:)dx)
JEDm (R) J*

< el FO Ny 2) Ol ) < el F QN Ol
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Here we used the inequality

< Ca,p(N(;(.)U) (l’), S J—‘rv

V(IO ()]

L) (R)

which follows in the same manner as Lemma was proved. Now Proposition [I.5.9]

completes the proof. O

1.7 The Trace Inequality for One-sided Potentials

Let .
t
Ro(yf(x) = / - _ft ()1)_@(@ . z€eR,
Wa()f(JT) = / (t_];;;l)a(:p)dt’ T € ]R,

xT

where « is a measurable function on R with 0 < a_ < ay < 1. Here we establish
criteria which guarantees the boundedness of R,y and Wy from LPU)(I) to Lg(')(I).

It would be useful to have the next result.

Theorem 1.7.1 ([40]). Suppose that 1 < p < q_ < q, < oo, where p is constant,
and q 1s a measurable function on R. Let 0 < a_ < ay < 1. Then the generalized

Riesz potential

_ f(y)
R
is bounded from LP(R) to Lg(')(R) if and only if
su Y TEO . J 3 < 00, 1.7.1
sup [[xs() 11| oo gy |1 (1.7.1)
where the supremum is taken over all bounded intervals J C R.

Now we discuss the main results of this section:
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Theorem 1.7.2. Let I := R and let measurable functions p, q, and « satisfy the

conditions 1 < p_ < q- < qv < 00, 0 < a_ < ay < 1. Further, suppose that
peg().
If

3 1710 o
ilclﬁHXJ() | /] HLZ(')(R)|J| P < oo,

where the supremum is taken over all bounded intervals J C R, then Ry and W,

are bounded from LPO(I) to LI(I).

Proof. The result is a direct consequence of the inequalities

(Ra)f) (@) < (Tar /) (@), (Wayf)(2) < (Tayf) () (f 2 0),
Theorem and Proposition [I.2.5 O

Theorem 1.7.3. Let I := R and let p,q and « satisfy the conditions of Theorem
1.7.1. Then the following conditions are equivalent:
i) Ra() is bounded from LP(I) to L,‘i(')(l),-

(
(ii) Way is bounded from LP(I) to LAO(D);
(iii) condition ) holds.

Proof. The implications (iii) = (i), (iii) = (ii) follow from Theorems|(1.7.2)and |1.7.1}

Let us now show that (i) = (iii). Let f(2) = X(4,a+n)(x), Where a € R and h > 0.
Then || f||zr@) = hr. On the other hand,

a

dt
R oy 2 [rewan)( [ =iz )

a—h
Ol x(@asn) (V| a0 gy

LIV (R)

Vv

Hence, (i) implies that

[X@asm O]y gh 7 < €
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for all @ € R and h > 0. This implies (iii). Analogously the implication (ii)=-(iii) can
be derived. O

1.8 Hardy-Littlewood Type Inequalities

The results of the previous section enable us to formulate necessary and sufficient
conditions governing the Hardy-Littlewood ( see [30]) type inequalities for the one-
sided potentials. For these inequalities in the classical Lebesgue spaces we refer also
o [82]. In particular, we give necessary and sufficient conditions on ¢, p and « for

which R,y and W, are bounded from L” to L0) | where p is constant.

Theorem 1.8.1. Let I = R and let p,q and « satisfy the conditions of Theorem
1.7.1]. Then the following conditions are equivalent:

(1) Rag is bounded from LP(I) to L1(I);

(i) Waqy ds bounded from LP(I) to L1O(I);

ol _1
(i) sup [[xs () 11 oo )| 177 < o0

where the supremum is taken over all bounded intervals J in R.

1.9 Two-weight Inequalities for Monotonic Weights

This section deals with the two-weight estimates of the one-sided maximal functions
and one-sided potentials defined on Ry := [0, 00).

Let us consider the following Hardy-type operators:

( vwf / f dy, LL’ERJr,

and

(T/ / f dy, T € R+.
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In the sequel we will use the following notation:

Let us fix a positive number a and let

_ P, (), if © < a;
po(x) == p_([0,2]), po(z) =1 .
pe = const, if z > a,

_ (), if z < a;
pi(x) :=p_([z,a]); p(2) = .
p. = const, if x > a,

I =281 2842 ke Z, B, = [2F, 28], ke Z,

where (0,2) and [0, 2] are open and close intervals respectively.

The following two results were obtained in [22]:

Theorem 1.9.1. Let 1 < p,(x) < p(z) < py < 00, and p is a measurable function on

R, . Suppose that there exists a positive number a such that p(x) = p. = const when

o0 p(z) t _ @’;(ff?z)
Sup/ <v(93)> / w(y) P @ gy dx < oo,
>0 Jy 0

then T, is bounded in LPO(R,).

x>a. If

Theorem 1.9.2. Let 1 < p,(x) < p(z) < py < oo,and p is a measurable function on

R,. Suppose that there exists a positive number a such that p(z) = p. = const, when

¢ % )
~\, (p1) (=)
sup / (v()" ( / w(y) ™) %) " dr < oo,
0 t

x>a. If

t>0

then T}, is bounded in LPO(R,).

The next two lemmas will be useful for us.
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Lemma 1.9.3 ([5]). Let 1 < p_ < p(z) < ¢q(x) < g < oo, p € LH(R,) and let
p(z) = p. = const, q(x) = q. = const when x > a for some positive number a. Then
there exist a positive constant ¢ such that

Z H fXIi

)

o)l 9xn lvoeoy < el Fllmoeoll 9 leow,)

for all fand g with f € LPO)(R,) and g € LYO(R,).

Lemma 1.9.4 ([12]). Let p € LH(Ry). Then there exist a positive constant ¢ such

that for all open intervals I in Ry satifying the condition | I |> 0 we have
| I |P-D=PrD< ¢

Now we prove some lemmas.

Lemma 1.9.5. Let 1 < p_ < po(z) < p(z) < p, < oo, where p is a measurable
function on Ry, and let p(x) = p. = const if © > a for some positive constant a.
Suppose that v and w are positive increasing functions on Ry satisfying the condition

p(z)
o0 @ [ [t ., Gor @
B := sup/ (v(m))l’ (/ w(y)~Po) (r)dy> T dr < o (1.9.1)
t 0

t>0 X

Then v(4x) < cw(z) for all x > 0, where the positive constant ¢ is independent of x.

v(4t)

o) < oo follows from the

Proof. First assume that 0 < t < a. The fact that ¢ = %
inequalities:

p(z)

00 p(z) t ., CILE)
t T 0
8t p(z) oz
> / (U(4t)) .t%ﬁff;) 7 P@)
4t w(t)
P8t p_
<v(4t)> / S+ @) oy > e <U(4t)> ’

w(t) 4t w(t)

v
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where the positive constant ¢ is independent of a small positive number ¢.
Further, suppose that 0 is a positive number such that v(4t) < (¢4 1)w(t) when ¢t < 6.

If 0 < a, then for all 6 <t < a, we have that
v(4t) < w(da) < cw(d) < cw(t),

where ¢ depends on v, w and d. Now it is enough to take ¢ = max{(¢ + 1),¢}.

Let now a <t < co. Then p(x) = p. = const for x > t and, consequently,

e ([ () ) ([ oo ()

The lemma is proved. O

The proof of the next lemma is similar to that of the previous one; therefore we

omit it.

Lemma 1.9.6. Let 1 < p_ < pi(x) < p(z) < p, < oo, and let p(z) = p. = const
if © > a for some positive constant a. Suppose that v and w are positive decreasing
functions on R. If
t - ot
B = sup / (v(z)P@ ( / (w(y)) '@ dy) " e < oo, (1.9.2)
0 t

then v(x) < cw(4x), where the positive constant ¢ does not depend on x > 0.

Theorem 1.9.7. Let 1 <p_ <p, < oo andletp € LH(R,). Suppose that p(x) =
pe = const if € (a,00) for some positive number a. Let v and w be weights on R
such that

(a) Ty s bounded in LPO(R,);

(b) there exists a positive constant b such that one of the following two conditions
hold:

(i) esssupv(y) < bw(x) for almost all = € Ry;
ye[§ 4]
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(i) w(z) <b es[s iilﬂ w(y) for almost all x € R,.
y€[7 4z

Then M~ is bounded from L5 (Ry) to L5V (R,).

Proof. Suppose that HgHLp/(A)(R” < 1. We have

2k+1

/OEM_f<5U>) x)dr < Z/ (M~ fir(z))v(z)g(z)de
0 kEZ
2’”1 2k+1
keZ keZ

where f1x = [ Xjo,26-1]5 Jok = J - X[er+t,00]s S3k = [+ Xor—1 2642
If y € [0,2%1) and 2 € [2F, 2%, then y < 2/2. Hence x/2 < x — y. Consequently, if

h < /2, then for x € [2¥71,2%2] we have

1 /[® 1 /[®
ﬁ/ | fir(y) | dy = ﬁ/ | [+ X201 | dy = 0.
z—h z—h

Further, if h > 7, then

1 [ 1 [" 1 [
—/ | fie(y) [dy = —/ | f X1 | dy < ¢ —/ | f(y) | dy.

