Impact of Nanoparticles in the Stretched Flows

By

Maria Imtiaz

Department of Mathematics
Quaid-I-Azam University
Islamabad, Pakistan
2016
Impact of Nanoparticles in the Stretched Flows

By

Maria Imtiaz
Supervised By

Prof. Dr. Tasawar Hayat

Department of Mathematics
Quaid-I-Azam University
Islamabad, Pakistan
2016
Impact of Nanoparticles in the Stretched Flows

By
Maria Imtiaz

A THESIS SUBMITTED IN THE PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY IN
MATHEMATICS

Supervised By
Prof. Dr. Tasawar Hayat
Department of Mathematics
Quaid-I-Azam University
Islamabad, Pakistan
2016
Contents

1 Literature review and governing equations
 1.1 Background .. 6
 1.2 Fundamental laws for Buongiorno’s model 12
 1.2.1 Law of conservation of mass 12
 1.2.2 Law of conservation of linear momentum 12
 1.2.3 Law of conservation of energy 13
 1.2.4 Law of conservation of concentration 13
 1.3 Basic laws for two phase flow model 14
 1.3.1 Law of conservation of linear momentum 14
 1.3.2 Law of conservation of energy 14
 1.4 Solution procedure ... 15

2 MHD flow of nanofluid over permeable stretching sheet with convective boundary conditions
 2.1 Problem formulation ... 16
 2.2 Homotopic solutions .. 19
 2.2.1 Zeroth-order deformation problems 19
 2.2.2 mth-order deformation problems 21
 2.3 Analysis of series solutions 22
 2.4 Results and discussion .. 24
 2.5 Main points ... 37

3 MHD flow of nanofluids due to convectively exponential stretching sheet in a porous medium
 3.1 Mathematical formulation 38
 3.2 Homotopy analysis solutions 42
 3.3 Convergence of the homotopy solutions 43
3.4 Discussion .. 44
3.5 Concluding remarks 54

4 MHD flow of nanofluid with homogeneous-heterogeneous reactions and velocity slip 56
 4.1 Mathematical formulation 56
 4.2 Solutions derivation 60
 4.3 Convergence of the homotopy solutions 62
 4.4 Results and discussion 64
 4.4.1 Dimensionless velocity profiles 64
 4.4.2 Dimensionless concentration profiles 67
 4.4.3 Skin friction coefficient and surface concentration 69
 4.5 Final remarks .. 72

5 Impact of magnetohydrodynamics in bidirectional flow of nanofluid subject to second order slip velocity and homogeneous-heterogeneous reactions 74
 5.1 Model development 75
 5.2 Homotopic solutions 79
 5.3 Convergence analysis 81
 5.4 Results and discussion 83
 5.4.1 Dimensionless velocity profiles 83
 5.4.2 Dimensionless concentration profiles 89
 5.4.3 Surface concentration and skin friction coefficient 91
 5.5 Conclusions .. 94

6 Effects of homogeneous-heterogeneous reactions in flow of magnetite-Fe$_3$O$_4$ nanoparticles by a rotating disk 96
 6.1 Model development 97
 6.2 Solutions procedure 100
 6.3 Convergence of series solutions 104
 6.4 Discussion .. 105
6.5 Main points .. 114

7 Melting heat transfer in the MHD flow of Cu-water nanofluid with viscous
dissipation and Joule heating .. 116
 7.1 Problem development .. 117
 7.2 Homotopic solutions ... 120
 7.3 Convergence of homotopic solutions 122
 7.4 Results and discussion ... 125
 7.4.1 Dimensionless velocity field 125
 7.4.2 Dimensionless temperature field 125
 7.4.3 Skin friction coefficient and Nusselt number 126
 7.5 Concluding remarks ... 135

8 Unsteady flow of nanofluid with double stratification and magnetohydrodynamics 136
 8.1 Flow equations ... 136
 8.2 Homotopy analysis solutions 140
 8.3 Convergence of the homotopy solutions 142
 8.4 Interpretation of results ... 146
 8.5 Concluding remarks ... 159

9 Magnetohydrodynamic stagnation point flow of Jeffrey nanofluid with Newtonian heating 161
 9.1 Flow equations ... 161
 9.2 Problem formulation .. 162
 9.3 Series solutions ... 164
 9.4 Convergence analysis .. 166
 9.5 Results and discussion .. 168
 9.6 Conclusions ... 183

10 MHD three-dimensional flow of nanofluid with velocity slip and nonlinear
 thermal radiation .. 185
10.1 Flow description ... 185
10.2 Heat transfer analysis 187
10.3 Analytical solutions 189
10.4 Convergence of the developed solutions 192
10.5 Discussion ... 194
 10.5.1 Dimensionless velocity profiles 194
 10.5.2 Dimensionless temperature profiles 194
 10.5.3 Skin friction coefficient and Nusselt number 195
10.6 Concluding remarks 201

11 Magnetohydrodynamic three-dimensional flow of nanofluid over a porous shrinking surface 203
 11.1 Problem formulation 204
 11.2 Homotopy analysis solutions 207
 11.3 Convergence analysis 209
 11.4 Results and discussion 211
 11.5 Concluding remarks 219

12 MHD three-dimensional flow of nanofluid in presence of convective conditions 221
 12.1 Model development 221
 12.2 Homotopy analysis solutions 224
 12.3 Convergence of the series solutions 226
 12.4 Discussion ... 227
 12.5 Final remarks ... 235
Chapter 1

Literature review and governing equations

This chapter contains the literature review related to the nanofluid, magnetohydrodynamics, stretching surface, rotating disk, slip flows and homogeneous-heterogeneous reactions. Equations governing nanofluids flow for Buongiorno and two phase flow model are presented.

1.1 Background

Convective heat transfer through nanoparticles is a popular area of research at present. The nanoparticles (nanometer sized particles) are made up of metals, carbides, oxides or carbon nanotubes. The nanofluids are formed by adding nanoparticles into many conventional fluids like water, ethylene glycol and engine oil. The use of additive is a process which enhances the heat transfer performance of base fluids. Choi [1] experimentally found that addition of nanoparticles in conventional/base fluid appreciably enhances the thermal conductivity of the fluid. Eastman et al. [2] and Choi et al. [3] pointed out that a small amount (\(\leq 1\% \) volume fraction) of Cu nanoparticles or carbon nanotubes dispersed in ethylene glycol or oil remarkably enhanced the thermal conductivity of a fluid by 40% and 50% respectively. Thus the nanomaterials are recognized more effective in micro/nano electromechanical devices, advanced cooling systems, large scale thermal management systems via evaporators, heat exchangers and industrial cooling applications. Use of nanofluids as coolants allow for smaller size and better positioning of the radiators which eventually consumes less energy for overcoming resistance on the road. Nanoparticles in refrigerant/lubricant mixtures could enable a cost effective technology for improving the efficiency of chillers that cool buildings. Tiwari and Das [4] studied heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. At present, the literature on theoretical and experimental attempts about nanofluids is quite extensive.
The comprehensive review on nanofluids can be found in the book [5] and refs. [6 – 11]. Detailed review on this topic up to 2012 has been made by Mohammed et al.[12] and Dalkilic et al. [13]. Besides these a comprehensive survey of convective transport in nanofluids is presented by Buongiorno [14]. He developed a non-homogeneous equilibrium model for convective transport to describe the heat transfer enhancement of nanofluids. He concluded that abnormal increase in thermal conductivity occurs due to the presence of two main velocity-slip effects, namely, the Brownian diffusion and the thermophoretic diffusion of the nanoparticles. Later Buongiorno et al. [15] conducted novel investigations which show no anomalous thermal conductivity enhancement in the considered fluids. Niu et al. [16] studied slip flow of a non-Newtonian nanofluid in a microtube. Effects of heat generation/absorption on stagnation point flow of nanofluid towards a surface with convective boundary conditions have been analyzed by Alsaedi et al. [17]. Xu et al. [18] examined unsteady flow in a nano-liquid film over a stretching surface. Imtiaz et al. [19] presented mixed convection flow of nanofluid with Newtonian heating. Khalili et al. [20] considered unsteady convective heat and mass transfer in flow of pseudoplastic nanofluid.

Magnetic nanofluids are more useful in the sense that their physical properties are tunable through the external magnetic field. Many equipments such as MHD generators, pumps, bearings and boundary layer control are affected by the interaction between the electrically conducting fluid and a magnetic field. The behavior of flow strongly depends on the orientation and intensity of the applied magnetic field. The exerted magnetic field manipulates the suspended particles and rearranges their concentration in the fluid which strongly changes heat transfer characteristics of the flow. A magnetic nanofluid has both the liquid and magnetic characteristics. Such materials have fascinating applications in optical modulators, magnetooptical wavelength filters, nonlinear optical materials, optical switches, optical gratings etc. Magnetic particles have pivotal role in the construction of loud speakers as sealing materials and in sink float separation. Magneto nanofluids are useful to guide the particles up the blood stream to a tumor with magnets. This is due to the fact that the magnetic nanoparticles are regarded more adhesive to tumor cells than non-malignant cells. Such particles absorb more power than microparticles in alternating current magnetic fields tolerable in humans i.e. for cancer therapy. Numerous applications involving magnetic nanofluids include drug delivery,
hyperthermia, contrast enhancement in magnetic resonance imaging and magnetic cell separation. Motivated by all the aforementioned facts, various scientists and engineers are engaged in the discussion of flows of nanofluids via different aspects. Rashidi et al. [21] analyzed entropy generation in MHD flow due to rotating porous disk in a nanofluid. Sheikholeslami et al. [22] investigated MHD nanofluid flow in a semi-porous channel. Khalili et al. [23] discussed unsteady MHD nanofluid flow over a stretching/shrinking sheet in porous medium filled with a nanofluid. Rashidi et al. [24] reported buoyancy effect on MHD stretched flow of nanofluid in presence of thermal radiation. Effect of thermal radiation on magnetohydrodynamic nanofluid flow and heat transfer by means of two phase model has been studied by Sheikholeslami et al. [25]. Numerical simulation of two phase unsteady nanofluid flow between parallel plates in presence of time dependent magnetic field has been investigated by Sheikholeslami et al. [26]. Lin et al. [27] analyzed MHD pseudoplastic nanofluid flow in a finite thin film over stretching surface. They also considered heat transfer analysis with internal heat generation. Melting heat transfer on MHD convective flow of a nanofluid with viscous dissipation and second order slip has been presented by Mabood and Mastroberardino [28]. Hayat et al. [29] explored 3D MHD flow of viscoelastic nanofluid with nonlinear thermal radiation. Hayat et al. [30] also examined interaction of magnetic field in flow of Maxwell nanofluid with convective effect.

