TABLE OF CONTENTS

1 Introduction 1

1.1 Introduction 2

1.2 Natural Gas as Alternative Fuel 4

1.3 Application of Chemical Reaction Mechanisms to Study Hydrocarbon Oxidation: 6

1.4 Needs of Research 7

1.5 Objectives and Need of Current Study 8

1.6 Organization of Thesis 9

2 Literature review 11

2.1 Introduction 12

2.2 Chemical Reaction Kinetic Mechanisms; A Perspective 12

2.3 Summary of Literature Review 20

3 Generation of Kinetic Mechanisms of Natural Gas Combustion in IC Engine 22

3.1 Introduction: 22

3.2 Construction of Kinetic Reaction Mechanism 23

3.2.1. The C0-C1-C2 Reaction Base 23

3.2.2 Representation of Reaction Species 24

3.2.3 Construction of Primary Mechanisms 24

3.2.4 Construction of Secondary Mechanism 26

3.2.5. Choice of reactions to be generated and final Mechanism 30

3.3 Thermo-chemical Data Calculation 32

3.4 Kinetic Data Calculations 32
3.5 Estimation of Kinetic Data by Thermochemical Kinetics 33

3.6 Coupling of Hydrocarbon Oxidation and NOx Chemistry 39

3.7 Proposed Kinetic Reaction Mechanisms 41

3.8 Summary 42

4 Parametric Analysis of Proposed Kinetic Mechanisms of CNG combustion 44

4.1 Introduction 45

4.2 Simulation of Combustion in IC Engine by Chemkin 4.1.1 47

4.3 Operating Variables Combustion in Automobiles Engines 48

4.4 Objectives 48

4.5 Simulation of Effect of Operating Variables in CNG fired IC Engine 48

4.5.1 General Simulation Inputs

4.6 Effect of Fuel to Air Equivalence Ratio 49

4.7 Results and Discussion 53

4.8 Pollutants Formation in Automobile Engine (IC) 76

4.9 Formation of Nitrogen Containing Pollutants (NO, NO2 and NH3) 76

4.10 Kinetics of Carbon Monoxide 96

4.11 Parametric Uncertainty Analysis Using Chemkin 4.1.1 of Pollutants Formation in IC Engine 102

4.12 Summary 110

5 Sensitivity and Rate of Production Analysis of Detailed Kinetic Mechanisms 114

5.1 Introduction 115
8.2 Objectives 203
8.3 Description of Experimental Setup; 203
8.4 Results and Discussion 209
 8.4.1 Investigation of Pressure and Temperature in Engine Cylinder 210
 8.4.1.1 Cylinder Pressure and Exhaust Port Temperature 224
 8.4.2 Investigation of Pollutants Formation due to Combustion of CNG 226
8.5 Summary 246

Conclusion and Proposed Future Work 247
References 255
Annexure-I 266
Annexure-II 309