This yields that

M) <oy [T dy for ae ph 2

Hence, due to the boundedness of T, 5 in LP®) (R, ) we have that

(e}

S < o / (Tl 1) (%) g(x)da

0
< | Toalfl e @y - 19wy < € lfwllo@,)-

Observe now that Sy = 0 because fo = f - Xjgr+2o). Let us estimate S3. By using

condition (i) of (b), boundedness of the operator M~ in LP*)(R,) and Lemma m
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we have that

Sz < CZ(GSSESUPU)HM_f?),k(')”LP(')(RJr)'||g(')XEk||LP'(')(R+)
k k

< CZ(GSS]EiUP U)Hf(')XIk||LP(~>(R+) ' Hg<'>XEk”LP/(')(]R+)
k

< e FQw)lleo @,
If condition (ii) of (b) holds, then

<b essinf <b inf < bw(z),
v(z) < S‘S[ng?z]w(w— ye(ggggw)w(y)_ w(z)

for z € E), and = € I;,. Hence,
esssup < bw(z),
Ey
it x € I. Consequently, taking into account this inequality and the estimate of S3 in

the previous case we have the desired result for M. O

Theorem 1.9.8. Let 1 <p < p, < oo andletp € LH(Ry). Suppose that p(z) =
Pe = const if x > a, where a is some positive number. Let v and w be weight functions
on R,y such that

(a) T, is bounded in LPO)(R,);

(b) there ezists a positive constant b such that one of the following two conditions
holds:

(i) esssupw(y) < bw(x) for almost all = € Ry;
y€[F 4a]

(ii) v(x) <b es[s inf] w(y) for almost all z € Ry.
ye %,4m

Then M™ is bounded from Lﬁ,(')(]RJr) to ij)(')(RJr).
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Proof. Suppose that [|g||z»z,) < 1. We have

2k+1

/OEMJrf(x)) x)dr < Z/ M+f1k ( )g(z)dx

0 kEZ

+Z/ M+f2k d$+2/ M+f3k ( )g(x)dxz:Sl—i—Sg—i—Sg,
kEZ kEZ

where f; 5, @ = 1,2,3 are defined in the proof of the previous theorem. It is easy to

see that S; = 0. To estimate Sy observe that

My @) < e sup 27 [ 17@ldy o € B (1.9.3)

J=2k+2

Indeed, notice that if y € (2¥*2, 00) and x € Ej, then y — x > 251, Hence,

1 x+h 1
s i<y [ =

{yy—z<hy—az>2k+1}

for h < 2kt and x € I,.
Let now h > 281 Then h € [27,27%1) for some j > k + 1. If y — x < h, then it is
clear that y =y —x + 2 < h+ 2 < 2T 4 2k <23+ 4 97 < 27+2 . Consequently, for

such an h we have that

z+h z+h
5 [ 1slay = 3 [ wemtiv<s [ Wl
T T {y:y—z<h,y>2k+2}
1 j+1 2
<2 m<ZW/uwy
i=k+2 .

{y: yel2htz,272]}
which proves inequality 1)
Taking into account estimate and the boundedness of 77 in LP*)(R,) we find

that

Sy < cZ/ (JiliElQ ]/!f(y)ldy)dx

kEk



44

cog (fromon) (£ 1)

j=k+1

( / i) S ([ eutaras)

k=—o00 o

Z
O3 ( / iy ) / BreED Y| If(y)!y1</y (ool o) dy
— 171 o / (el )y = [ olo)gle) 7 )]y )do

+

<c “9”1;10/(»)1[@+ : ”Té(-),l/-f||LP(‘)R+ < Cwa||LP(')IR+'

To estimate S3 assume that condition (i) of (b) is satisfied. By Lemma and the

boundedness of the operator M+ in LP()(R,) we conclude that

Ey

Sy < ey (esssupv)|MF fau()llpeor sy - 19C)XEN 1o ey
k

< CZ(QSSESUP U>||f(‘)XIk||Lp<->(R+) ’ ||g(')XEk||LP'(')(R+)
k
< CZ £ (w(-)xz, )HLP<'>(R+) : ||9(')XEkHLp’(-)(R+)
< ¢ Hf(')w(')HLP<‘>(R+) NgOllproe,y < e lfFQwlliroe,)-

]

Theorem 1.9.9. Let 1 < p_ < po(x) < p(z) < p, < oo and let p € LH(R,).
Suppose that p(x) = p. = const if © > a, where a is a positive constant. Assume that
v and w are positive increasing weights on (0,00). If condition s satisfied,
then M~ is bounded from L (RT) to LBV (R*).

Proof. The proof follows by using Lemma [1.9.5 and Theorem [1.9.7]| [
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Theorem 1.9.10. Let 1 < p_ < pi(z) < p(z) < p, < oo, and let p € LH(R,).
Suppose that p(r) = p. = const if © > a, where a is some positive constant. Let v
and w be positive decreasing weights on (0,00). If condition 1$ satisfied, then
M+ is bounded from LE(RT) to LEO(R*).

Proof. The proof follows immediately from Lemma [1.9.6| and Theorem [1.9.8 O]

Now we discuss two-weight estimates for the one-sided potentials defined on R,

where z > 0 and 0 < o < 1.

The following two statements were proved in [23]:

Theorem 1.9.11. Let I = R and let p € P(I). Suppose that there exists a positive

constant a such that p € Py ((a,00)). Suppose that v is a constant on I, 0 < a < p%
I
and q(z) = &~ Then W, is bounded from LPO(I) to LIO(I).

1—ap(z)”

Theorem 1.9.12. Let [ =R, and let p € P_(I). Let a be a constant on I, 0 < a <

p% and let q(z) = l_po(;)(m). Suppose that p € Ps((a,00)) for some positive number a.
I

Then Ry is bounded from LPO)(I) to LIO)(I).

Remark 1.9.1. Theorems [1.9.11| and [1.9.12] are true if we replace the condition p €

Poo((a,00)) by the condition: p is constant outside an interval (0, a) for some positive

number a.

Now we are going to prove the main results regarding the one-sided potentials:
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Theorem 1.9.13. Let 1 < p_ < p, < o0, a < 1/py, q(z) = 1 p@s 290)7 p € LH(R,).

Suppose that p(x) = p. = const if x > a, where a is some positive number. Let v and

w be a.e. positive measurable functions on R, satisfying the conditions:

(a) Ty, is bounded in LPO(R,),

(b) there exists a positive constant b such that one of the following two conditions
hold:

(i) esssupwv(y) < bw(x) for almost all v € Ry;
y€E[§ 4]

(i) wv(z) <b es[s i{llf] w(y) for almost all © € R,.
ye %, T

Then Rq, is bounded from Li(R.) to LIV(R,).

Theorem 1.9.14. Let 1 < p_ < p, < o0, a < 1/py, q(z) = OE 2@, p € LH(R,).

Suppose that p(x) = p. = const if x > a, where a is some positive number. Let v and
w be a.e. positive measurable functions on R, satisfying the conditions:

(a) T}, is bounded in LPV)(R,),

(b) there exists a positive constant b such that one of the following two conditions
hold:

(i) esssupov(y) < bw(z) for almost all x € Ry;
y€[F 4]

(ii) v(x) <b es[s 151f] w(y) for almost all z € Ry.
ye x

Then W, is bounded from pr(')(]RJr) to LZ(')(RJF).

Proof of Theorem [1.9.13] Let f > 0 and let ||g||Lq/<.)(R+) < 1. It is obvious that

| Res@ye@saae <3 [ Rafia)lalgta)ds
+Z/ (Rafoi(z )v(x)g(x)d:v—i—Z/zk (Ra fax(2)) v(2)g(x)dz

= Sl +SQ+53,
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where f; 5, @ = 1,2,3 are defined in the proof of Theorem [1.9.7]
If y € [0,2"") and = € 2%, 2], then y < £. Hence

C

Rozfl,k(‘r) S

/x ft)dt, = [287t 22
0

By using Holder’s inequality, Theorem Remark we find that condition (i)

xl—a

guarantees the estimate
St < CwaHLP(‘)(R)‘

Further, observe that if z € [2%,2""1) then R, fox(7) = 0. Hence Sy = 0.

To estimate S3 we argue as in the case of the proof of Theorem [1.9.7] m

The proof of Theorem [1.9.14] is similar to that of Theorem [1.9.13} therefore it is
omitted.

Now we formulate other results of this section:

Theorem 1.9.15. Let 1 < p_ < py < oo and let a be a constant satisfying the

condition o < 1/py. Suppose that q(z) = L)() and p € LH(R,). Assume that

l—ap(x

p(z) = p. = const outside some interval [0,a], where a is a positive constant. Let v

and w be positive increasing functions on R satisfying the condition

a(z)
o0 t (Po) (=)

/ (v ()7 / W@ () dy i < oo,

t 0

Then Ry is bounded from LA (R) to LI (R).

Theorem 1.9.16. Let 1 < p_ < py < oo and let o be a constant satisfying the

condition o < 1/p,. Suppose that q(z) = lf’(i;zx) andp € LH(R,). Suppose also that

p(x) = p. = const outside some interval [0, al, where a is a positive constant and that

v and w are positive decreasing functions on R, satisfying the condition

p(x)
t oo ., 1) (@
sup [ ([ @™ ay) " b < o
0 ¢

t>0
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Then W, is bounded from LA (R) to L1V(R).

The proofs of Theorems [1.9.15| and [1.9.16| are based on Theorems [1.9.13

and the following lemmas:

Lemma 1.9.17. Let the conditions of Theorem [1.9.15| be satisfied. Then there is a

positive constant ¢ such that for all t > 0 the inequality
v(4t) < cw(t)
is satisfied.

Lemma 1.9.18. Let the conditions of Theorem [1.9.16| be satisfied. Then there is a

positive constant b such that for all t > 0 the inequality
v(t) < bw(4t)
holds.

The proof of Lemma [1.9.17| (resp [1.9.18)) is similar to that of Lemma [1.9.5} there-

fore we omit it.

1.10 Riemann-Liouville Operators on the Cone of
Decreasing Functions

In this section necessary and sufficient conditions governing the one-weight inequality
for the Riemann-Liouville transform on the cone of decreasing functions for variable

exponent are obtained. First we show that the two-sided pointwise estimate

aTf(z) < Raf(x)) < Tf(x),
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holds on the class of functions f : R, — R, which are non-negative and decreasing,

where

T

Tf(x):i/f(t)dt and Raf(x):x—lcl/%dt, 0<a<l.
0 0

By the symbol Tf ~ K f, where T and K are linear positive operators defined on
appropriate classes of functions, we mean that there are positive constants ¢; and ¢y

independent of f and x such that
alf(r) < Kf(z) < T f(x).
Let p: R, — R, be a measurable function, satisfying the conditions

p_ =essinfp(z) >0, py =esssupp(zr) < 0.
zeRy T€R4

Suppose that u is a weight on (0,00). Let us define the following local oscillation of
p:
Ju(s) =  esssu r)— essinf T).
Pr0)uld) xE(O,ﬁ)ﬁsuI:)pup( ) 16(076)05uppup( )

We observe that ¢, () is non-decreasing and positive function such that
1 op0).u0s) = P — P

where p/ and p; denote, respectively the essential supremum and infimum of p on

the support of u.