The fluid flow over stretching surface has gained the attention of researchers due to its important applications in engineering processes namely polymer extrusion, drawing of plastic films and wires, glass fiber and paper production, manufacture of foods, crystal growing, liquid films in condensation process, etc. Crane [31] studied the flow caused by the stretching of a sheet. Most of the available literature dealt with the study of boundary layer flow over a stretching surface where the velocity of the stretching sheet is assumed linearly proportional to the distance from the fixed origin. However realistically stretching of plastic sheet may not necessarily be linear. Flow and heat transfer characteristics past an exponentially stretching sheet has a wider applications in technology. For example, in case of annealing and thinning of copper wires, the final product depends on the rate of heat transfer at the surface with exponential variations of stretching velocity. During such processes, both the kinematics of stretching and the simultaneous heating or cooling have a decisive influence on the quality of the final product. Specific example in this direction can be mentioned through
process in plastic industry. Gupta and Gupta [32] discussed heat and mass transfer on a stretching sheet with suction or blowing. Afzal et al. [33] studied momentum and heat transfer on a continuous flat surface moving in a parallel stream. Magyari and Keller [34] focused on heat and mass transfer in boundary layer flow due to an exponentially stretching sheet. Cortell [35] found the solutions for moving fluid over a flat surface. Zheng et al. [36] reported MHD flow and heat transfer over a porous shrinking surface with velocity slip and temperature jump. MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet have been addressed by Ibrahim et al. [37]. Mukhopadhyay [38] investigated slip effects in MHD boundary layer flow by an exponentially stretching sheet with suction/blowing and thermal radiation. Exact solutions over stretching or shrinking sheet in an electrically conducting quiescent couple stress fluid have been computed by Turkyilmazoglu [39]. Malvandi et al. [40] presented slip effects on unsteady stagnation point flow of nanofluid over a stretching sheet. Casson fluid flow and heat transfer past an exponentially porous stretching surface in presence of thermal radiation been provided by Pramanik [41]. Three dimensional flow of viscoelastic fluid by an exponentially stretching surface with mass transfer has been obtained by Alhuthali et al. [42]. Rosca and Pop [43] studied Powell—Eyring fluid flow over a shrinking surface in a parallel free stream. Nandy and Pop [44] explored effects of magnetic field and thermal radiation on stagnation flow and heat transfer of nanofluid over a shrinking surface. Nandy [45] considered unsteady flow of Maxwell fluid in the presence of nanoparticles toward a permeable shrinking surface with Navier slip. Weidman and Ishak [46] computed multiple solutions of two-dimensional and three-dimensional flows induced by a stretching flat surface. Effects of viscous dissipation and heat source on unsteady MHD flow over a stretching sheet have been examined by Reddy et al. [47]. Chen et al. [48] discussed boundary layer flow of Maxwell fluid over an unsteady stretching surface. Mustafa et al. [49] analyzed radiation effects in flow by a bi-directional exponentially stretching sheet. Effects of convective heat and mass transfer in flow of Powell-Eyring fluid past an exponentially stretching sheet have been examined by Hayat et al. [50].

Fluid flow by a rotating disk is important in engineering and geophysical applications such as flows in spin coating, manufacturing and use of computer disks, rotational viscometer, centrifugal machinery, pumping of liquid metals at high melting point, crystal growth from molten silicon, turbo-machinery etc. Karman [51] investigated the classical problem of a rotating disk. Erdogan [52]
analyzed unsteady viscous fluid flow by non-coaxial rotations of disk and a fluid at infinity. A note on porous rotating disk is presented by Kelson and Desseaux [53]. Flow due to a rotating porous disk in presence of nanoparticles is analyzed by Bachok et al. [54]. Rashidi et al. [55] developed approximate solutions for steady flow due to a rotating disk. Here porous medium and heat transfer are also considered. Turkyilmazoglu [56] studied nanofluid flow and heat transfer due to a rotating disk. Hayat et al. [57] analyzed MHD flow of Cu-water nanofluid due to a rotating disk with partial slip.

The formation and use of micro devices have attracted the attention of recent scientists. The small size as well as high efficiency of micro-devices such as microsensors, microvalves and micropumps are some of the advantages of using MEMS and NEMS (Micro and Nano Electro Mechanical Systems). Many attempts addressing the flow and heat transfer have been presented to guarantee the performance of such devices. The surface effects at micro scale level lead to change in the classical conditions. Thus no-slip condition is inadequate for the fluid flows in MEMS and NEMS. No slip conditions show unrealistic behavior for the cases like the extrusion of polymer melts from a capillary tube, corner flow and spreading of liquid on a solid substrate [58]. The flow analysis with heat transfer at micro-scale is encountered in micro-electro-mechanical systems (MEMS). Such systems have association with consideration of velocity slip and temperature jump. Khare et al. [59] presented relationship between velocity and thermal slip. Wu [60] derived a slip model for rarefied gas flows at arbitrary Knudsen number. Fang and Aziz [61] considered viscous flow with second-order slip velocity over a stretching sheet. Heat transfer enhancement using nanofluids in microchannels with slip and non-slip flow regimes has been investigated by Akbarinia et al. [62]. Mahmoud and Waheed [63] examined stretched flow of a micropolar fluid with heat generation (absorption) and slip velocity. Ibrahim and Shankar [64] presented MHD boundary layer flow and heat transfer of a nanofluid past a permeable stretching sheet with velocity, thermal and solutal slip boundary condition. Khan et al. [65] analyzed hydrodynamic and thermal slip effect in double-diffusive free convective boundary layer flow of a nanofluid. Extension of a second order velocity slip/temperature jump boundary condition to simulate high speed micro/nanoflows has been given by Rooholghdos and Roohi [66]. Malvandi and Ganji [67] considered Brownian motion and thermophoresis effects on slip flow of alumina/water nanofluid inside a circular microchannel. Second order slip flow of Cu-water
nanofluid over a stretching sheet with heat transfer has been investigated by Sharma and Ishak [68]. Rashidi et al. [69] investigated entropy generation in MHD flow over a rotating porous disk with variable properties and slip condition. Karimipour et al. [70] analyzed the simulation of copper-water nanofluid in a microchannel with slip flow effect. Here the lattice Boltzmann method is used for the simulation. Megahed [71] studied MHD Casson fluid flow and heat transfer with second-order slip velocity and thermal slip over a permeable stretching sheet. Hakeem et al. [72] presented magnetic field effect in second order slip flow of nanofluid over a radiative stretching/shrinking sheet.

Homogeneous-heterogeneous reactions occur in many chemically reacting systems such as in combustion, catalysis and biochemical systems. Some of the reactions have the ability to proceed very slowly or not at all, except in the presence of a catalyst. The interaction between the homogeneous and heterogeneous reactions is very complex. It is involved in the production and consumption of reactant species at different rates both within the fluid and on the catalytic surfaces. Especially chemical reaction effects are quite significant in food processing, hydrometallurgical industry, manufacturing of ceramics and polymer production, fog formation and dispersion, chemical processing equipment design, crops damage via freezing, cooling towers and temperature distribution and moisture over agricultural fields and groves of fruit trees. A model for isothermal homogeneous-heterogeneous reactions in boundary layer flow of viscous fluid past a flat plate is studied by Merkin [73]. He presented the homogeneous reaction by cubic autocatalysis and the heterogeneous reaction with a first order process. It is shown that the surface reaction is the dominant mechanism near the leading edge of the plate. Chaudhary and Merkin [74] studied the homogenous-heterogeneous reactions in boundary layer flow of viscous fluid. They found the numerical solution near the leading edge of a flat plate. Khan and Pop [75] studied two-dimensional stagnation-point flow with homogeneous—heterogeneous reaction. Bachok et al. [76] focused on the stagnation-point flow towards a stretching sheet with homogeneous—heterogeneous reaction effects. Effects of homogeneous-heterogeneous reactions in the flow of viscoelastic fluid towards a stretching sheet are investigated by Khan and Pop [77]. Homogeneous-heterogeneous reactions in micropolar fluid flow from a permeable stretching or shrinking sheet in a porous medium have been studied by Shaw et al. [78]. Kameswaran et al. [79] extended the work of Khan and Pop [77] for nanofluid over a porous stretching sheet. Hayat et al. [80] analyzed homogeneous-heterogeneous
reactions in the stagnation point flow of carbon nanotubes towards a stretching surface with Newtonian heating. Effect of homogeneous-heterogeneous reactions in flow of Powell-Eyring fluid is examined by Hayat et al. [81]. Abbasi et al. [82] investigated stagnation-point flow of viscous fluid towards stretching/shrinking sheet in the presence of homogeneous—heterogeneous reactions.

1.2 Fundamental laws for Buongiorno’s model

1.2.1 Law of conservation of mass

In absence of sources or sinks we can write equation of continuity as follows:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0. \tag{1.1}$$

in which ρ is fluid density, t is time and \mathbf{V} is fluid velocity. The above equation for an incompressible fluid takes the form

$$\nabla \cdot \mathbf{V} = 0 \tag{1.2}$$

1.2.2 Law of conservation of linear momentum

Generalized equation of motion is

$$\rho \frac{d\mathbf{V}}{dt} = -\nabla \cdot \mathbf{\tau} + \rho \mathbf{b}. \tag{1.3}$$

in which the left hand side represents an inertial force, the first term on right hand side is the surface force and the second term on right hand side is body force. For an incompressible viscous fluid $\mathbf{\tau} = -\rho \mathbf{I} + \frac{1}{2} \mathbf{A}_1$ is the Cauchy stress tensor, ρ the pressue, \mathbf{I} the identity tensor, $\mathbf{A}_1 = \nabla \mathbf{V} + (\nabla \mathbf{V})^T$ the first Rivlin-Erickson tensor, \mathbf{b} the body force and $\frac{d\mathbf{V}}{dt}$ the material time derivative.

1.2.3 Law of conservation of energy

The energy equation for a nanofluid can be written as

$$\rho c_p \frac{dT}{dt} = \nabla \cdot \mathbf{q}^* + h^* \nabla \cdot \mathbf{J}^* \tag{1.4}$$
where \bar{c}_n is specific heat of nanofluid, \bar{c} is the temperature, \bar{c}_m is the specific enthalpy for nanoparticles, \bar{c}_f is the energy flux and \vec{j}_p is the nanoparticles diffusion mass flux. Energy flux \bar{c}_f and nanoparticles diffusion mass flux \vec{j}_p are given by

$$q^* = -k \nabla T + h_p \vec{j}_p,$$

(1.5)

$$\vec{j}_p = -\rho_p D_B \nabla C - \rho_p D_T \frac{\nabla T}{T_\infty},$$

(1.6)

in which k the thermal conductivity, \bar{c}_m is the nanoparticle mass density, B the Brownian motion parameter, \bar{c}_f the thermophoretic diffusion coefficient and \bar{c}_n the nanoparticles volume fraction. Now Eq. (1.4) takes the form

$$\rho c_p \frac{dT}{dt} = k \nabla^2 T + \rho_p c_p \left[D_B \nabla C \cdot \nabla T + D_T \frac{\nabla T \cdot \nabla T}{T_\infty} \right],$$

(1.7)

which is the energy equation for nanofluids.

