
Please use this identifier to cite or link to this item:
http://prr.hec.gov.pk/jspui/handle/123456789/456
Title: | Algebraic Properties of Entire Functions with Coefficients in Particular Valued Fields |
Authors: | Khan, Sardar Mohib Ali |
Keywords: | Natural Sciences Mathematics General principles of mathematics Algebra Geometry Graph |
Issue Date: | 2004 |
Publisher: | GC UNIVERSITY LAHORE, PAKISTAN |
Abstract: | The study of entire functions is of central importance in complex function theory. We consider the ring of entire functions either on subfields of C or on some subfields of Cp . By using a technique based on admissible filters we study the ideal structure of the ring of entire functions. Then we prove the B ́zout property for the ring of entire e functions over Cp independent of Mittag-Leffler theorem. An important problem in complex function theory is to find an entire function from its values on a given sequence. By means of so-called Newton entire functions we solve a series of interpolation problems. Then we obtain a general result which implies the results of P ́lya and Gel’fond on the entire functions which are polynomials. We o prove a similar result for the entire functions f such that f (D) ⊂ D, where D is a particular bounded set. As an application we replace the use of power series for the initial value problems for ODE’s with Newton series for boundary value problems. |
URI: | http://prr.hec.gov.pk/jspui/handle/123456789//456 |
Appears in Collections: | PhD Thesis of All Public / Private Sector Universities / DAIs. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
290S.pdf | Complete Thesis | 393.4 kB | Adobe PDF | View/Open |
290S-0.pdf | Table of contents | 51.95 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.