Definition 1.10.1. Let D be the class of all non—negative decreasing functions on
R, . Suppose that u is a measurable a.e. positive function (weight) on R, . We denote

by L@ (u,R,) the class of all non-negative functions on R, for which

S,(fu) = [ 1@ ua)ds < .

By the symbol L2 (u,R,) we mean the class LP@ (u, R, )N D.

dec
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Now we list the well-known results regarding the one-weight inequality for the

operator T. For the following statement we refer to [4].

Theorem 1.10.1. Let r be constant such that 0 < r < co. Then the inequity

/u (Tf(x))"dx < C’/u ) dz, fer,. (uRy)
0 0

holds, if and only if there exists a positive constant C such that for all s > 0

7(2)%@)@ < C'/Su(x)dac. (1.10.1)

S

Condition (1.10.1)) is called the B, condition and was introduced in [4].

Theorem 1.10.2 ([6]). Let u be a weight on (0,00) and p : Ry — Ry such that
0 <p_ < py < oo, and assume that @,y us) = 0. The following facts are equivalent:
(a) There exists a positive constant C such that for any positive and non-increasing

function f,

/ (Tf(x))p(m)u(:c)dx < C’/ (f(x))p(x)u(x)dx.
(b) For any r,s > 0,

oo

/ (é)pu)u@f) < C/ Zﬁi?dm

T 0
(€) Plsuppu = Do a.e and u € By,.

Our result in this section is the following statement:

Proposition 1.10.3. Let u be a weight on (0,00) and p : R, — R, such that
0 <p_ < py <oo. Assume that py i) = 0. The following facts are equivalent:
(i) R, is bounded from Ldgc) (u,Ry) to LP@ (u,R,);

(ii) condition (b) of Theorem [1.10.2| holds;
(iii) condition (¢) of Theorem [1.10.2] holds.
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Proof. In view of Theorem [1.10.2| it is enough to show that the following relation

concerning the operators R, and 7 holds:
R.f~Tf, 0O<a<l, feD.

Upper estimate. Represent R, f as follows:

x/2 x
_ 1 t 1 t
Raf(l') = — / (Ldt + LU_O‘ Ladt = Sl(a;) + SQ(I')
0

r —t)l-e (x — )~
x/2

Observe that if ¢ < x/2, then x/2 < x — t. Hence,

x/2

Si(z) < ci / F(t)dt < cTF(x),

where the positive constant ¢ does not depend on f and x. Using the fact that f is

non-increasing we find that
Sa(x) < cf(x/2) < T f(x).

The lower estimate follows immediately by using the fact that f is non-negative

and the obvious estimate x — ¢ < z where 0 < ¢ < x. O



Chapter 2

Integral Operators in L) Spaces
Defined on Spaces of Homogeneous

Type.

2.1 Introduction

In this chapter we study the two-weight problem for Hardy-type, maximal, poten-
tial and singular operators in Lebesgue spaces with non-standard growth defined on
quasi-metric measure spaces. In particular, we derive sufficient conditions for the
boundedness of these operators in weighted LP() spaces which enable us effectively to
construct examples of appropriate weights. The conditions are simultaneously nec-
essary and sufficient for corresponding inequalities when the weights are of special
type and the exponent p of the space is constant(see, e.g.,[20]). We assume that the
exponent p satisfies local log-Holder continuity condition and if the diameter of X is
infinite, then we suppose that p is constant outside some ball. In the framework of
variable exponent analysis such a condition first appeared in the paper [12], where
the author established the boundedness of the Hardy-Littlewood maximal operator
in LPO)(R™). As far as we know, unfortunately, even in the unweighted case, an ana-

log of the log-Hélder condition (at infinity) for p : X — [1,00) which is well-known

52
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and natural for the Euclidean spaces is not available. (see [9], [71], [7]). The local
log-Holder continuity condition for the exponent p together with the log-Hélder decay
condition guarantees the boundedness of operators of harmonic analysis in LP¢)(R")
spaces (see e.g., [10]).

It should be emphasized that in the classical Lebesgue spaces the two-weight
problem for fractional integrals is already solved (see [38], [36]) but it is often use-
ful to construct concrete examples of weights from transparent and easily verifiable
conditions.

Finally we mention that some examples of weights for appropriate two—weight

inequalities are given.

2.2 Preliminaries

Let X := (X,d, u) be a topological space with a complete measure p such that the
space of compactly supported continuous functions is dense in L'(X, ) and there
exists a non-negative real-valued function (quasi-metric) d on X x X satisfying the
conditions:
(i) d(z,y) = 0 if and only if z = y;
(ii) there exists a constant a; > 0, such that d(z,y) < ai(d(z,z) + d(z,y)) for all
x, Y, 2 € X;
(iii) there exists a constant ag > 0, such that d(z,y) < apd(y, z) for all z, y, € X.

We assume that the balls B(x,r) := {y € X : d(z,y) < r} are measurable and
0 < u(B(z,r)) < oo for all x € X and r > 0; for every neighborhood V' of z € X,
there exists r > 0, such that B(z,r) C V. Throughout the chapter we also suppose
that p{z} = 0 and that

B(z,R)\ B(z,r) # 0 (2.2.1)
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for all x € X, positive r and R with 0 < r < R < L, where
L := diam (X) = sup{d(z,y) : z,y € X}.

We call the triple (X, d, 1) a quasi-metric measure space. If u satisfies the doubling
condition

u(B(z,2r)) < cep(B(z,r)),

where the positive constant ¢ does not depend on = € X and r > 0, then (X, d, u)
is called a space of homogeneous type (SHT). For the definition, examples and some
properties of an SHT see, e.g., the monographs [89], [8], [26].

A quasi-metric measure space, where the doubling condition is not assumed is
called a non-homogeneous space.

Notice that the condition L < oo implies that u(X) < oo because we assumed

that every ball in X has a finite measure.

Definition 2.2.1. We say that the measure u satisfies the doubling condition at the
point zy (u € DC(xp)) if there are positive constants D and D; (which might be

depended on xg) such that for all 0 < r < Dy, the inequality
M(B(x(% QT)) < DN(B(I‘% 7”)),
holds.

Definition 2.2.2. We say that the measure y is upper Ahlfors Q- regular if there is

a positive constant ¢, such that puB(z,7) < ¢;7% for for all z € X and r € (0, L).

Definition 2.2.3. We say that the measure p is lower Ahlfors g— regular if there is

a positive constant ¢y such that uB(xz,r) > cor? for all z € X and r € (0, L).

It is easy to check that if (X, d, p) is a quasi-metric measure space and L < o0,

then p is lower Ahlfors regular (see also, e.g., [31] for the case when d is a metric).
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Despite the fact that the definitions and some properties of the variable exponent
Lebesgue spaces defined on €2 C R"™ are given in Section 1.2, it would be convenient
for the reader to repeat them for quasi-metric measure spaces.

Let p be a non—negative — measurable function on X. Suppose that E is a u—

measurable set in X. We use the following notation:

p-(E) :=infp; pi(E):= Supp; - p- =p_(X); py = p(X);

— — 1

By 1= e dle.))s 5= — / (@)l do);
kB(x,r) = B(x, kr); By, = B(x,d(x,y));
B(x,r):={ye X : dx,y) <r}.

Assume that 1 < p_ < p, < co. The variable exponent Lebesgue space LP()(X)
(sometimes it is denoted by LP(*)(X)) is the class of all g-measurable functions f
on X for which S,(f) := [|f(2)P®du(z) < co. The norm in LPV)(X) is defined as
follows: "

£l e (x) = Inf{A > 0 S, (f/A) < 1}.
We need some definitions for the exponent p which will be useful to derive the

main result.

Definition 2.2.4. Let (X, d, 1) be a quasi-metric measure space and let N > 1 be
a constant. Suppose that p satisfy the condition 0 < p_ < p, < oo. We say that
p belongs to the class P(N,x), where z € X, if there are positive constants b and ¢

(which might be depend on z) such that

u(B(z, Nr))p-Blam)=p+(Bn) < ¢ (2.2.2)

holds for all r, 0 < r < b. Further, p € P(N) if there are a positive constants b and ¢
such that (2.2.2)) holds for all z € X and all r satisfying the condition 0 < r < b.
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Definition 2.2.5. Let (X, d, ) be an SHT. Suppose that 0 < p_ < p; < co. We
say that p € LH(X, z) ( p satisfies the log-Hélder- type condition at a point z € X)

if there are positive constants b and ¢ (which might be depend on x) such that

Ip(z) —p(y)| < ‘ (2.2.3)

~ —In(u(Byy))
holds for all y satisfying the condition d(x,y) < b. Further, p € LH(X) ( p satisfies

the log-Holder type condition on X)if there are positive constants b and ¢ such that
(2.2.3) holds for all z,y with d(z,y) <.

We shall also need another form of the log-Ho6lder continuity condition given by

the following definition:

Definition 2.2.6. Let (X, d, 1) be a quasi-metric measure space and let 0 < p_ <
py < oo. We say that p € LH(X, z) if there are positive constants b and ¢ (which
might be depended on z) such that

C

Ip(z) —p(y)| < “hdrg) (2.2.4)

for all y with d(z,y) < b. Further, p € LH(X) if (2.2.4) holds for all z,y with
d(xz,y) <b.

It is easy to see that if a measure p is upper Ahlfors Q-regular and p € LH(X)
(resp. p € LH(X,)), then p € LH(X) (resp. p € LH(X,x). Further, if p is lower
Ahlfors g-regular and p € LH(X) (resp. p € LH(X,x)), then p € LH(X) (resp.
p€ LH(X,x)).