1.2.4 Law of conservation of concentration

The concentration equation for nanofluids is

$$\frac{\partial C}{\partial t} + \nabla \cdot \nabla C = -\frac{1}{\rho_p} \nabla \cdot \vec{j}_p,$$

(1.8)

After utilizing Eq. (1.6), we get

$$\frac{\partial C}{\partial t} + \nabla \cdot \nabla C = D_B \nabla^2 C + D_T \frac{\nabla^2 T}{T_\infty}.$$

(1.9)

1.3 Basic laws for two phase flow model

1.3.1 Law of conservation of linear momentum

Generalized equation of motion is

$$\rho_{nf} \frac{d\vec{V}}{dt} = -\nabla \cdot \tau + \rho_{nf} \vec{b},$$

(1.10)

where the effective nanofluid density $\bar{\rho}_{nf}$ is taken as follows [4]:
Here \(\bar{\phi} \) is the solid volume fraction, \(\bar{\varphi} \) in subscript is for nano-solid-particles and \(\bar{\varphi} \) in subscript is for base fluid.

1.3.2 Law of conservation of energy

The energy equation for a nanofluid in the presence of viscous dissipation and thermal radiation can be written as

\[
(\rho c_p)_n \frac{dT}{dt} = \tau \cdot \mathbf{I} + k_n \nabla^2 T - \nabla \cdot \mathbf{q},
\]

where \(\tau = -\bar{\varphi} \mathbf{I} + \bar{\varphi} \mathbf{A}_1 \) is the Cauchy stress tensor and \(\mathbf{q} \) is the radiative heat flux. The effective nanofluid heat capacity \((\bar{\varphi} \bar{c}_p)_n \) is [4]:

\[
(\bar{\varphi} \bar{c}_p)_n = (\bar{\varphi} \bar{c}_p)_f(1 - \bar{\phi}) + (\bar{\varphi} \bar{c}_p)_s \bar{\phi}
\]

The dynamic viscosity of nanofluid \(\bar{\mu}_n \) is [98]:

\[
\bar{\mu}_n = \frac{\mu_f}{(1 - \bar{\phi})^{2.5}}.
\]

and the effective thermal conductivity of nanofluid \(\bar{\kappa}_n \) by Maxwell-Garnett model is given by [99]:

\[
\frac{k_{nf}}{k_f} = \frac{k_s + 2k_f - 2\bar{\phi}(k_f - k_s)}{k_s + 2k_f + \bar{\phi}(k_f - k_s)}.
\]

1.4 Solution procedure

Flow equations occurring in the field of science and engineering are highly nonlinear in general. Therefore it is very difficult to find the exact solution of such equations. Usually perturbation, Adomian decomposition, and homotopy perturbation methods are used to find the solution of nonlinear equations. But these methods have some drawback through involvement of large/small parameters in the equations and convergence. Homotopy analysis method (HAM) [83 – 97] is one while is independent of small/large parameters. This method also gives us a way to adjust and control the convergence region (i.e. by plotting h-curve). It also provides exemption to choose different sets
of base functions. We have used this technique in the subsequent chapters to get the convergent series solutions.
Chapter 2

MHD flow of nanofluid over permeable stretching sheet with convective boundary conditions

This chapter addresses the magnetohydrodynamic (MHD) boundary layer flow of nanofluid. Flow is induced by a permeable stretching sheet. Convective type boundary conditions are employed in modeling the heat and mass transfer process. Appropriate transformations reduce the nonlinear partial differential equations to ordinary differential equations. The convergent series solutions are constructed. Graphical results of different parameters are discussed. The behaviors of Brownian motion and thermophoretic diffusion of nanoparticles have been examined. The dimensionless expressions of local Nusselt and local Sherwood numbers have been evaluated and discussed.

2.1 Problem formulation

We consider the two-dimensional flow of nanofluid bounded by a permeable stretching sheet. The x–axis is taken along the stretching surface in the direction of motion and y–axis is perpendicular to it. A uniform magnetic field of strength B_0 is applied parallel to the y–axis. It is assumed that the effects of induced magnetic and electric fields are negligible. Salient features of Brownian motion and thermophoresis are present. The temperature T and the nanoparticle fraction C at the surface have constant values T_∞ and C_∞ respectively. The ambient values of T and C attained as x tends to infinity are denoted by T_∞ and C_∞ respectively. The conservation
of mass, momentum, energy and nanoparticles equations for nanofluids are:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \tag{2.1}
\]

\[
u \frac{\partial u}{\partial x} + \nu \frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial y^2} - \frac{\sigma B_0^2 u}{\rho}, \tag{2.2}
\]

\[
u \frac{\partial T}{\partial x} + \nu \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} + \tau \left[DB \frac{\partial C}{\partial y} + \frac{D_T}{T_{\infty}} \left(\frac{\partial T}{\partial y} \right)^2 \right], \tag{2.3}
\]

\[
u \frac{\partial C}{\partial x} + \nu \frac{\partial C}{\partial y} = DB \frac{\partial^2 C}{\partial y^2} + \frac{D_T}{T_{\infty}} \frac{\partial^2 T}{\partial y^2}, \tag{2.4}
\]

where \(u\) and \(v\) are the velocity components along \(x\) and \(-y\) directions respectively, \(\nu\) the kinematic viscosity, \(\rho\) the fluid density, \(\alpha\) the electrical conductivity of the base fluid, \(\alpha\) the thermal diffusivity, \(\bar{\alpha} = \frac{E}{\alpha} = \frac{C_{ef}}{C_f}\) is the ratio between the effective heat capacity of the nanoparticle material and heat capacity of the fluid, \(\tau\) is the Brownian diffusion coefficient and \(\bar{\tau}\) the thermophoretic diffusion coefficient.

The boundary conditions are prescribed as follows:

\[
u = u_w(x) = cx, \quad v = V_w, \quad -k \frac{\partial T}{\partial y} = h(T_f - T), \quad -D_m \frac{\partial C}{\partial y} = k_m(C_f - C) \quad \text{at} \quad \bar{y} = 0\]

\[
\bar{y} = 0 \quad \bar{y} \rightarrow \bar{y}_{\infty}, \quad \bar{y} \rightarrow \bar{y}_{\infty} \quad \text{as} \quad \bar{y} \rightarrow \infty \tag{2.5}
\]

in which \(u_w\) is the wall mass transfer velocity, \(h\) is the thermal conductivity of fluid, \(h\) is the convective heat transfer coefficient, \(T_f\) is the heated fluid temperature, \(D_m\) is the molecular diffusivity of the species concentration, \(C_f\) is the wall mass transfer coefficient and \(C_{\infty}\) is the heated fluid concentration.

Using the transformations

\[
\eta = \sqrt{\frac{c}{\nu}} y, \quad u = cx f'(\eta), \quad v = -\sqrt{c} f(\eta), \quad \theta(\eta) = \frac{\frac{T}{T_f} - \frac{T_{\infty}}{T_{\infty}}}{\frac{T_f}{T_f} - \frac{T_{\infty}}{T_{\infty}}}, \quad \Phi(\eta) = \frac{C_f}{C_f - C_{\infty}}, \tag{2.6}
\]

equation (2.1) is satisfied automatically and Eqs. (2.2 - 2.5) take the following forms

\[
\bar{\nu} \bar{u}^0 - \bar{\alpha} \bar{u}^2 + \bar{\nu} \bar{\nu}^0 - \bar{\nu} \bar{v} = 0 \tag{2.7}
\]
\[
\frac{1}{\theta''} + f' \theta' + N_b \Phi' \theta' + N_t \theta''^2 = 0, \quad (2.8) \Pr \\
\Phi'' + Sc f \Phi' + \frac{N_t}{N_b} \theta'' = 0, \quad (2.9)
\]

\[
\Phi(0) = \Phi(0) = 1 \quad \Phi(0) = -n(1 - \Phi(0)) \Phi(0) = -m(1 - \Phi(0)) \\
\Phi(\infty) = 0 \quad \Phi(\infty) = 0 \quad \Phi(\infty) = 0 \\
\]

where prime indicates the differentiation with respect to \(\Phi \). Moreover the Hartman number \(H \), the Prandtl number \(Pr \), the Brownian motion parameter \(S_b \), the thermophoresis parameter \(S_b \), the Schmidt number \(S_s \), the mass transfer parameter \(m \) with \(\Phi = 0 \) for suction and \(\Phi = 0 \) for injection, the thermal Biot number \(B_1 \) and the concentration Biot number \(B_2 \) are defined by

the following definitions:

\[
M = \frac{\sigma B_0^2}{\nu c}, \quad Pr = \frac{\nu}{\nu c}, \quad S = \frac{D_B}{\sqrt{\nu c}}, \quad \gamma_1 = \frac{h}{k} \sqrt{\frac{\nu}{c}}, \quad \gamma_2 = \frac{k_m}{D_m} \sqrt{\frac{\nu}{c}}. \quad (2.11)
\]

The local Nusselt number \(\Phi \) and Sherwood number \(\Phi \) are

\[
\begin{align*}
 Nu &= \frac{x q_w}{k (T_f - T_\infty)}; \quad q_w = -k \frac{\partial T}{\partial y} \bigg|_{y=0}, \quad (2.12) \\
 Sh &= \frac{x q_m}{D_B (C_f - C_\infty)}; \quad q_m = -D \frac{\partial C}{\partial y} \bigg|_{y=0}, \quad (2.13)
\end{align*}
\]

in which \(\Phi \) and \(\Phi \) denote the wall heat and mass fluxes respectively. In dimensionless form

\[
\Phi \Phi Re = \Phi(0) \\
\]

(2.14)
where \(\text{Re}_1 = \frac{\beta}{R} \) is the local Reynolds number.

2.2 Homotopic solutions

2.2.1 Zeroth-order deformation problems

We choose initial guesses \(\beta_0(\beta), \phi_0(\phi) \) and linear operators \(L_0, L_1 \) and \(L_2 \Phi \) in the forms

\[
\beta_0(\beta) = \beta + 1 - \exp(-\beta) \beta
\]

\[
\theta_0(\eta) = \frac{\gamma_1}{1 + \gamma_1} \exp(-\eta),
\]

\[
\phi_0(\eta) = \frac{\gamma_2}{1 + \gamma_2} \exp(-\eta),
\]

\[
L_f(f) = f'' - f',
\]

\[
L_0(\beta) = \beta_0 - \beta
\]

\[
L_2(\Phi) = \phi_0 - \Phi
\]

where \(\gamma_1 - \gamma_7 \) are the constants. If \(\varepsilon \in [0, 1] \) denotes an embedding parameter and \(\varepsilon_0 \) and \(\varepsilon \) represent the non-zero auxiliary parameters then the zeroth order deformation problems are defined as follows:

\[
L_0 [\beta_1 + \beta_2 \exp(\beta) + \beta_3 \exp(-\beta)] = 0 \beta
\]

\[
L_1 [\beta_4 \exp(\beta) + \beta_5 \exp(-\beta)] = 0 \beta
\]

\[
L_2 [\beta_6 \exp(\beta) + \beta_7 \exp(-\beta)] = 0 \beta
\]
(1 - \(\bar{h} \))L_\bar{h} \bar{h}^*\bar{h}(\bar{h};\bar{h}) - \bar{h}_0(\bar{h})i = \bar{h}_3 N_\bar{h} [\bar{h}^*\bar{h}(\bar{h};\bar{h})] \bar{h} \tag{2.24}

(1 - \(\bar{h} \))L_\bar{h} \bar{h}^*\bar{h}(\bar{h};\bar{h}) - \bar{h}_0(\bar{h})i = \bar{h}_3 N_\bar{h} [\bar{h}^*\bar{h}(\bar{h};\bar{h})] \bar{h} \tag{2.25}