Remark 2.2.1. Tt can be checked easily that if (X,d,p) is an SHT, then puB,,. ~
pBiay-

Remark 2.2.2. Let (X, d, ) be an SHT with L < co. It is known (see, e.g., [31], [41])
that if p € LH(X), then p € P(1). Further, if u is upper Ahlfors Q-regular, then the
condition p € P(1) implies that p € LH(X).
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Proposition 2.2.1. Let ¢ be a positive constant and let 1 < p_(X) < pi(X) < o0
andp € LH(X) (resp. p € LH(X) ), then the functions cp(-), 1/p(-) and p'(-) belong
to LH(X) ( resp. LH(X) ). Further if p € LH(X,x) (resp. p € LH(X,x)) then
ep(s), 1/p(-) and p'(-) belong to LH(X,x) ( resp. p € LH(X,z) ).

The proof of the latter statement can be checked immediately using the definitions
of the classes LH (X, ), LH(X), LH(X, ), LH(X).
Proposition 2.2.2. Let (X,d, i) be an SHT and let p € P(1). Then (uBy,)P® <
By )PY) for all z,y € X with u(B(z,d(x,y))) < b, where b is a small constant and

the constant ¢ does not depend on x,y € X.

Proof. Due to the doubling condition for u, Remark the condition p € P(1)
and the fact = € B(y, a1(ap + 1)d(y, x)) we have the following estimates:

H(Bay)" < u(Bly. ar(ao+ V()" < cuB(y, ar(ao+1)d(w, y))") < e(uBy.)",
which proves the statement. O

The proof of the next statement is trivial and follows directly from the definition

of the classes P(N,x) and P(N). Details are omitted.

Proposition 2.2.3. Let (X,d,pn) be a quasi-metric measure space and let xq € X.
Suppose that N > 1 be a constant. Then the following statements hold:

(i) If p € P(N,xq) (resp. p € P(N)), then there are positive constants 1o, ¢,
and ¢y such that for all 0 < r < ry and all y € B(xg,r) (resp. for all x¢,y with

d(xg,y) <1 <rg), we have that
u(Blao, N1))"™ < capu(Blan, N7)"™ < eopp(Blag, Nr))*.

(ii) Let p € P(N,xo). Then there are positive constants o, ¢; and ¢y (in general,

depending on o) such that for allr (r < ry) and all z,y € B(xqg,r) we have

p(Blao, Nr)™ < erpp(Blao, Nr)™™ < eap(Blao, N7))".
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(iii) Let p € P(N). Then there are positive constants ro, ¢1 and co such that for
all balls B with radius v (r <1o) and all x,y € B, we have that

,u(NB)p(x) < clu(NB)p(y) < CQ;J,(NB)”(”).

It is known that (see, e.g., [57], [78]) if f is a measurable function on X and FE is

a measurable subset of X, then the following inequalities hold:

Hf| Lp()(E <S5 (fXE) < ||fHLp() Hf”LP(‘>(E) <1

E
11508 < Solfxe) < IS5 1 o) > 1.

Further, Holder’s inequality in the variable exponent Lebesgue spaces has the

following form:
[ tou < (Vo-(B) + 1/6)-(B) 1 sl avie
E

Lemma 2.2.4. Let (X,d, p) be an SHT.

(i) If B is a measurable function on X such that G, < —1 and if v is a small
positive number, then there exists a positive constant ¢ independent of r and x such
that

/ (4Baoy)*@dpu(y) < 2L (B (g, r)s@t,

X\B(zo,r)
(ii) Suppose that p and o are measurable functions on X satisfying the conditions
1 <p_<py <ooanda_>1/p_. Then there exists a positive constant ¢ such that

for all x € X the inequality

a(z)—1)p'(z a(z)—1)p' (z)+1
/ (nB(x, d(z,9)) """ Vdu(y) < e(uB(ao, d(wo, 2))) O,

B(z0,2d(z0,x))

holds.
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Proof. Part (i) was proved in [41] (see also [20], p.372, for constant 3). The proof of
Part (ii) is given in [20] (Lemma 6.5.2, p. 348) for constant o and p but repeating
those arguments we can see that it is also true for variable o and p. Details are

omitted. O

Lemma 2.2.5. Let (X,d, ) be an SHT. Suppose that 0 < p_ < py < oo. Then p
satisfies the condition p € P(1) (resp. p € P(1,z)) if and only if p € LH(X) ( resp.
p€e€ LH(X,x)).

Proof. We follow [12]. Necessity. Let p € P(1) and let z,y € X with d(z,y) < ¢ for
some positive constant ¢g. Observe that x,y € B, where B := B(x,2d(z,y)). By the

doubling condition for p we have that
(quy) —Ip(z)—p(y)| < C(/LB) —|p(z)—p(y)| < C(MB)p,(B)_m(B) <c

where C' is a positive constant which is greater than 1. Taking now the logarithm
in the last inequality we have that p € LH(X). If p € P(1,z), then by the same
arguments we find that p € LH(X, z).

Sufficiency. Let B := B(xg,r). First observe that If z,y € B, then uB,, <
cuB(xg, 7). Consequently, this inequality and the condition p € LH (X)) yield |p_(B)—

p+(B)] < ——%——. Further, there exists ro such that 0 < r, < 1/2 and
—1In (couB(:po,r))

In (,u(B))
T —In (Cop,(B)

o < a0 on ) <

Let now p € LH(X, z) and let B, := B(x,r) where r is a small number. We have that

) < ¢, 0 < r <1y, where ¢; and ¢y are positive constants. Hence

B, —pl) < ———5——~ < ———~¢ —— for some positive
p+(Bz) — p(x) 71n<ch(xr) d p(z) — p-(Be) T (couB(x,r)) p



60

constant ¢g. Consequently,

_ T)— Bz _(Bz)—p(x
(M(Bm))p,(B,c) p+(Bz) (,U/(Ba:))p() P+ ( )(,U(Bw))p (Bz)—p(x)

< ¢(u(B,)) B < (),

To present more results we need the following definition:

Definition 2.2.7. A measure p on X is said to satisfy the reverse doubling condition
(u € RDC(X)) if there exist constants A > 1 and B > 1 such that the inequality
1(B(a, Ar)) > Bu(B(a,r)) holds.

Remark 2.2.3. Tt is known that if all annuli in X are not empty (i.e. condition ({2.2.1)
holds), then p € DC(X) implies that u € RDC(X) (see, e.g., [89], p. 11, Lemma
20).

Lemma 2.2.6. Let (X,d, ) be an SHT. Suppose that there is a point xo € X such
that p € LH(X,zg). Let A be the constant defined in Definition 22717 Then there
exist positive constants ro and C' ( which might depend on xy ) such that for all r,
0 <r <y, the inequality

(H,BA)Pf(BA)_p+(BA) <C

holds, where B := B(xq, Ar) \ B(xo,7) and the constant C' is independent of r.

Proof. Taking into account condition ([2.2.1)) and Remark we have that u €
RDC(X). Let B := B(x,r). By the doubling and reverse doubling conditions we
have that

uBa = uB(xg, Ar) — pB(xg,7) > (B — 1)uB(xo,7) > cu(AB).
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Suppose that 0 < r < ¢y, where ¢j is a sufficiently small constant. Then by using

Lemma 2.2.7] we find that

(MBA)p—(BA)*m(BA) < C(M(AB))I)—(BA)*M(BA) < C(ﬂ(AB))p—(AB)*er(AB) <e.

In the sequel we will use the notation:

B(wo, A¥"'L/a;) if L <o

f1,k1:
B(xg, A¥1/ay) if L= o0,
I B(xo, A¥2a, L) \ B(wo, A¥'L/a;) if L<oo
2k T
B(wg, A¥2a1) \ B(xg, A¥1/ay) if L =o0,
7 X \ B(Io, Ak+2LCL1> if L<oo
3k 1=
X\ B(zg, A¥2a;) if L = o0,
s B(xg, A¥LL) \ B(xg, AKL) if L < oo
k=

B(zo, A1)\ B(x, A¥) if L=oo
where the constants A and a; are taken respectively from Definition and the

triangle inequality for the quasi-metric d, and L is the diameter of X.

Lemma 2.2.7. Let (X,d,p) be an SHT and let 1 < p_(z) < p(z) < q(z) < ¢ (X) <
oo. Suppose that there is a point xo € X such that p,q € LH(X, xq). Assume that if
L = oo, then p(z) = p. = const and q(x) = q. = const outside some ball B(z,a).

Then there exists a positive constant C such that

Z ||fX12,k||Lp('>(X)||gX12,k||qu(')(X) < C”fHLP(')(X)HgHLq’(')(X)
k

for all f € LPO(X) and g € LYO(X).
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Proof. Suppose that L = oo. To prove the lemma first observe that p(Ey) =~
uB(zg, A¥) and u(lyy) =~ puB(zg, A¥7'). This holds because u satisfies the reverse

doubling condition and, consequently,

By, = M(E(xo, AR\ B(a:o,Ak)) — 1B (xo, A — uB(x0, AF)

— 1B (o, AA®) — uB(zo, A¥) > BuB(zo, A*) — uB(xo, A¥) = (B — 1)uB(z0, A¥)
Moreover, the doubling condition yields pE) < uB(zg, AA®) <cuB(zo, A¥), where
¢ > 1. Hence, pEy, ~ uB(xq, A¥).

Further, since we can assume that a; > 1, we find that
play = u(g(xo, Ak+2a1) \ B(xy, Ak_l/al)) = uB(xy, Ak+2a1) — puB(xo, Ak_l/al)
= uB(zy, AA* 1 ay) — uB(zy, A¥ ' Jay) > BuB(xg, A ay) — pB(x, A¥'/ay)
> B*uB(xo, A¥ar) — uB(xo, A" ' ar) > B*uB(x, A" ' Jar) — uB(zo, A" ay)
= (B* = D)uB(xo, A" /ay).
Moreover, using the doubling condition for 1 we have that

plyy < uB(wo, AF2r) < cuB(wo, A1) < uB(xg, A¥Jay) < EuB(wo, A ay).

This gives the estimates
(B — )uB(xo, A" /a1) < p(lay) < EuB(zg, A¥ay).

For simplicity assume that a = 1. Suppose that mg is an integer such that An;—?_l > 1.

Let us split the sum as follows:

S I lloon - N9xe e = 22 () + 20 () = S+ .

i<mg 1>mg

Since p(x) = p. = const, q(xr) = q. = const outside the ball B(z,1), by using

Holder’s inequality and the fact that p. < q., we have

Jo = Z ||fX12,i

i>mg

e(x) * |9X 82, L@ (x) = CHfHLP<'>(X) ) ”gHLq/(')(X)'
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Let us estimate Ji. Suppose that [|f|l 0 x) < 1 and [|gl[pee)x) < 1. Also, by

Proposition we have that 1/¢ € LH(X, x). Therefore by Lemma and the
fact that 1/¢' € LH(X, x) we obtain that

1 1
p(L2k) P20 2 X1 ]| a0 (x) & p(Lop) =720

and
1 1
M(IQ,k) af T2k) oy Hxlz,k HL‘?'(')(X) ~ H(Iz,k) ‘I_(Ik)7

where k£ < my. Further, observe that these estimates and Holder’s inequality yield

the following chain of inequalities:

Ix G lgx 0
J < CZ / H 12,k||Lp (X) “ 12,k||Lq<)(X)XEk(x)du($)

HXIZ,kHLqH(X) ) HXIz,kHLq’<~>(X)

||fXI ||Lp(> ||9XI || ()
B / 2 T Sy (2)dp ()

4y k<mo |X12,kHLq<')(X) HXIQ,IC”LQI(‘)(X)
SC()AmO

XLl o
< CH Z 2k llLP (X)XEk(m)‘

k<mg ||XI2,k||Lq(')(X)

HQXI, HLq'(» X
| o RO,

k<mo HXIz,k||L<1'(')(X)

L) (B(w,A™0 1))

=:cS1(f) - Sa(g)-

Lq’(‘)(ﬁ(zo,AmO+1))

Now we claim that S;(f) < cI(f), where

HfXIz,k HLP(‘)(X)
= Z XEx (")

o Ixmellzee o

LP() (B(xg,Am0t1))

and the positive constant ¢ does not depend on f. Indeed, suppose that I(f) < 1.
Then taking into account Lemma [2.2.6| we have that

1
> WM)/ ||fxf2k||§<p()) dp(w)

k<mg

1 XE il re p()
< ¢ / (Z S (X)XEk(x)> du(x) <ec.

B(wo,A™0+1) k<mo ”XIZI@HLP(')(X)
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Consequently, since p(v) < q(), By, C Iy and || f|| 10 (x) < 1, we find that

du(x) <ec.

/ 10 35 () <

This implies that S;(f) < ¢. Thus the desired inequality is proved. Further, let us

introduce the following function:

= Z b+ (XIQ,k )XEk (y)+
k<2

It is clear that p(y) < P(y) because Ej, C I5. Hence

< CH Z HfXIz,kHLP<'>(X)

k<mo HXI% HLP(‘)(X)

Ek()‘ LP(‘)(E(xo,AmOJrl))
for some positive constant c. Then by using this inequality, the definition of the

p+(I2,%) >

function P, the condition p € LH(X) and the obvious estimate ||X12k||Lp() ¥) 2

cu(Iy ), we find that

X1yl Lo x P(z)
/ (Z Ly e ) du()

B(xg,Amot1) k<mg HXIZkHLP(‘)(X)

p+(I2,k)

||fXI2kHL (X
P )
- / Z p+(I2,k) XEk(x))d’u(x)

k<mg ||X12k’ Lr()(X)

E(wo ,Am0+1)

p+(I2,k)

HfXIQkHLP()
X) p+(I2,k)
¢ / ( Z ,u([2 k) XEk(ff)) < ¢ Z HfXI2 k ”LP( )2(X)

E(I07Am0+1) k<mg k<mg

Y [U@rut <c/!f PO du(z) <

k<m01

IN

IN

Consequently, I(f) < ¢ fllze0)(x). Hence, Si(f) < c|fllze0)(x). Analogously taking
into account the fact that ¢ € DL(X) and arguing as above we find that S3(g) <
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cllgll o) (x)- Thus summarizing these estimates we conclude that

Do xalowlgxelvow < elfllwocolgloe:

1<mg

]

Lemma for LP()([0, 1]) spaces defined with respect to the Lebesgue measure
was derived in [55] (see also [24] for X = R"™, d(z,y) = |z — y| and du(z) = dx).

2.3 Hardy-type Transforms

This section is devoted to the sufficient conditions governing two-weight inequalities

for Hardy-type operators T, ., T} ,, defined on quasi-metric measure spaces,where

Tt (@)= v(e) [ Fg)uls)duty)

Bzoz

T, @ [ @,

X\Baya

and

Let a is a positive constant and let p be a measurable function defined on X. Let

us introduce the notation:

po(z) if d(zg,x) < a;

po(.T) = p—(Exox); ﬁo(x) = )
pe = const if d(xg,z) > a.

- _ p1(x) if d(zg,x) < a;
pl(zL’) =p_ (B(:L’O, a) \ onw) ; pl(x) e .

pe = const if d(xg, ) > a.
Remark 2.3.1. If we deal with a quasi-metric measure space with L < oo, then we

will assume that a = L. Obviously, py = po and p; = p; in this case.



66

Theorem 2.3.1. Let (X, d, 1) be a quasi-metric measure space . Assume that p and
q are measurable functions on X satisfying the condition 1 < p_ < po(z) < q(x) <
qr < oo. In the case when L = oo suppose that p = p. = const, ¢ = q. = const,
outside some ball B(xy,a). If the condition

m= s [ @) ([ o))" ) <o

0<t<L
t<d(zo,x)<L d(zo,x)<t

hold, then T, is bounded from LPV)(X) to L10)(X).

Proof. Here we use the arguments of the proofs of Theorem 1.1.4 in [20] (see p. 7)
and of Theorem 2.1 in [22]. First we notice that p_ < po(z) < p(x) for all x € X.
Let f > 0 and let S,(f) < 1. First assume that L < co. We denote

9= [ f@udnt) forse 0.1
d(zo,y)<s

Suppose that I(L) < oco. Then I(L) € (2™,2™] for some m € Z. Let us de-

note s; := sup{s : I(s) < 27}, j < m, and ;41 := L. Then {sj};n:_loo is a non-

decreasing sequence. It is easy to check that I(s;) < 27, I(s) > 27 for s > s;,

and 27 < i fWw(y)du(y). If g = jli)moo s;, then d(zg,x) < L if and

5;<d(x0,y)<Sj+1 -

only if d(zo,z) € [0,8]U Lnj (sj,8541). If I(L) = oo then we take m = oco. Since
0 < I(B) < I(s;) < 2 Jf:o;mevery J, we have that I(8) = 0. It is obvious that
X = Ufz:s; <d(@o,x) <511}

Furt}f;"r?we have that

SuToad) = [ (Dot @) ) = [ (ola) | f(y)w(y)du(y)> du(a)

X X B(zo, d(zo,z))

q(z)
~ [ ] f(y)w(y)du(y)> ()

X B(zo, d(zo,z))



67

<y /(v(x))"(”’( / e >)q(x)du<x>.

J=7 %, <d(wo,)<s511 d(z0,y)<sj+1
Let us denote

Bji(zo) :={z € X : sj_1 < d(zg,z) < 55}

Notice that
I(s;1) <277 <4 / w(y) £ (y)dp(y).
Bj(zo)

Consequently, by this estimate and Holder’s inequality with respect to the exponent

po(z) we find that

m q(z)
Sy(Towf) < ¢ ) / (U(iv))Q(@( / f(y)w(y)du(y)> dp(z)
=%, <d(o,2)<sj41 Bj(zo)
< ¢ zm: (0(2)) " Jy () dpa( )
I=70% <d(wo,m) <541
where
q(z) Q(ff)
() r=< / f(y)p°($)du(y))p0(z)< / w(y) P dp(y )) o

Bj(z0) Bj(zo)
Observe now that g(x) > po(z). Hence, this fact and the condition S,(f) < 1 imply
that

s [ swrums [ seraa)

Bj(wo){y:f(y)<1} Bj(zo)N{y:f(y)>1}
a(z)
x (po) ()
X ( / w(y) " Ddp(y ))
Bj(z0)

a(z)

Sc(M(Bj(fro))+ /f (y)"dpu(y) )( / w(y)(p())'(x)du(y))ww'

Bjj(wo){y:f(y)>1} Bj(zo)
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It follows now that

m

Sq(Towf) < c( > u(Bj(xo)) / o(x)1®

J=Te sj<d(wo,r)<sjy1

X ( / w(y)(pé)(x)d,u(y)) Wi dp(r) + Z ( / f(y)”(y)du(y))

Bj(x0) I=7%0 "By (wo)n{y: f(y)>1}

<[ ([ e ))mdu(fv)) (N + V),

s;<d(x0,r)<sji1 Bj(z0)

Since L < oo it is obvious that
m—+1

Ny < Ay ZM(Bj(xo)) < CA
and
Mg Y [ rOdnt) <0 [ (1) duty) = 45,(0) < A

I=7%B; (20) X

Finally Sy (Tywf) < c(CA1 + Al) < 00. Thus T, is bounded if A; < co.

Let us now suppose that L = co. We have

Ty (£) = Xpteom /f U)X B0 /f

BTOT BTo:I‘

= T f(x) + T2 f(x).

v,

By using already proved result for L < oo and the fact that diam (B (o, a)) < 00 we

find that
(1)
||T1},wf||Lq() (B(a:o,a)) S C||f||LP() (B(zo7a)) S C’
because
e
’ 4 z
Aga) = Os<1;£) / (U($))q(m)( / wPo) (x)(y)d,u(y)) ' du(r) < Ay < 0.

t<d(zo,x)<a d(z0,x)<t



69

Further, observe that

T3 f(2)=Xx\Bao.0) ()0() / FW)w(y)du(y) = Xxx\B(zo.a) / fly 1(y)

Bzow C'30 y <a
s (ee) [ et = TE @) + T ()
a<d(zo,y)<d(zo,r)

It is easy to see that (see also Theorem 1.1.3 or 1.1.4 of [20]) the condition

A= sup ( / (U(w))chu(w)> ( / w(y)(”c)'du(y)) " < o0

d(wo,z)>t a<d(wo,y)<t

guarantees the boundedness of the operator
Touf@) =ol@) [ f@udul
a<d(zo,y)<d(zo,r)
from LPe(X\B(zo,a)) to L% (X\B(zy,a)). Thus T%? is bounded. It remains to
prove that T, 53,31) is bounded. We have

1T fll o) = ( / U(ﬂf)chﬂ(ﬂf)> qc( / f(y)w(y)du(y))
¢ B(x0,a)

(B(xo,a))

1

/ v(x)chﬂ(x)> ||f||Lp<,)(§($0’a)) ||w||Lp/(A>(§(xo,a)).