(1 - \(\bar{h} \))L_\bar{h} \Phi^*\Phi(\bar{h};\bar{h}) - \Phi_0(\bar{h})i = \bar{h}_3 N_\Phi [\Phi^*\Phi(\bar{h};\bar{h})] \Phi \tag{2.26}

\(\Phi^*\Phi(0;\bar{h}) = \bar{h}_3 \Phi_0(0;\bar{h}) = 1 \bar{h}_3 \Phi_0(\infty;\bar{h}) = 0 \bar{h}_3 \)

\(\Phi^*\Phi(0;\bar{h}) = -\bar{h}_3 [1 - \Phi^*\Phi(0;\bar{h})] \Phi \Phi(\infty;\bar{h}) = 0 \bar{h}_3 \) \tag{2.27}

where \(N_\bar{h} , N_\Phi \) and \(N_\Phi \) are the nonlinear operators defined in the forms:

\[
N_f \left[\hat{f}(\eta; \varphi) \right] = \frac{\partial^3 \hat{f}(\eta; \varphi)}{\partial \eta^3} + \hat{f}(\eta; \varphi) \frac{\partial^2 \hat{f}(\eta; \varphi)}{\partial \eta^2} - \left(\frac{\partial \hat{f}(\eta; \varphi)}{\partial \eta} \right)^2 - M \frac{\partial \hat{f}(\eta; \varphi)}{\partial \eta}, \tag{2.28}
\]

\[
N_\theta [\theta(\eta; \varphi), \hat{f}(\eta; \varphi), \Phi(\eta; \varphi)] = \frac{1}{Pr} \frac{\partial^2 \theta(\eta; \varphi)}{\partial \eta^2} + \hat{f}(\eta; \varphi) \frac{\partial \theta(\eta; \varphi)}{\partial \eta} + N_t \left(\frac{\partial \theta(\eta; \varphi)}{\partial \eta} \right)^2 + N_b \frac{\partial \Phi(\eta; \varphi)}{\partial \eta} \frac{\partial \theta(\eta; \varphi)}{\partial \eta}, \tag{2.29}
\]

\[
N_\phi [\Phi(\eta; \varphi), \hat{f}(\eta; \varphi), \hat{\theta}(\eta; \varphi)] = \frac{\partial^2 \Phi(\eta; \varphi)}{\partial \eta^2} + Sc \hat{f}(\eta; \varphi) \frac{\partial \Phi(\eta; \varphi)}{\partial \eta} + \frac{N_t}{N_b} \frac{\partial \hat{\theta}(\eta; \varphi)}{\partial \eta^2}. \tag{2.30}
\]

For \(\bar{h} = 0 \) and \(\bar{h} = 1 \) we have

\(\Phi^*\Phi(\bar{h};0) = \Phi_0(\bar{h}) \Phi(\bar{h};1) = \Phi(\bar{h}) \Phi \)

\(\Phi^*\Phi(\bar{h};0) = \Phi_0(\bar{h}) \Phi(\bar{h};1) = \Phi(\bar{h}) \Phi \)

\(\Phi^*\Phi(\bar{h};0) = \Phi_0(\bar{h}) \Phi(\bar{h};1) = \Phi(\bar{h}) \Phi \) \tag{2.31}
Note that \(\Phi_0(\beta) \) and \(\Phi(\beta) \) approach \(\Phi_0(0) \) and \(\Phi(0) \) respectively, when \(\beta \) has variation from 0 to 1. According to Taylor series we have

\[
\hat{f}(\eta; p) = f_0(\eta) + \sum_{m=1}^{\infty} f_m(\eta)p^m, \quad f_m(\eta) = \frac{1}{m!} \left. \frac{\partial^m \hat{f}(\eta; p)}{\partial p^m} \right|_{p=0}
\]

\[
\hat{\theta}(\eta; p) = \theta_0(\eta) + \sum_{m=1}^{\infty} \theta_m(\eta)p^m, \quad \theta_m(\eta) = \frac{1}{m!} \left. \frac{\partial^m \hat{\theta}(\eta; p)}{\partial p^m} \right|_{p=0}
\]

\[
\hat{\Phi}(\eta; p) = \Phi_0(\eta) + \sum_{m=1}^{\infty} \Phi_m(\eta)p^m, \quad \Phi_m(\eta) = \frac{1}{m!} \left. \frac{\partial^m \hat{\Phi}(\eta; p)}{\partial p^m} \right|_{p=0}
\]

(2.32)

where the convergence depends upon \(\{\eta\} \) and \(\{\Phi\} \). By proper choice of \(\{\eta\} \) and \(\{\Phi\} \) the series (2.32) converge for \(\beta = 1 \) and so

\[
f(\eta) = f_0(\eta) + \sum_{m=1}^{\infty} f_m(\eta),
\]

\[
\theta(\eta) = \theta_0(\eta) + \sum_{m=1}^{\infty} \theta_m(\eta),
\]

\[
\Phi(\eta) = \Phi_0(\eta) + \sum_{m=1}^{\infty} \Phi_m(\eta).
\]

(2.33)

2.2.2 \(m^{th} \) order deformation problems

The \(m^{th} \) order deformation problems are given by

\[
L_{\hat{f}} [\Phi_n(\beta) - \Phi_{n-1}(\beta)] = \int_{\hat{R}} R_{\Phi_{n-1}(\beta)} \beta
\]

(2.34)

\[
L_{\hat{\theta}} [\Phi_n(\beta) - \Phi_{n-1}(\beta)] = \int_{\hat{R}} R_{\Phi_{n-1}(\beta)} \beta
\]

(2.35)

\[
L_{\hat{\Phi}} [\Phi_n(\beta) - \Phi_{n-1}(\beta)] = \int_{\hat{R}} R_{\Phi_{n-1}(\beta)} \beta
\]

(2.36)
The general solutions can be expressed as follows:

\[f_m(0) = f_m'(0) = f_m'(\infty) = \theta_m'(0) - \gamma_1 \theta_m(0) = \theta_m(\infty) = \Phi_m'(0) - \gamma_2 \Phi_m(0) = \Phi_m(\infty) = 0, \]

\[\chi_m = \begin{cases}
0, & m \leq 1 \\
1, & m > 1
\end{cases}, \]

\[R_{f,m}(\eta) = f'''_{m-1} + \sum_{k=0}^{m-1} (f_{m-1-k} f''_k - f'_{m-1-k} f'_k) - M f'_m, \]

\[R_{\theta,m}(\eta) = \frac{1}{Pr} \theta'''_{m-1} + \sum_{k=0}^{m-1} (\theta''_{m-1-k} f_k + N \Phi_m f_{m-1-k} \theta'_k + N \Phi_m f_{m-1-k} \theta'_k), \]

\[R_{\Phi,m}(\eta) = \Phi'''_{m-1} + Sc \sum_{k=0}^{m-1} \Phi'_m f_{m-1-k} f_k + N \Phi'_m f_{m-1-k} \theta'_k. \]

The general solutions can be expressed as follows:

\[f_m(\eta) = f^*_m(\eta) + c_1 + c_2 e^\eta + c_3 e^{-\eta}, \]

\[\theta_m(\eta) = \theta^*_m(\eta) + c_4 e^\eta + c_5 e^{-\eta}, \]

\[\Phi_m(\eta) = \Phi^*_m(\eta) + c_6 e^\eta + c_7 e^{-\eta}, \]

in which \(f^*_m, \theta^*_m \) and \(\Phi^*_m \) denote the particular solutions and the constants \(\eta = 1 - 7 \) can be determined by the boundary conditions (2.37). They are given by

\[c_3 = \frac{\partial f^*(\eta)}{\partial \eta} \bigg|_{\eta=0}, \quad c_1 = -c_3 - f^*(0), \quad c_5 = \frac{1}{1 + \gamma_1} \left[\frac{\partial \theta^*(\eta)}{\partial \eta} \bigg|_{\eta=0} - \gamma_1 \theta^*(0) \right], \]

\[c_2 = c_4 = c_6 = 0, \quad c_7 = \frac{1}{1 + \gamma_2} \left[\frac{\partial \Phi^*(\eta)}{\partial \eta} \bigg|_{\eta=0} - \gamma_2 \Phi^*(0) \right]. \]

2.3 Analysis of series solutions

The solution of problems consisting of Eqs. (2.7) – (2.10) is computed employing homotopy analysis method. The convergence region and rate of approximations for the functions \(f, \theta \) and \(\Phi \) can be controlled and adjusted through the auxiliary parameters \(\eta, \theta \) and \(\Phi \). The \(\eta \)-curves are sketched at 14th-order of approximations to obtain valid ranges of these parameters (see Fig. 2.1). Permissible values of the auxiliary parameters are \(-1 < \eta < -0.45 \) and \(-1 < \eta < -0.5\) and \(-1 < 4\).
≤ \phi \leq 0.7. Further, the series solutions converge in the whole region of \(0 \leq \phi \leq \infty \) when \(\eta_0 = \eta = \phi = -1.2 \) Table 2.1 displays the convergence of homotopy solutions for different orders of approximations.

![Graph showing convergence of homotopy solutions](image)

Fig. 2.1: ~curves for velocity, temperature and concentration fields.

Table 2.1: Convergence of HAM solutions for different order of approximations when \(\phi = \phi_0 = 0.4 \), \(\phi_1 = 0.3 \), \(\phi_2 = 0.2 \), \(\phi_3 = 0.1 \), \(\phi_4 = 0.05 \) and \(\phi_5 = 0.02 \).

<table>
<thead>
<tr>
<th>Order of approximations</th>
<th>(f''(0))</th>
<th>(\theta'(0))</th>
<th>(\Phi'(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.454000</td>
<td>0.441053</td>
<td>0.344668</td>
</tr>
<tr>
<td>5</td>
<td>1.45883</td>
<td>0.431349</td>
<td>0.319776</td>
</tr>
<tr>
<td>10</td>
<td>1.45934</td>
<td>0.430920</td>
<td>0.318765</td>
</tr>
<tr>
<td>15</td>
<td>1.45934</td>
<td>0.430912</td>
<td>0.318750</td>
</tr>
<tr>
<td>20</td>
<td>1.45934</td>
<td>0.430912</td>
<td>0.318750</td>
</tr>
<tr>
<td>25</td>
<td>1.45934</td>
<td>0.430912</td>
<td>0.318750</td>
</tr>
<tr>
<td>30</td>
<td>1.45934</td>
<td>0.430912</td>
<td>0.318750</td>
</tr>
</tbody>
</table>
Results and discussion

In this section, the effects of various involved parameters on the velocity, temperature and concentration profiles are discussed. Figs. (2.2–2.3) are plotted to show the effects of Hartman number \bar{H}_M and mass transfer parameter \bar{B} on the velocity profile \bar{u}. Fig. 2.2 shows the effects of \bar{H}_M on \bar{u}. Application of magnetic field has the tendency to slow down the movement of the fluid particles and consequently the velocity decreases. Fig. 2.3 displays the effect of \bar{B} on \bar{u}_0. In this Fig. the velocity field \bar{u}_0 decreases when \bar{B} increases. In fact applying suction leads to draw the amount of fluid particles into the wall and hence the velocity boundary layer decreases.