(B(:zso,a))C

Observe now that the condition A; < oo guarantees that the integral

[ v@rdu

(B(xo 7a)) ‘

IN

is finite. Moreover, N := ) < 00. Indeed, we have that

||w||Lp/() (E(QZQ,(Z)
1

< J w(y)pl(y)du(y)) (r-@e0m) i 1wl o) By < 1s

N S B(zo,a) )

( f w(y)p’(y)d,u(y)) (p+<§<z0,a>>) if ||w||Lp,(,)(§(x07a) > 1.

B(zo,a)
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Further,

/ w(y)” Wdu(y) = / w(y)” Wdu(y) + / w(y)’ Wdu(y) = I + I,

B(zo,a) B(zo,a)N{w<1} B(zo,a)n{w>1}

For I;, we have that I; < M(E(:co,a)) < 00. Since L = oo and condition (2.2.1))
holds, there exists a point yo € X such that a < d(xg,y0) < 2a. Consequently,
B(zg,a) C B(xo,d(x0,10)) and ply) > p_ (E(mo,d(aro,yg))) = po(yo), where y €

B(zg,a). Consequently, the condition A, < oo yields I, < [ w(y)®)®)dy < oco.

B(zo,a)
Finally we have that ||Tv(,2u;1)f||Lp(.)(X) < C. Hence, T,,,, is bounded from LP()(X) to

L1O(X). O

The proof of the following statement is similar to that of Theorem [2.3.1}; therefore
we omit it (see also the proofs of Theorem 1.1.3 in [20] and Theorems 2.6 and 2.7 in

[22] for similar arguments).

Theorem 2.3.2. Let (X,d, 1) be a quasi-metric measure space . Assume that p and
q are measurable functions on X satisfying the condition 1 < p_ < pi(x) < gq(z) <

gy < oo. If L = oo, then we assume that p = p. = const, ¢ = q. = const outside some

ball B(xg,a). If

. ., B0 (@
By := sup / (v(2))" )< / w?) (””)(y>dﬂ(y)) T () <
0<t<L
d(w07w)st tSd($0,$)§L

then T! ., is bounded from LPV)(X) toL1")(X).

v,w

Remark 2.3.2. If p = const and ¢ = const, then the condition A; < oo in Theorem
(resp. By < oo in Theorem [2.3.2)) is also necessary for the boundedness of T, ,,
(resp. T,,) from LPO(X) to L10)(X). See [20], pp.4-5, for the details.
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2.4 Potentials

In this section we discuss two-weight problem for the potential operators

)
Ta.fa::/ du(y), € X, 0<a_ <a; <1,
= | B dte e ) '
and
_ f)
Ia()f(ﬂfl) = /Wdﬂ<y), O<a-<ap <1
X

on quasi-metric measure spaces, where 0 < a_ < ay < 1. If @ = const, then we

denote T,y and I,y by T, and I, respectively.
The boundedness of the Riesz potential operators in LP()(Q) spaces, where 2 is a
domain in R™ was established in [13], [79], [10], [7].

The following result was obtained in [53]:

Theorem 2.4.1. Let (X,d, ) be an SHT. Suppose that 1 < p_ < p; < oo and
p € P(1). Assume that if L = oo, then p = const outside some ball. Let o be a
constant satisfying the condition 0 < o < 1/p;. We set q(z) = %. Then T, is

bounded in LPV)(X).

Theorem 2.4.2 ([42]). Let (X,d,pu) be a non-homogeneous space with L < oo and
let N be a constant defined by N = a1(1 + 2ay), where the constants ay and a; are
taken from the definition of the quasi-metric d. Suppose that 1 < p_ < py < 00,
p,a € P(N) and that p is upper Ahlfors 1-reqular. We define q(x) = %,

where 0 < a_ < oy < 1/py. Then Iy is bounded from LPO(X) to L1V(X).

For the statements and their proofs of this section we keep the notation of the
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previous sections and, in addition, introduce the new notation:

v (@) = (@) (1Buya) ™! Wi (@) = w ™ (@); 0 (2) = v(@);

wi (2) == w™ (@) (1 Bage)*

{ye X: ‘“flg—fl)L < d(zo,y) < A% Layd(xo, )}, if L < oo

F, = ,
{ye X: f{(;—(gf) < d(zo,y) < A%ayd(zo,x)}, if L= oo,
where A and a; are constants defined in Definition and the triangle inequality
for d respectively.

The following are the main results in this section:

Theorem 2.4.3. Let (X,d,u) be an SHT without atoms. Suppose that 1 < p_ <

pr < o0 and « is a constant satisfying the condition 0 < o < 1/p,. Let p € P(1).

We set q(x) = lf;f))(z). Further, if L = oo, then we assume that p = p. = const

outside some ball B(xg,a). Then the inequality

HU(Taf)HLQ(»)(X) < C||wf||Lp(~)(X) (2.4.1)

holds if the following three conditions are satisfied:
(a) T,w ,w is bounded from LPO(X) to L1V(X) ;
(b) T, ,@ s bounded from LPO(X) to LV(X);
(c) there is a positive constant b such that one of the following inequality holds:

(1) vy(F) <bw(z) for p—aexe X; (2) v(x) <bw_(F,) for p—a.ex e X.

Proof. For simplicity suppose that L < oco. The proof for the case L = oo is similar
to that of the previous case. Recall that the sets [;;, ¢ = 1,2,3 and Ej, are defined

in Section 2.2. Let f > 0 and let [|g[| o) (x) < 1.
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We have

0

/ (T f)(@)g (@) (@)dp(z) = 3 / (To f)(@)g(x)o(a)du(z)

k:—ooEk

>

<y / (T fu)@g@)o(@)dp(z) + Y / (T fo) (2)g ()0 () du(x)

£ 3 [T @) =+ 510+ 85

where f1. = f X1, for = [ X0y fsx = [ X5,- Observe that if x € Ej, and
y € Iy, then d(zo,y) < d(zo,2)/Aa;. Consequently, the triangle inequality for d
yields d(zo, z) < A'ayaopd(z,y), where A’ = A/(A—1). Hence, by using Remark [2.2.1]
we find that p(Byy,) < cu(Byy). Applying now condition (a) we have that

(1Beye) ™ 0(2) / £ (v)duty)

T

S1§C

9l ooy < el fllvox)-
Lq(m)(X)

Further, observe that if + € Ej, and y € I3, then M(Bmoy) < cp(Bw). By condition
(b) we find that Sz < c||f|lze0)(x)-
Now we estimate Sy. Suppose that vy (F,) < bw(z). Theorem and Lemma

yield

So < D IN(Tafer) (xm (Do) a0 o llgxe, (Nl Lro x)
k

< 3 (0B I(Tafor) sl DX (Ol o

k

< X (0B el oo 9w, Ol o
k
S X0 IO POl Petes) IO ReN OL Fans
k
< Al lgOlroc < W o).

The estimate of S for the case when v(z) < bw_(F,) is similar to that of the previous

one. Details are omitted. O
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Theorems [2.4.3} [2.3.1) and [2.3.2] imply the following statement:

Theorem 2.4.4. Let (X, d, p) be an SHT. Suppose that 1 < p_ < p, < oo and « is a

constant satisfying the condition 0 < a < 1/py. Letp € P(1). We set q(x) = l_pc(;zm).
If L = oo, then we suppose that p = p. = const outside some ball B(xg,a). Then

inequality (2.4.1) holds if the following three conditions are satisfied:

(i) Pl;zoig% / ( # )q(x)< /w—(ﬁo)’(w)(y)du(y))@gggf()xc)lu(x)<oo;

t<d(wo,x)<L d(zo,y)<t

i) Pimsup [ @)™ ([ (o))" ) " ) <

0<t<L
d(zo,x)<t t<d(zo,y)<L

(iii)  condition (c¢) of Theorem holds.

Remark 2.4.1. If p = p. = const on X, then the conditions P; < oo, i = 1,2, are neces-
sary for . Necessity of the condition P; < oo follows by taking the test function
f= w_(pc)/XB(mt) in 1} and observing that uB,, < cuB,,, for those z and y
which satisfy the conditions d(zg, ) > t and d(xg,y) < t (see also [20], Theorem 6.6.1,
p. 418 for the similar arguments), while necessity of the condition P, < oo can be de-
rived by choosing the test function f(z) = w™ ") (2)xx\B(zo.r) () (MBIOI)(O‘_I)((M,_I)

and taking into account the estimate B, < puBy,, for d(zo,z) <t and d(zo,y) > t.

The next statement follows in the same manner as the previous one. In this case

Theorem [2.4.2] is used instead of Theorem [2.4.1] The proof is omitted.

Theorem 2.4.5. Let (X,d, 1) be a non-homogeneous space with L < co. Let N be a
constant defined by N = ay(1 4 2ag). Suppose that 1 < p_ < p; < 00, p,a € P(N)
and that p is upper Ahlfors 1-regular. We define q(z) = %, where 0 < a_ <

ay < 1/py. Then the inequality

[0C) o) /)l oo ) < ellwC) f Ol rorx) (2.4.2)
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holds if

a(z)

. v(x 4() @) ) (@)
0 sw [ _M W@ (y)du(y) )" dp(e) < oo
0<i<L (d(z0, ) S t
«TO

t<d(zo,x)<L

a(x)

. . V(s 1)/ (2)
i) s [ ([ w0 ) " e <o
"~ B(xont) t<d(zo,y)<L

(iii)  condition (c¢) of Theorem is satisfied.