Effects of the Brownian motion parameter \bar{B}_{br}, thermophoresis parameter \bar{B}_{th}, Schmidt number \bar{S}, Prandtl number \Pr, Hartman number \bar{H}_M, mass transfer parameter \bar{B}, thermal Biot number \bar{B}_1 and concentration Biot number \bar{B}_2 on the temperature profile \bar{T} and the concentration profile $\bar{\Phi}$ are shown in the Figs. (2.4–2.18). It is noted that an increase in the Brownian motion parameter \bar{B}_{br}, thermophoresis parameter \bar{B}_{th} and Schmidt number \bar{S} increase the temperature profile \bar{T} as shown in Figs. (2.4–2.6). The effects of Prandtl number \Pr on the temperature profile are depicted in Fig. 2.7. This graph shows that the temperature profile \bar{T} decreases when \Pr increases. In fact the thermal diffusivity decreases by increasing \Pr and thus the heat diffused away slowly from the heated surface. Fig. 2.8 illustrates the effects of Hartman number \bar{H}_M on temperature profile \bar{T}. The Lorentz force is a resistive force which opposes the fluid motion. As a sequence the heat is produced and thus thermal boundary layer thickness increases. Further, the temperature profile \bar{T} decreases when \bar{H}_M is increased (see Fig. 2.9). Also the temperature profile \bar{T} increases when the thermal Biot number \bar{B}_1 increases (see Fig. 2.10). Fig. 2.11 illustrates the effects of \bar{B}_{br} on $\bar{\Phi}$. The concentration profile $\bar{\Phi}$
decreases by increasing the Brownian motion parameter \bar{B}. Influence of \bar{B} on Φ can be seen in Fig. 2.12. There is an increase in Φ when \bar{B} is increased. Figs. (2.13–2.16) display the effects of \bar{B}, \Pr, \bar{R} and \bar{S} on the concentration profile Φ. It is observed that concentration profile Φ decreases by increasing these parameters. It is observed from Fig. 2.17 that the mass fraction field increases when thermal Biot number \bar{B}_1 is increased. Also the concentration profile increases by increasing concentration Biot number \bar{B}_2 as depicted in Fig. 2.18.

Numerical values of local Nusselt number and local Sherwood number for different emerging parameters are presented in Table 2. It is noticed that local Nusselt number $Nu(Re_{\text{f}})^{-\frac{1}{2}}$ decreases for larger values of \bar{B}_m, \bar{B}_t and \bar{B}_s. However it increases for larger values of \bar{B}_m and \Pr. The magnitude of local Sherwood number $Sh(Re_{\text{f}})^{-\frac{1}{2}}$ decreases for larger values of \bar{B}_m, \Pr and \bar{B}_s however it increases for larger values of \bar{B}_t and \bar{B}_s.

Figs. 2.19 and 2.20 describe the variations of the Nusselt number $Nu(Re_{\text{f}})^{-\frac{1}{2}}$ for Brownian motion parameter \bar{B}, thermophoresis parameter \bar{R}, and Schmidt number \bar{S}. It is noticed that heat transfer rate decreases as \bar{B} and \bar{R} increase for \bar{S}. Fig. 2.21 shows the effects of thermal Biot number \bar{B}_1 and mass transfer parameter \bar{R} on the Nusselt number $Nu(Re_{\text{f}})^{-\frac{1}{2}}$. In this figure, heat transfer rate increases as \bar{B}_1 enhances for \bar{R}. Figs. 2.22 and 2.23 illustrate the variation in dimensionless mass transfer rate $Sh(Re_{\text{f}})^{-\frac{1}{2}}$ vs Brownian motion parameter \bar{B}_m and thermophoresis parameter \bar{B}_t. Here the mass transfer rate increases for larger \bar{B}_m and it decreases with an increase in \bar{B}_t. Effects of concentration Biot number \bar{B}_2 and mass transfer parameter \bar{R} on the Sherwood number $Sh(Re_{\text{f}})^{-\frac{1}{2}}$ are displayed in Fig. 2.24. It is noted that mass transfer rate increases for higher \bar{B}_2. \bar{R}.
Fig. 2.2: Influence of η on $f^*(\eta)$

$S = 0.5$

$M = 0.1, 0.3, 0.5, 0.7$
Fig. 2: Influence of \(f' \) on \(f(\eta) \)

- \(S = 0.1, 0.4, 0.7, 1 \)
- \(M = 0.4 \)

Fig. 3: Influence of \(\theta(\eta) \)

- \(S = 0.5, N_s = 0.3, Sc = Pr = \gamma_1 = 1, \gamma_2 = 0.9, M = 0.4 \)
- \(N_\theta = 1, 2, 3, 4 \)
Fig. 2: Influence of N_t on $\theta(\eta)$

$S = 0.5, \ N_b = M = 0.4, \ Sc = Pr = \gamma_1 = 1, \ \gamma_2 = 0.9$

$N_t = 1, 2, 3, 4$

Fig. 3: Influence of Sc on $\theta(\eta)$

$S = 0.5, \ N_b = M = 0.4, \ N_t = 0.3, \ Pr = \gamma_1 = 1, \ \gamma_2 = 0.9$

$Sc = 0.5, 1, 1.5, 2$
Fig. 27: Influence of Pr on \(\theta(\eta) \)

\[S = 0.5, N_b = 0.4, N_t = 0.3, Sc = \gamma_1 = 1, \gamma_2 = 0.9 \]

\[Pr = 1, 1.1, 1.3, 1.5 \]

Fig. 28: Influence of \(M \) on \(\theta(\eta) \)

\[S = 0.5, N_b = 0.4, N_t = 0.3, Sc = Pr = \gamma_1 = 1, \gamma_2 = 0.9 \]

\[M = 0.3, 0.5, 0.7, 0.9 \]
Fig. 29: Influence of \(S \) on \(\theta(\eta) \)

\[S = 0.5, \; N_2 = M = 0.4, \; N_r = 0.3, \; Sc = \gamma_1 = 1, \; \gamma_2 = 0.9 \]

Fig. 310: Influence of \(\gamma_1 \) on \(\theta(\eta) \)

\[\gamma_1 = 0.1, 0.2, 0.3, 0.4 \]
Fig. 2.11: Influence of N_b on $\Phi(\eta)$

$S = 0.5, M = 0.4, N_t = 0.3, Sc = Pr = \gamma_1 = 1, \gamma_2 = 0.9$

$N_b = 0.3, 0.5, 0.8, 2$

Fig. 2.12: Influence of N_t on $\Phi(\eta)$

$S = 0.5, N_b = M = 0.4, Sc = Pr = \gamma_1 = 1, \gamma_2 = 0.9$

$N_t = 0.1, 0.3, 0.5, 0.9$
Fig. 2.13: Influence of Φ on Φ

$S = 0.5$, $N_b = M = 0.4$, $N_t = 0.3$, $Sc = Pr = \gamma_1 = 1$, $\gamma_2 = 0.9$

$Sc = 0.3, 0.5, 0.8, 1$

Fig. 2.14: Influence of Pr on Φ

$S = 0.5$, $N_b = M = 0.4$, $N_t = 0.3$, $Sc = \gamma_1 = 1$, $\gamma_2 = 0.9$

$Pr = 1, 1.2, 1.3, 1.5$
Fig. 2.15: Influence of M on $\Phi(\eta)$

$S = 0.5, N_b = 0.4, N_t = 0.3, Sc = Pr = \gamma_1 = 1, \gamma_2 = 0.9$

$M = 0.3, 0.5, 0.7, 0.9$

Fig. 2.16: Influence of S on $\Phi(\eta)$

$N_b = M = 0.4, N_t = 0.3, Sc = Pr = \gamma_1 = 1, \gamma_2 = 0.9$

$S = 0.1, 0.3, 0.5, 1$
Fig. 2.17: Influence of γ_1 on $\Phi(\eta) \Phi$

$S = 0.5, N_h = M = 0.4, N_r = 0.3, Sc = Pr = 1, \gamma_2 = 0.9$

$\gamma_1 = 0.1, 0.5, 1, 2$

Fig. 2.18: Influence of γ_2

$S = 0.5, N_h = M = 0.4, N_r = 0.3, Sc = Pr = \gamma_1 = 1$

$\gamma_2 = 0.5, 0.9, 1.2, 1.5$
Fig. 2.19: Influences of \tilde{N}_n and \tilde{N}_f on $-\Theta(0)$

$N_\tilde{n} = 0.3, 0.4, 0.5, 0.6$

Fig. 2.20: Influences of \tilde{N}_f and \tilde{N}_l on $-\Theta(0)$

$N_\tilde{f} = 0.1, 0.2, 0.3, 0.4$
Fig. 2.21: Influences of Γ_1 and Γ_2 on $-\theta'(0)$

$\gamma_1 = 1.2, 1.5, 1.7, 2$

Fig. 2.22: In $-\Phi'(0)$

$N_\delta = 0.5, 0.65, 0.9, 1.5$
Fig. 2.23: Influences of N_t and $\Phi_0(0)$ on $-\Phi'(0)$.

$N_t = 0.1, 0.2, 0.3, 0.4$

Fig. 2.24: Influences of γ_2 and $\Phi_0(0)$ on $-\Phi'(0)$.

$\gamma_2 = 0.7, 0.9, 1.2, 1.5$
2.5 Main points

The flow of nanofluid generated by a permeable stretching sheet is studied. Effects of different parameters on the velocity, temperature and concentration distributions are explored. The following observations are worth mentioning.

- The effects of Hartman number and mass transfer parameter are similar on the velocity profile.
- Increase in Brownian motion parameter, thermophoresis parameter, Schmidt number, Hartman number and thermal Biot number enhances the temperature profile. There is enhancement of concentration for increasing thermophoresis parameter, thermal and concentration Biot numbers.
- Local Nusselt number increases by larger thermal Biot number.
- Local Sherwood number is an increasing function of Brownian motion parameter and concentration Biot number.
Chapter 3

MHD flow of nanofluids due to convectively exponential stretching sheet in a porous medium

This chapter concentrates on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid. The flow is caused by a permeable exponentially stretching surface. An incompressible fluid fills the porous space. A comparative study is made for the nanoparticles namely copper (Cu), silver (Ag), alumina (Al₂O₃) and titanium oxide (TiO₂). Water is treated as a base fluid. Convective type boundary conditions are employed in modeling the heat transfer process. The non-linear partial differential equations governing the flow are reduced to the ordinary differential equation by similarity transformations. The obtained equations are then solved for the development of series solutions. Convergence of the obtained series solutions is explicitly discussed. Effects of different parameters on the velocity and temperature profiles are shown and analyzed through graphs.

3.1 Mathematical formulation

Here we investigate the steady two-dimensional flow of an incompressible nanofluid induced by an exponentially stretching surface in a porous medium with permeability \(\bar{\kappa} \). The \(\bar{\alpha} \)-axis is taken along the stretching surface in the direction of motion and \(\bar{\eta} \)-axis is perpendicular to it.
A uniform transverse magnetic field of strength B_0 is applied parallel to the x–axis. It is assumed that the induced magnetic field and the electric field effects are negligible. Further, the surface exhibits convective type boundary conditions (see Fig. 3.1). The boundary layer flow in the present analysis is governed by the following equations:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \tag{3.1}
\]

\[
\rho_{nf} \left(\frac{u}{\partial x} + v \frac{\partial u}{\partial y} \right) = \mu_{nf} \frac{\partial^2 u}{\partial y^2} - \frac{\mu_{nf}}{K} u - \sigma_{nf} B_0^2 u, \tag{3.2}
\]

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \frac{k_{nf}}{(pcp)_{nf}} \frac{\partial^2 T}{\partial y^2}, \tag{3.3}
\]

where u and v are the velocity components along the x– and y– directions respectively. The effective nanofluid density ρ_{nf} and heat capacity $(\rho c_p)_{nf}$ are taken as follows [4]:

\[
\rho_{nf} = \rho_f (1 - \beta) + \rho_w \beta \eta \tag{3.4}
\]
The dynamic viscosity of nanofluid \(\tilde{\nu}_n \) given by Brinkmann is [98]:

\[
\frac{\nu_n}{f} = \frac{\bar{\mu}_f}{(1 - \phi)^2}.
\] (3.5)

(3.6) The effective thermal conductivity of nanofluid \(\tilde{k}_n \) by Maxwell-Garnett model is given by [99]:

\[
\frac{k_n}{k_f} = \frac{k_s + 2k_f - 2\phi(k_f - k_s)}{k_s + 2k_f + \phi(k_f - k_s)}.
\] (3.7)

and the effective conductivity \(\tilde{\sigma}_n \) of nanofluid is [100]:

\[
\frac{\sigma_n}{\sigma_f} = 1 + \frac{3\left(\frac{\sigma_s}{\sigma_f} - 1 \right) \phi}{\left(\frac{\sigma_s}{\sigma_f} + 2 \right) - \left(\frac{\sigma_s}{\sigma_f} - 1 \right) \phi}.
\] (3.8)

Here \(\bar{\varphi} \) is the solid volume fraction, \(\bar{\varphi} \) in subscript is for nano-solid-particles and \(\bar{\varphi} \) in subscript is for base fluid. The subjected boundary conditions are

\[
u = u_w = U_0 e^{\frac{x}{L}}, \quad v = V_w, \quad -k_f \frac{\partial T}{\partial y} = h(T_f - T) \quad \text{at} \quad y = 0 \]

(3.9) Introducing

\[
\eta = y \sqrt{\frac{U_0}{2\nu_f L}} e^{\frac{x}{L}}, \quad u = U_0 e^{\frac{x}{L}} f'(\eta), \quad v = -\sqrt{\frac{\nu_f U_0}{2 L}} e^{\frac{x}{L}} \left[f(\eta) + \eta f'(\eta) \right], \quad \theta(\eta) = \frac{T - T_\infty}{T_f - T_\infty}.
\] (3.10)

Eq. (3.11) is satisfied automatically and Eqs. (3.12) (3.13) and (3.9) after using Eq. (3.10) can be reduced as follows:

\[
\varepsilon_1 f'' + f f'' - 2f'^2 - \lambda \varepsilon_1 f' - (1 - \phi)^{2.5} M \varepsilon_1 \frac{\sigma_n f}{\sigma_f} f' = 0.
\] (3.11)

\[
k_f \theta'' + \left(1 - \phi \right) + \left(\frac{\rho c_p}{\rho c_p} \right) \frac{\phi}{f} \theta' = 0, \quad \frac{1}{k_n f}
\] (3.12) Pr

\[
\phi_0(0) = 1 \quad \phi(0) = \phi(0) = -\phi_1[1 - \phi(0)]
\]

\[
\phi_0(\infty) = 0 \quad \phi(\infty) = 0
\] (3.13)

in which prime indicates the differentiation with respect to \(\bar{\varphi} \) and the value of \(\phi_1 \) is
\[\varepsilon_1 = \frac{1}{\left(1 - \phi + \frac{\rho_s}{\rho_f} \phi\right)(1 - \phi)^{2.5}}. \]

(3.14)

Moreover, the porosity parameter \(\varepsilon \), the Hartman number \(H \), the Prandtl number \(Pr \), the mass transfer parameter \(\lambda \) with \(\lambda = 0 \) for suction and \(\lambda = 0 \) for injection and the thermal Biot number \(\gamma_1 \) are defined as follows:

\[\lambda = \frac{2\nu_f L}{K U_0} e^{-\frac{x}{L}}, \quad M = \frac{2\sigma_f B_0^2 L}{\rho_f U_0} e^{-\frac{x}{L}}, \quad \frac{\nu_f (\rho c_p)_f}{k_f}, \quad S = \frac{2L}{\nu U_0} e^{-\frac{x}{2L}} V_w, \quad \gamma_1 = \frac{h}{k_f} \sqrt{\frac{\nu_f}{a}}. \]

(3.15)

Local skin-friction coefficient \(C_{sf} \) and local Nusselt number \(Nu \) are given by

\[C_{sf} = \frac{\tau_w}{\frac{1}{2} \rho U_0^2 e^{-\frac{x}{L}}}, \quad Nu = \frac{2q_w}{k_f (T_w - T_\infty)}, \]

(3.16)

where the surface shear stress \(\tau_w \) and wall heat flux \(q_w \) are

\[\tau_w = \mu_{nf} \frac{\partial u}{\partial y} \bigg|_{y=0}, \quad q_w = -k_{nf} \frac{\partial T}{\partial y} \bigg|_{y=0}. \]

(3.17)

Dimensionless forms of skin friction coefficient \(C_{sf} \) and local Nusselt number \(Nu \) can be represented by the relations

\[C_{sf} \sqrt{\frac{Re_x}{2}} = \frac{1}{(1 - \phi)^{2.5}} f''(0), \quad Nu Re_x^{-1/2} \sqrt{\frac{2L}{x}} = - \frac{k_{nf}}{k_f} \vartheta'(0), \]

(3.18)

in which \(Re_x = \frac{\rho_f U_0 L}{\mu_{nf}} \) denotes the local Reynolds number.

3.2 Homotopy analysis solutions

Employing the methodology of homotopy analysis solutions the initial approximations \(f_0(\eta) \) and \(\theta_0(\eta) \) and auxiliary linear operators \(L_0 \) and \(L_1 \) are given by

\[f_0(\eta) = 1 + S - \exp(-\eta), \quad \theta_0(\eta) = \frac{\gamma_1}{1 + \gamma_1} \exp(-\eta), \]

(3.19)
\[
L_0(\bar{\eta}) = \bar{\eta}^{00} - \bar{\eta}_0 \quad L_0(\bar{\eta}) = \bar{\eta}^{00} - \bar{\eta}_0
\]
(3.20)

together with the properties
\[
L_\bar{\eta} [\bar{\eta}_1 + \bar{\eta}_2 \exp(\bar{\eta}) + \bar{\eta}_3 \exp(-\bar{\eta})] = 0
\]
\[
L_\bar{\eta} [\bar{\eta}_4 \exp(\bar{\eta}) + \bar{\eta}_5 \exp(-\bar{\eta})] = 0
\]
(3.21)

where \(\bar{\eta}_1 - \bar{\eta}_5 \) are the constants. If \(\bar{\eta} \in [0,1] \) indicates the embedding parameter then the zeroth order deformation problems are constructed as follows:

\[
(1 - \bar{\eta})L_\bar{\eta} h^0(\bar{\eta}; \eta) - \bar{\eta}_0(\bar{\eta})i = \bar{\eta} \bar{\eta}^0 \bar{\eta}^0(\bar{\eta}; \eta)
\]
(3.22)

\[
(1 - \bar{\eta})L_\bar{\eta} h^0(\bar{\eta}; \eta) - \bar{\eta}_0(\bar{\eta})i = \bar{\eta} \bar{\eta}^0 \bar{\eta}^0(\bar{\eta}; \eta)
\]
(3.23)

\[
\hat{\bar{\eta}}^0(0; \eta) = 1, \quad \hat{\bar{\eta}}'(0; \eta) = 0, \quad \hat{\bar{\eta}}^0(\infty; \eta) = 0
\]
(3.24)

where \(\hat{\eta}^0 \) and \(\hat{\eta}'^0 \) are the nonzero auxiliary parameters. With Eqs. (3.11) and (3.12), the definitions of operators \(N_\eta \) and \(N_\bar{\eta} \) can be written as

\[
N_f \left[f(\eta; p) \right] = \varepsilon_1 \frac{\partial^3 f(\eta; p)}{\partial \eta^3} + f(\eta; p) \frac{\partial^2 f(\eta; p)}{\partial \eta^2} - 2 \left(\frac{\partial f(\eta; p)}{\partial \eta} \right)^2 \\
- \lambda_1 \frac{\partial f(\eta; p)}{\partial \eta} - (1 - \phi)^{2.5} M \varepsilon_1 \frac{\sigma_n f \frac{\partial f(\eta; p)}{\partial \eta}}{\sigma_f},
\]
(3.25)

\[
N_\eta \left[\theta(\eta; p), \hat{f}(\eta; p) \right] = \frac{k_n f}{Pr} \frac{\partial^2 \theta(\eta; p)}{\partial \eta^2} + \left(1 - \phi \right) + \frac{\left(\rho c_p \right) \phi}{\left(\rho c_p \right) f} \frac{\partial f(\eta; p)}{\partial \eta}.
\]
(3.26)

The resulting problems at \(m \)th order are given by
\[L_\eta [\eta_\eta(\eta) - \eta_\eta(\eta-1)] = \eta R_\eta(\eta) \tag{3.27} \]

\[L_\eta [\eta_\eta(\eta) - \eta_\eta(\eta-1)] = \eta R_\eta(\eta) \tag{3.28} \]

\[f_m(0) = f_m'(0) = f_m'(\infty) = 0, \quad \theta_m(0) - \gamma_1 \theta_m(0) = 0, \quad \theta_m(\infty) = 0, \tag{3.29} \]

\[\chi_s = 0 \quad \Leftrightarrow \quad 1 \leq 1 \tag{3.30} \]

\[R_{f,m}(\eta) = \varepsilon_1 f'''_{m-1} + \sum_{k=0}^{m-1} [f'_{m-1-k} f''_{k} - 2 f_{m-1-k} f'_{k}] - \lambda \varepsilon_1 f'_{m-1} - (1-\phi)^{2,5} M \varepsilon_1 \frac{\sigma_{n\eta}}{f_{m-1}}, \tag{3.31} \]

\[R_{\theta,m}(\eta) = \frac{1}{Pr} \frac{k_n}{k_f} \theta''_{m-1} + \left(1 - \phi + \frac{(\rho c_p)_s}{(\rho c_p)_f} \right) \sum_{k=0}^{m-1} \theta'_{m-1-k} f_k, \tag{3.32} \]

where the general solutions are

\[\eta_\eta(\eta) = \eta_\eta(\eta) + c_1 + c_2 e^{\eta} + c_3 e^{-\eta}, \]

\[\theta_\eta(\eta) = \theta_\eta(\eta) + c_4 e^{\eta} + c_5 e^{-\eta}, \tag{3.33} \]

in which \(f_m^*\) and \(\theta_m^*\) denote the special solutions.