Remark 2.4.2. 1t is easy to check that if p and « are constants, then conditions (i) and
(ii) in Theorem are also necessary for (2.4.2). This follows easily by choosing
appropriate test functions in (2.4.2)) (see also Remark [2.4.1)

Theorem 2.4.6. Let (X,d, ) be an SHT without atoms. Let 1 < p_ < p; < o0 and

let a be a constant with the condition 0 < o < 1/py. We set q(x) = 5 pc(yp(x Assume
that p has a minimum at xo and that p € LH(X). Suppose also that if L = oo, then
p is constant outside some ball B(xo,a). Let v and w be positive increasing functions

n (0,2L). Then the inequality
[o(d(zo, ) (Ta )l Lar (x) < cllw(d(zo, )).f ()l oo x) (2.4.3)

holds if

a(x)

t<d(zo,x)<L

d(zo,y) <t

for L = oc;

q(z)

n=sy | #)”( Jur e ) ) <o

t<d(zo,x)<L

d(zo,y)<t

for L < oo.
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Proof. We prove the theorem for L = oco. The proof for the case when L < oo is
similar. Observe that by Lemma the condition p € LH(X) implies p € P(1).

We will show that the condition /I; < oo implies the inequality % < C for all

t > 0, where A and a; are constants defined in Definition and the triangle
inequality for d respectively. Indeed, let us assume that ¢ < by, where b; is a small
positive constant. Then, taking into account the monotonicity of v and w, and the

facts that po(z) = po(x) (for small d(xg,z)) and p € RDC(X), we have

v 2(11 a(@) a—1/po(x))q(z
Y B () T

A2a1t<d(z0,2)<A3at

v(A%art) \ (a—1/po(2))q(x) v(A%art)\ "
> (ALY B(zo.t d > o 22T
- ( w(t) / (1B (o ) wx) z el =
A2a1t<d(z0,z)<A3ait

Hence, ¢ := ﬁ% < oo. Further, if ¢ > by, where by is a large number, then since

p and ¢ are constants, for d(zg,x) > t, we have that

noz( [ ) (e 0) " i)

AZaq t<d(zo ,x)<A3a1t

</ w<pc>’<x>du<x>)Wdu(m)

B(Z‘o,t)

U(A2Cl1t) o (a—l/pc)qc U(A2a’1t) o
> _— > —_— .
-O< w(t) / (nB(zo0.1) @) = e\ =
A2a1t<d(z0,x)<A3ait

In the last inequality we used the fact that p satisfies the reverse doubling condition.

Now we show that the condition /; < oo implies

t>0 t>0
d(zo,x)<t d(zo,y)>t

supaft)i=suwp [ (wldtro ) ([ I dan, )

q(x)

a1V Y (2 @) (@)
<(B) " () ) (o) < o
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Due to monotonicity of functions v and w, the condition p € LH(X), Proposition

2.2.7] Lemma 2.2.4] Lemma and the assumption that p has a minimum at z,
we find that for all ¢ > 0,

)\ =) (a=1/p(z0))q(z)
o < [ ()" (kBen) (a)
d(zo,z)<t
t)\ @) a=1/p(zo) ) a(zo)
<o [ (T o) T
d(zo,x)<t
A2qit)\ 4@ -1
<o [ ()" o)) (u(Bann) <
d(zo,x)<t
Now Theorem completes the proof. O

Theorem 2.4.7. Let (X,d, ) be an SHT with L < co. Suppose that p, q and o are
measurable functions on X satisfying the conditions: 1 < p_ < p(z) < q(x) < ¢y <
and 1/p- < a_ < ay < 1. Assume that « € LH(X) and there is a point xy € X

such that p,q € LH(X, xq). Suppose also that w is a positive increasing function on

(0,2L).Then the inequality

(Tai) £)vllLao ) < ellwld(zo, ) F (o x)

holds if the following two conditions are satisfied:

" ol a(x)
e [ ()
0<t<L (1Bagz)

t<d(wo,z)<L

q(x)
([ e ) dit) " (o) < o

d(zo,z)<t

E::OiltlEL / (v(x))q(x)( / (w(d(ﬁojy))

d(zo,x)<t t<d(zo,x)<L

a(z)

1—a(z)\ —(@1) (@) (1) (@)
% (1Bugy) ™ )> du(y)> dp(x) < oo.
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Proof. For simplicity assume that L = 1. First observe that by Lemma [2.2.5| we have
p.q € P(1,79) and a € P(1). Suppose that f > 0 and S, (w(d(zo,-))f(-)) < 1. We
will show that S, (’U(Ta(.)f)) <C.

We have

5,0 f) < G| / (@ [ )" ldu(y))q(x)du(w)

d(zo,y)<d(x0,x)/(2a1)

+/ (“(x) / £ ) (1B2y)™ " dialy >>q(m)du<x>

d(zo,z)/(2a1)<d(z0,y)<2a1d(z0,z)
(0 [ @B ))q(w)du(w)} Gyl 4 I+ 1)
X d(z0,y)>2a1d(z0,z)
First observe that by virtue of the doubling condition for x, Remark and simple
calculation we find that u(BxOx) < cu(Bxy). Taking into account this estimate and
Theorem [2.3.1] we have that

o(x q(z)
I < c/ ((—Z_Q(m) / f(y)du(y)> dp(z) < C.
X (” B‘Tom) d(
z0,y)<d(zo,z)
Further, it is easy to see that if d(zo,y) > 2a1d(zo, x), then the triangle inequality

for d and the doubling condition for p yield that uB,,, < cubB,,. Hence due to
Proposition we see that

-1

(MBxOy)a(w)*l > c(quy)a(y)

for such x and y. Therefore, Theorem [2.3.2] implies that I3 < C.

It remains to estimate I5. Let us denote:

EWY(2):=B,, \ B(zo, d(z0, )/ (2a1)); E¥(z) = B(x9,2a1d(z0, 7)) \ Baye-
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Then we have that

I < C{ / [v(fc) / f(y)(quy)a(z)_ldu(y)] qmde)

X ED) (2)
# [l [ )™ )] )] s elta + 1)
X E®)(x)

Using Holder’s inequality for the classical Lebesgue spaces we find that

q(x)/po(x)
< | vq@(x)( / wpf)("””)(d(fco,y))(f(y))m(””)du(y))
X EM ()

~(po)' (@) (0(x)~1)(po)' (@) 2(@)/(po) (=)
X w (d(xo,y)) (quy) du(y)
EM ()

Denote the first inner integral by J) and the second one by J2).
By using the fact that py(x) < p(y), where y € EM(z), we see that

JO < j(Boe) + / () (w(d(zo, )" dyu(y).

EM(x)

while by applying Lemma 2.2.4] for J®, we have that

o /d (alz) 1) (po) ()
J@ < @) (z)(M) / (quy) Po dy(y)

2&1
EM (z)

S Cw_(po)/(x) (d(x()) .T) ) (I[Lonx> (a(x)fl)(po) (m)+1‘
2@1

Summarizing these estimates for J and J® we conclude that

In < / v (x) (quox)Q(z)a(z)w‘q“)(d(xo’x))du(x) + / V1) (z)

2@1
X X

a(z)/po() a(z)(e(x)—1/po(x))
« ( / wp(y)(d(l’m?/))(f(y))p(y)d“@)) (15202)

EW (z)

d(xg, x
x w1 (—<221 )>du(a:) — I+ 1.
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By applying monotonicity of w, the reverse doubling property for  with the constants
A and B (see Remark , and the condition I; < co we have that

0 _q(z)
, (pg)! ()
Sy / v<x>q<x>( [ (x)(d(xmy))dﬂ(y)) ’
k=—oc0o—

k k—1 k-1
B(x[),A )\B(SC(),A ) B(IO,AQT)

92 (o(z)—1)a(z — -/
% (NBzQ,Z)pO(x)+( ( ) g( )d,u(SC) S c Z(MB(SE,(]?AI{?))(I L

0
<c Z / (MBIO’I)qf/m—ldlu(y) < c/ (quOv"f)%/m_ldu(y) < o
k

T UB(z0,A%)\ Bz, A1) X
Due to the facts that g(z) > po(z), Sp(w(d(zo,-)f("))) < 1, I, < oo and w is

increasing, for IQ(?, we find that

0

ey ( [ ey

k==00 % B(ao,AF+1ay)\ B(zo,AF2)

([ e [ e

puB(wo,A*)\B(zo, Ak 1) B(wo, A1)

x (quo,x)W)”q“)dw)) < ¢S, (f(Juld(xo, ) < c.

q(x)
(po) ()

Analogously, it follows the estimate for I55. In this case we use the condition ]NQ < 00
and the fact that py(z) < p(y) when d(zg,x) < d(zo,y) < 2a1d(xg,x). The details

are omitted. The theorem is proved. O

Taking into account the proof of Theorem [2.4.7] we can easily derive the following

statement the proof of which is omitted:
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Theorem 2.4.8. Let (X,d, ) be an SHT with L < oco. Suppose that p, q¢ and « are
measurable functions on X satisfying the conditions 1 < p_ < p(z) < q(z) < gy < o0
and 1/p_ < a_ < ay < 1. Assume that « € LH(X). Suppose also that there is a
point xo such that p,q € LH(X,zo) and p has a minimum at xy. Let v and w be

positive increasing function on (0,2L) satisfying the condition J; < oo ( see Theorem

2.4.6). Then inequality (2.4.3) is fulfilled.

Theorem 2.4.9. Let (X,d,p) be an SHT with L < oo and let p be upper Ahlfors
1-reqular. Suppose that 1 < p_ < p, < oo and that p € LH(X). Let p have a

minimum at xo. Assume that « is constant satisfying the condition o < 1/p,. We

p(z)
1-ap(z) "

set q(z) = If v and w are positive increasing functions on (0,2L) satisfying

the condition

q(x)

E :=sup /(M)M( /w‘(”(”'(‘”’(y)du(y))Wlu(l’)<oo,

0<i<L (d(zo,2))" "

t<d(zo,x)<L d(zo,z)<t

then the inequality

[o(d(zo, ) (Taf) (I paer (x) < ellw(d(zo, ) £ ()l oo )
holds.

Proof. The proof is similar to that of Theorem We only discuss some details.
First observe that due to Remark we have that p € P(IV), where N = a;(142ay).