3.3 Convergence of the homotopy solutions

Now the solutions of Eqs. (3.11) and (3.12) subject to the boundary conditions (3.13) is computed by means of homotopy analysis method. We choose auxiliary parameters \(\varepsilon_1\) and \(\varepsilon_2\) for the functions \(\eta_\eta\) and \(\theta_\eta\) respectively. The convergence of obtained series and rate of the approximation for HAM strongly depend upon the values of the auxiliary parameters. For ranges of admissible values of \(\varepsilon_1\) and
the j_8--curves for 12^{th}--order of approximations are plotted in the Fig. 3.2. We can see that the permissible values for j_8 and j_9 are $-0.7 \leq j_8 \leq -0.4$ and $-0.6 \leq j_9 \leq -0.45$. Further, the series solutions converge in the whole region of $(0 \leq \tilde{h} \leq \infty)$ when $j_8 = j_9 = -0.6$.

![Fig. 3.2: \sim--curves for velocity and temperature fields.](image)

Table 3.1: Convergence of HAM solutions for different order of approximations when $Pr = 6.2 \text{ and } \tilde{h} = 0.03 \text{ and } \eta = 0.5 \text{ and } \tilde{h}_1 = 0.7 \text{ and } \tilde{h}_2 = 0.1$ and $\bar{h} = 0.9$

<table>
<thead>
<tr>
<th>Order of approximations</th>
<th>$\bar{f}(0)$</th>
<th>$\bar{g}(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.761</td>
<td>0.4432</td>
</tr>
<tr>
<td>5</td>
<td>2.144</td>
<td>0.5421</td>
</tr>
<tr>
<td>10</td>
<td>2.154</td>
<td>0.6139</td>
</tr>
<tr>
<td>16</td>
<td>2.154</td>
<td>0.6336</td>
</tr>
<tr>
<td>20</td>
<td>2.154</td>
<td>0.6271</td>
</tr>
<tr>
<td>30</td>
<td>2.154</td>
<td>0.6184</td>
</tr>
<tr>
<td>35</td>
<td>2.154</td>
<td>0.6241</td>
</tr>
</tbody>
</table>
3.4 Discussion

In this section we discuss the influences of various parameters on the velocity $\bar{u}(\bar{y})$ and temperature fields $\bar{T}(\bar{y})$. Figs. (3.3 – 3.6) are plotted to analyze the effects of volume fraction of nanoparticles $\bar{\phi}$, mass transfer parameter \bar{K}, Hartman number \bar{M} and porosity parameter \bar{B} on the velocity field \bar{u}. Effects of volume fraction of nanoparticles $\bar{\phi}$ on the velocity profile \bar{u}_0 can be seen from Fig. 3.3. Here the values of \bar{u}_0 and boundary layer thickness decrease when volume fraction for the nanoparticles increases. The effects of mass transfer parameter \bar{K} on the velocity \bar{u} are depicted in Fig. 3.4. This graph shows that the value of velocity function \bar{u}_0 and the boundary layer thickness decrease by increasing \bar{K}. Because applying suction leads to draw the amount of fluid particles into the wall and consequently the velocity boundary layer decreases. Influence of Hartman number \bar{M} and parameter \bar{B} on the velocity field \bar{u}_0 is similar to that of \bar{K}. As application of a magnetic field has the tendency to slow down the movement of the fluid, causing its velocity to decrease. Also by increasing porosity parameter \bar{B}, the resistance to the fluid motion also increases. This causes the fluid velocity to decrease.

Effects of volume fraction of nanoparticles $\bar{\phi}$, mass transfer parameter \bar{K}, Hartman number \bar{M}, porosity parameter \bar{B} and Biot number \bar{B}_1 on the temperature profile \bar{T} are shown in the Figs. (3.7 – 3.11). Effect of $\bar{\phi}$ on the temperature is analyzed in Fig. 3.7. It is observed that increasing the volume fraction of nanoparticles $\bar{\phi}$ increases the thermal conductivity of nanofluid and consequently the thermal boundary layer thickness increases. The behavior of $\bar{\phi}$ on the temperature profile is similar to that of velocity profile (see Fig. 3.8). Fig. 3.9 illustrates the effects of \bar{K} on temperature profile \bar{T}. As Lorentz force is a resistive force which opposes the fluid motion. So heat is produced and as a result thermal boundary layer thickness increases. Variations of \bar{K} on temperature profile \bar{T} can be seen in the Fig. 3.10. There is a decrease in temperature \bar{T} when porosity parameter \bar{B} is increased. Fig. 3.11 represents the effect of Biot number \bar{B}_1 on temperature profile \bar{T}. Temperature profile \bar{T} increases for larger \bar{B}_1.
In Fig. 3.12 we observe that boundary layer thickness is maximum when Titanium oxide is chosen as nanoparticle. Fig. 3.13 shows the effects of nanoparticle volume fraction ϕ, mass transfer parameter θ and porosity parameter σ on skin friction coefficient in case of ϕ–water. It is noticed that magnitude of skin friction coefficient increases when we increase ϕ for both θ and σ. Fig. 3.14 describes the variation of Nusselt number for nanoparticle volume fraction ϕ, mass transfer parameter θ and porosity parameter σ. In this Fig. the heat transfer rates increase as θ increases for both ϕ and σ.

Table 3.1 shows the convergence of the series solutions. In Table 3.2 some thermophysical properties of water and nanoparticles are given. Table 3.3 shows the effects of nanoparticle volume fraction ϕ for different types of nanofluids on skin friction coefficient when $\phi = 0.05$, $\theta = 0.1$ and $\sigma = 0.9$. Table 3.4 shows the effects of nanoparticle volume fraction ϕ for different types of nanofluids on Nusselt number when $\phi = 0.05$, $Pr = 6.2$, $\theta = 0.1$, $\sigma = 0.9$ and $\phi = 0.9$. These tables show that the shear stress and heat transfer rate change when we use different types of nanoparticles.

![Graph showing influence of ϕ on $f'\eta$](image)

Cu-water

$\lambda = 0.5$, $M = 0.1$, $S = 0.9$

$\phi = 0.01, 0.03, 0.04, 0.05$

Fig. 3.3: Influence of ϕ on $f'\eta$. 49
Fig. 3.4: Influence of \(\overline{\eta} \) on \(\overline{f(\eta)} \)

\[\begin{align*}
\lambda &= 0.5, M = 0.1, \phi = 0.03 \\
S &= 0.1, 0.5, 0.9, 1.5
\end{align*} \]

Fig. 3.5: Influence of \(\overline{\eta} \) on \(\overline{f(\eta)} \)

\[\begin{align*}
\lambda &= 0.5, S = 0.9, \phi = 0.03 \\
M &= 0.1, 0.3, 0.5, 0.7
\end{align*} \]
Fig. 3.6: Influence of \(\lambda \) on \(\theta(\eta) \)

Cu-water

\[M = 0.1, \quad S = 0.9, \quad \phi = 0.03 \]

\[\lambda = 0.1, 0.8, 1.5, 2 \]

Fig. 3.7: Influence of \(\phi \) on \(\theta(\eta) \)

Cu-water

\[M = 0.1, \quad \lambda = 0.5, \quad S = 0.9, \quad Pr = 6.2, \quad \gamma_1 = 0.7 \]

\[\phi = 0.01, 0.03, 0.1, 0.2 \]
Fig. 3.8: Influence of η on $\theta(\eta)$

Cu-water

$M = 0.1, \lambda = 0.5, \phi = 0.03, Pr = 6.2, \gamma_1 = 0.7$

$S = 0.1, 0.5, 0.9, 1.5$

Fig. 3.9: Influence of η on $\theta(\eta)$

Cu-water

$S = 0.9, \lambda = 0.5, \phi = 0.03, Pr = 6.2, \gamma_1 = 0.7$

$M = 0.1, 0.5, 0.9, 2$
Fig. 3.10: Influence of \mathfrak{f} on $\theta(\eta)$

Cu-water

$M = 0.1$, $S = 0.9$, $\phi = 0.03$, $Pr = 6.2$, $\gamma_1 = 0.7$

$\lambda = 2, 3, 4, 5$

Fig. 3.11: Influence of \mathfrak{f}_1 on $\theta(\eta)$

Cu-water

$M = 0.1$, $S = 0.9$, $\phi = 0.03$, $Pr = 6.2$, $\lambda = 0.9$

$\gamma_1 = 0.3, 0.5, 0.7, 0.9$
Fig. 3.12: (a) Velocity and (b) temperature profiles for different types of nanoparticles.
Fig. 3.13: Effects of nanoparticle volume fraction ϕ, (a) mass transfer parameter $\bar{\theta}$ and (b) porosity parameter $\bar{\tau}$ on the skin friction coefficient when $\bar{\theta} = 0.1$.

\[
\frac{1}{(1-\phi)^{2\bar{\gamma}}}f''(0)
\]

(a)

\[
\frac{1}{(1-\phi)^{2\bar{\gamma}}}f''(0)
\]

(b)
Fig. 3.14: Effects of nanoparticle volume fraction ϕ, (a) mass transfer parameter $\bar{\theta}$ and (b) porosity parameter $\bar{\rho}$ on the Nusselt number when $\bar{\theta} = 0.1$, $\text{Pr} = 6.2$ and $\bar{\rho} = 0.7$.

Table 3.2: Thermophysical properties of water and nanoparticles [21].
Table 3.3: Effect of ϕ for different types of nanofluids on skin friction coefficient when $\phi = 0.05$ $\phi = 0.1$ and $\phi = 0.9$

<table>
<thead>
<tr>
<th>Nanofluid</th>
<th>$\phi = 0.01$</th>
<th>$\phi = 0.03$</th>
<th>$\phi = 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure water</td>
<td>0.05</td>
<td>0.07</td>
<td>0.09</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>0.06</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>Silver (Ag)</td>
<td>0.07</td>
<td>0.09</td>
<td>0.11</td>
</tr>
<tr>
<td>Alumina (Al_2O_3)</td>
<td>0.08</td>
<td>0.10</td>
<td>0.12</td>
</tr>
<tr>
<td>Titanium Oxide (Ti_2O_3)</td>
<td>0.09</td>
<td>0.11</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table 3.4: Effect of ϕ for different types of nanofluids on Nusselt number when $\phi = 0.05$

<table>
<thead>
<tr>
<th>Nanofluid</th>
<th>$\phi = 0.01$</th>
<th>$\phi = 0.03$</th>
<th>$\phi = 0.05$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure water</td>
<td>0.436981</td>
<td>0.436452</td>
<td>0.437649</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>0.423311</td>
<td>0.421702</td>
<td>0.425326</td>
</tr>
<tr>
<td>Silver (Ag)</td>
<td>0.409403</td>
<td>0.406691</td>
<td>0.412767</td>
</tr>
<tr>
<td>Alumina (Al_2O_3)</td>
<td>0.438380</td>
<td>0.427666</td>
<td>0.416582</td>
</tr>
<tr>
<td>Titanium Oxide (Ti_2O_3)</td>
<td>0.437649</td>
<td>0.425326</td>
<td>0.412767</td>
</tr>
</tbody>
</table>

3.5 Concluding remarks

Here MHD flow of nanofluid by an exponentially permeable stretching sheet is studied. Effects of different parameters on the velocity and temperature profiles are shown. Convergent approximate solution is constructed. The following observations are made:

- An increase in the values of ϕ, $\frac{d\theta}{d\eta}$, $\frac{d\psi}{d\eta}$ and ψ have similar effects on the velocity profile in a qualitative sense.
- Temperature profile enhances by increasing ϕ, $\frac{d\theta}{d\eta}$ and ψ while it decreases when ψ and $\frac{d\theta}{d\eta}$ are increased.
• Magnitude of skin friction coefficient is higher for increasing values of θ. Higher values of θ correspond to larger values of Nusselt number.
Chapter 4

MHD flow of nanofluid with homogeneous-heterogeneous reactions and velocity slip

Present chapter focuses on the steady magnetohydrodynamic (MHD) flow of viscous nanofluid. The flow is caused by a stretching surface with homogeneous-heterogeneous reactions. An incompressible fluid fills the porous space. Copper-water and silver-water nanofluids are investigated in this study. Transformation method reduces the nonlinear partial differential equations governing the flow into the ordinary differential equation by similarity transformations. The obtained equations are then solved for the development of series solutions. Convergence of the obtained series solutions is explicitly discussed. Effects of different parameters on the velocity, concentration and skin friction coefficient are shown and analyzed through graphs.