It is easy to check that the condition F < oo implies that % < (' for all t, where

the constant A is defined in Definition and a; is from the triangle inequality
for d. Further, Lemmas 2.2.5] the fact that p has a minimum at z, and the

inequality

/ (d(o, ) VPV D dp(y) < ctle D) @+

d(xo,y)>t
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where the constant ¢ does not depend on ¢t and z, yield that

s /(Mamw»w@(_/(é%%%%%)%mfﬂ@odm%mm<aa

d(zo,z)<t d(zo,y)>t

Theorem completes the proof. O

Example 2.4.10. Let v(t) = t7 and w(t) = t°, where v and (3 are constants satisfying
the condition 0 < 8 < 1/(p_), v > max{0, 1—a — + — —( B+ Gy )} Then

9+

(v,w) satisfies the conditions of Theorem [2.4.6]

2.5 Maximal and Singular Operators

In this section we deal with weighted estimates for the maximal and singular operators

defined on X:

Mf(x):= sup !

s s [ 1@ldnt)

B(z,r)

and

Kf(z) = po. | K. )duty).
X
where k : X x X \ {(z,z) : © € X} — R be a measurable function satisfying the

conditions:

uB(x,d(z,y))’

[k(21,y) = k@2, y)] + [k(y, 21) = k(y,:cz)lgcw<

E(z,y)| < v,y X, v#y;

d (2, xl)) 1
d(xe,y) / uB(xe,d(za,y))

for all x1,xs and y with d(xs,y) > cd(x2,x1), where w is a positive non-decreasing
function on (0, oo) which satisfies the Ay condition: w(2t) < cw(t) (¢t > 0); and the
Dini condition: f (w(t)/t)dt < c.
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We also assume that for some constant s, 1 < s < oo, and all f € L*(X) the limit
K f(z) exists almost everywhere on X and that K is bounded in L*(X).

It is known (see, e.g., [29]) that if  is constant such that 1 < r < oo, (X, d, p) is
an SHT and the weight function w € A,.(X), i.e.

sup (s B/ wlohdnla)) (55 B/ wl-r’<x>dn<x>)” <o,

where the supremum is taken over all balls B in X, then the one-weight inequality
WK f||rx) < ef|w" |- (x) holds.

The boundedness of Calderén-Zygmund operators in LPU)(R™) was establish in
[14].

Theorem 2.5.1 ([50]). Let 1 < p_ < p; < oo and let (X,d,p) be an SHT. Suppose
that p € P(1). Then the singular operator K is bounded in LP*)(X).

The next statement for metric measure spaces was proved in [31] (see also [41],

[42] for quasi-metric measure spaces).

Theorem 2.5.2. Let (X,d,u) be an SHT and let u(X) < oo. Suppose that 1 <
p_ < py <ooandp€ P(1). Then M is bounded in LPV)(X).

To prove the next theorem we need the following lemma which can be found in

[12] for Euclidian spaces and in [41] for quasi-metric measure spaces.

Lemma 2.5.3. Let 1 < q_ < g, < oo. Suppose that ¢ € P(1). Let u(X) < oo.Then

there is a positive constant ¢ depend on X such that
(M f ()" < e[M(| ") () +1]
for all z € X.

The next statement was given in the paper by M. Khabazi [34]:
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Theorem 2.5.4. Let (X,d, ) be an SHT and let L = oo. Suppose that 1 < p_ <
py < oo andp € P(1). Suppose also that p = p. = const outside a ball B := B(xq, R)
for xo € X and r > 0. Then M is bounded in LPV)(X).

Before formulating the the next result we introduce the notation:

v(x) 1 1

T By T wm PO L)

Theorem 2.5.5. Let (X,d,p) be an SHT and let 1 < p_ < p, < oo. Suppose that

p€ LH(X). If L = oo, then we assume that p is constant outside a ball B(xq,a) for

some xg € X and a > 0. Then the inequality

||U(Nf)||Lp<-)(X) < C'||wf||Lp(.)(X), (2.5.1)

where N is M or K, holds if

(a)  Tyg is bounded in LPV)(X);

(b) T}z, is bounded in LPO(X);

(c) there is a positive constant b such that one of the following inequality holds:
(1) vy (Fy) <bw(z) for p—aex e X; (2) v(z) <bw_(F,) for p—a.ex € X.
where F, is defined in Section 2.4.

Proof. First notice that by Lemma we have that p € P(1). Suppose that L = co

and let ||l L)(x) < 1. Let us assume that

B = B(z.r): hp— ,%B o
We have
Jon@s@a <3| [(noeos@a)] = Y s,

where f; 1 := fxi,, (recall that the constant A is defined in Definition|2.2.7). We prove

the theorem for the case N = M. If & € Ey and y € I}, then d(j’,’x) < d(z,y), where




85

A" := A/(A —1). Further, if r < d(ﬁ’,’x), then B(z,7)N {y d(zo,y) > M} = 0.

Consequently, (fix)p = 0. Let now r > d(:ff,’x). Then taking into account Remark

221 we have

(hadn < = [ 11)lduts)

for x € E). Hence,

M fiala) ﬂfm
mox
Consequently, due to Theorem and condltlon (a) we find that

S1 SC/(Tv,l(Ifl)( )g(x)dx < el (T (L DIl ro o llgll oo (x) < ellfwll oo -

X

To estimate S3, first observe that

M(fxi,)@) < e sup (uB(r,4)) ﬂfm reB,  (252)

j>k+1

where D; := B(zg,a1 A7) \ B(xg,a1A7). To prove we take r so that 0 <
r < AF. Then it is easy to see that B(x,r) N I3 = 0. Consequently, (f3x)p = 0.
Further, let 7 > A¥. Then r € [A™, A™*1) for some m > k. If y € B, then
d(z0,y) < arA™HH for the integer | defined by | = [M] + 1. On the other hand,

there are positive constants b; and by such that the inequality
,LLB<I'0, Am) < bl,U/B('TJ Am) < bQ,LLB(xOu Am)7

when x € F), and m > k. Consequently, applying the reverse doubling condition, for

such r we have

s € o [ U@ldnt)

a1 Akl <d(zg,y)<ay Amti+2

%MZﬁfW ) < esup (uB(, AY) " [11)dty)= supPy(f)

j=k+1 iZk+1
i=ht1p b,
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where the positive constant ¢ depends on the constant A.

Further, taking into account condition (b) and the inequality sup < ), we find that

53<cz(/ (o)) (Y #0)

=c§jj(uBIO,AJ (/|f ) du(y )ZOO(/ du(az))
=e 3 (uBlan ) ( / 0ty ) E;<x>g<:c>du<x>)
<o (uteo ) (st )\(MB . dia, ) jl)( oot ) auto)
<c [ vt DJ/ f(y)(uB(xo,d(xo,y;)(;mf;?;)du(w
< H;m Iz (d(woi)zjf\c\jm < el flloce

If, for example, (i) of condition (c) is satisfied, then Theorem and Lemma [2.2.7]
yield

So = 3 (04 (B IM Faa Ol 908 Oll oy

k

S (0B 1 X0 Oll o 9O, Loy

k

IN

< ZwaXIM Mo o llg(xe o) < ellfwl)llo x)-

When (ii) is satisfied, then by the same arguments we have the desired result.
The proof of the theorem for the operator N = K is similar to that of the case
N = M. In this case Theorem [2.5.1]is used instead of Theorem [2.5.4l The details are

omitted. O

The next two statements are direct consequences of Theorems [2.5.5] [2.3.1] [2.3.2]

(see also appropriate statements in Section 2.4). Details are omitted.
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Theorem 2.5.6. Let (X, d, p) be an SHT and let 1 < p_ < py < co. Further suppose
that p € LH(X). If L = oo, then we assume that there is a xo € X and a positive
constant a such that p = p. = const outside B(xo,a). Let N be M or K. Then

inequality (2.5.1)) holds if:

)
v(z) \P® PP (50)(2)
(8)  sup / ( Mé ) ) ( / w0 "”>(y)du(y)> dp(z) < oo,
= Tg,T

t<d(zo,z)<L Bl(zo,t)
p() w(y) e
o) s [ (@) / auly)) " due) < oo,
0<t<L By
B(xo,t) t<d(zo,x)<L

(¢)  condition (c) of Theorem is satisfied.

Theorem 2.5.7. Let (X,d, ) be an SHT without atoms. Let 1 < p_ < p, < oo.
Assume that p has a minimum at xo and that p € LH(X). If L = co we also assume
that p = p. = const outside some ball B(xg,a). Let v and w be positive increasing

functions on (0,2L). Then the inequality

[o(d(zo, )N F) )l ooy < ellwld(@o, ) )l ee ) (2.5.3)

where N is M or K, holds if the following condition is satisfied:

sup /(M)”( /w@°>’<@<d<xo,y>>du<y>)%dum<oo.

0<t<L N(Bmom)
t<d(xo,r)<L B(zo,t)

Example 2.5.8. Let (X, d, i) be a quasi-metric measure space with L < oo. Suppose
that 1 < p_ < py < oo and p € LH(X). Assume that the measure p is both upper
and lower Ahlfors 1— regular. Let there exist xo € X such that p has a minimum at

zo. Then the condition

p(x)

5= sup /(M)”( [ atan ) )" dnte) < o

0<t<L M(onx)
t<d(zo,x)<L B(zo,t)
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is satisfied for the weight functions v(t) = t'/7'(@0) w(t) = ¢1/7" @) In 2L and, conse-

quently, by Theorem inequality (2.5.3)) holds, where N is M or K.

Indeed, first observe that v and w are both increasing on [0, L]. Further it is easy

to check that the condition p € LH(X), Proposition and Lemma implies

that "
o(d(a0, )\ L
( u(Bony) ) < eld(zo, 2))

We have also

p(x) p(z)

( / W‘p'(":“)(d(wo,y))du(y))’“w :( / d(xo,y)—l(ln ; joljy))p/@o) » (y)) e

B(zo,t) B(zo,t)

<(Cln™! %

Hence,

2L 2L
SgclnT-ln’lT:c<oo.

Example for constant p and X = R" was presented in [19] (see also [20],Chapter

8 for spaces of homogeneous type)
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