4.1 Mathematical formulation

We consider the steady two-dimensional flow of an incompressible nanofluid over a stretching surface in porous medium with permeability κ. The \hat{x}-axis is taken along the stretching surface in the direction of motion and \hat{y}-axis is perpendicular to it. A uniform transverse magnetic field of strength \hat{B} is applied parallel to the \hat{z}-axis. It is assumed that the induced magnetic and electric fields effects are negligible (see Fig. 4.1). Nanoparticles such as copper (Cu) and silver (Ag) are considered. Water is treated as a base fluid.
We have taken a simple homogeneous-heterogeneous reaction model in the following form [73]:

\[
\boxed{ \text{rate} = \overline{a}_0 \overline{a}^2 \overline{b} } \tag{4.1}
\]

while on the catalyst surface we have the single, isothermal, first order reaction

\[
\boxed{ \text{rate} = \overline{a}_n \overline{b} } \tag{4.2}
\]

where \(\overline{a} \) and \(\overline{b} \) are the concentrations of the chemical species \(\overline{a} \) and \(\overline{b} \) and \(\overline{a}_n \) and \(\overline{b}_n \) denote the rate constants. We assume that both reaction processes are isothermal. Under these assumptions, the relevant boundary layer equations are

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \tag{4.3}
\]

\[
\rho_{nf} \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} \right) = \mu_{nf} \frac{\partial^2 u}{\partial y^2} - \frac{\mu_{nf}}{K} u - \sigma_{nf} B_0^2 u, \tag{4.4}
\]

\[
u \frac{\partial a}{\partial x} + v \frac{\partial a}{\partial y} = D_A \frac{\partial^2 a}{\partial y^2} - k_c a b^2, \tag{4.5}
\]
\[u \frac{\partial b}{\partial x} + v \frac{\partial b}{\partial y} = D_B \frac{\partial^2 b}{\partial y^2} + k_c a b^2. \] (4.6)

The subjected boundary conditions are

\[u = cx + \frac{2 - \sigma_v}{\sigma_v} \lambda_0 \frac{\partial u}{\partial y} \bigg|_{y=0}, \quad v = 0, \quad D_A \frac{\partial a}{\partial y} = k_s a, \quad D_B \frac{\partial b}{\partial y} = -k_s a \]

\[\rightarrow \quad \rightarrow \quad \rightarrow - \quad \rightarrow \infty \quad \text{at } \bar{y} = 0 \bar{y}. \] (4.7)

where \(\bar{u} \) and \(\bar{v} \) are the velocity components along the \(\bar{u} \)- and \(\bar{v} \)-directions respectively, \(\bar{D}_A \) and \(\bar{D}_B \) are the respective diffusion species coefficients of \(\bar{u} \) and \(\bar{v} \), \(\bar{k}_s \) the tangential momentum accommodation coefficient and \(\bar{\lambda}_0 \) the molecular mean free path. The effective density \(\bar{\rho}_{nf} \), the dynamic viscosity \(\bar{\mu}_{nf} \), the electrical conductivity \(\bar{\sigma}_{nf} \), the heat capacitance \((\bar{\rho} \bar{C}_p)_{nf} \) and the thermal conductivity \(\bar{\kappa}_{nf} \) of the nanofluid are given by

\[\rho_{nf} = \rho_f (1 - \phi) + \rho_s \phi, \] (4.8)

\[\mu_{nf} = \frac{\mu_f}{(1 - \phi)^{2.5}}, \] (4.9)

\[\frac{\sigma_{nf}}{\sigma_f} = 1 + \frac{3 \left(\frac{\sigma_s}{\sigma_f} - 1 \right) \phi}{\left(\frac{\sigma_s}{\sigma_f} + 2 \right) - \left(\frac{\sigma_s}{\sigma_f} - 1 \right) \phi}, \] (4.10)

Here \(\phi \) is the nanoparticle volume fraction, \(\bar{\phi} \) in subscript is for nano-solid-particles and \(\bar{\phi} \) in subscript is for base fluid. Denoting \(\bar{\phi}_0 \) (a constant) and \(\bar{\phi}(\bar{y}) \) and \(\bar{\phi}(\bar{y}) \) the dimensionless concentration and defining

\[\eta = \sqrt{\frac{c}{\nu_f}} y, \quad u = cx f'(\eta), \quad v = -\sqrt{\nu_f} f(\eta), \quad a = a_0 \xi(\eta), \quad b = b_0 h(\eta). \] (4.11)

Equation (4.3) is satisfied automatically and Eqs. (4.4 - 4.7) reduce to

\[\varepsilon^2 f'''' + f f''' - f'' - \lambda \varepsilon f' - (1 - \phi)^{2.5} \left(\frac{\sigma_{nf}}{\sigma_f} \right) \frac{\sigma_{nf}}{\sigma_f} f' = 0, \] (4.12)
\[\frac{1}{S_c} \xi'' + f \xi' - k_1 \xi h^2 = 0, \quad (4.13) \]

\[\frac{\delta}{S_c} h'' + f h' + k_1 \xi h^2 = 0, \quad (4.14) \]

\[\mathbf{\psi}(0) = 1 + \frac{\partial}{\partial \xi}\mathbf{\psi}(0), \quad \mathbf{\psi}(0) = 0 \quad \mathbf{\psi}(\infty) \rightarrow 0 \]

\[\mathbf{\psi}(0) = \mathbf{\psi}_2(0), \quad \mathbf{\psi}(\infty) \rightarrow 1 \]

\[\mathbf{\psi}_2(0) = -\frac{\partial}{\partial \xi}\mathbf{\psi}(0), \quad \mathbf{\psi}(\infty) \rightarrow 0 \]

(4.15)

in which prime indicates the differentiation with respect to \(\xi \). Moreover the non-dimensional constants in Eqs. (4.12 - 4.17) are the porosity parameter \(\alpha \), the Hartman number \(\beta \), the Schmidt number \(\mathbf{\psi} \), the measure of the strength of the homogeneous reaction \(\mathbf{\psi}_1 \), the measure of the strength of the heterogeneous reaction \(\mathbf{\psi}_2 \), the ratio of the diffusion coefficient \(\mathbf{\psi} \) and the velocity slip parameter \(\mathbf{\psi} \). These are defined as follows:

\[\lambda = \frac{\nu_f}{cK}, \quad M = \frac{\sigma_f B_0^2}{\alpha \rho_f}, \quad S_c = \frac{\nu_f}{D_A}, \quad k_1 = \frac{\kappa c \alpha_0^2}{c}, \quad k_2 = \frac{k_s D_A}{D_A}, \quad \delta = \frac{D_B}{D_A}, \quad \beta = \frac{2 - \sigma_v}{\sigma_v \lambda_0} \sqrt{\frac{c}{\nu_f}}, \quad (4.16) \]

where

\[\varepsilon_1 = \frac{1}{(1 - \phi)^{2.5} \left(1 - \phi + \phi \frac{\rho_\mathbf{\psi}}{\rho_f}\right)}. \quad (4.17) \]

The diffusion coefficients of chemical species \(\mathbf{\psi} \) and \(\mathbf{\psi} \) are expected to be of a comparable size. This leads to make a further assumption that the diffusion coefficients \(\mathbf{\psi}_B \) and \(\mathbf{\psi}_B \) are equal, i.e. to take \(\mathbf{\psi} = 1 \) [73]. In this case we have from Eqs. (4.15)

\[\mathbf{\psi}(0) + \mathbf{\psi}(\infty) = \mathbf{\psi}(0) + \mathbf{\psi}(\infty) = 1 \quad (4.18) \]

Thus Eqs. (4.13) and (4.14) become

\[\frac{1}{S_c} \xi'' + f \xi' - k_1 \xi(1 - \xi)^2 = 0, \quad (4.19) \]

subject to the boundary conditions

62
The physical quantity of interest is the skin-friction coefficient \mathcal{C}_{sf}. It characterizes the surface drag. The shearing stress at the surface of the wall \mathcal{E} is given by

$$\tau_w = -\mu_n f \frac{\partial u}{\partial y} \bigg|_{y=0} = -\frac{1}{(1 - \phi)^{2.5}} \sqrt{\mu_f \rho_f c^2} f''(0).$$

The skin friction coefficient is defined as

$$C_{sf} = \frac{\tau_w}{\frac{1}{2} \rho_f u_w^2},$$

in which $\text{Re}_x = \mathcal{E}_1 \mathcal{E}_4 \mathcal{E}_5$ denotes the local Reynolds number.

4.2 Solutions derivation

We choose the initial guesses $f_0(\mathcal{E})$ and $\xi_0(\mathcal{E})$ and the linear operators L_1 and L_2 in the forms

$$f_0(\eta) = \frac{1}{1 + \beta} (1 - e^{-\eta}), \quad \xi_0(\eta) = 1 - \frac{1}{2} e^{-k_2 \eta},$$

$$L_1 f(f) = f''' - f', \quad L_2 \xi(\xi) = \xi'' - \xi,$$

together with the properties

$$L_1 L_3 \mathcal{E}_1 \mathcal{E}_2 \mathcal{E}_3 + \mathcal{E}_4 \mathcal{E}_5 = 0 \mathcal{E}$$

$$L_1 L_3 \mathcal{E}_4 \mathcal{E}_5 = 0 \mathcal{E}$$

where $\mathcal{E}_1 - \mathcal{E}_5$ are the constants.

We construct the zeroth order problems as follows:
\[(1 - \hat{b}) L \hat{h} \hat{h}^{\ast}(\hat{b}; \hat{b}) - \hat{b} \circ \hat{b} i = \hat{h} \circ \hat{h} [\hat{b}(\hat{b}; \hat{b})] \hat{b} \]
\[(1 - \delta) L \hat{h} \hat{h}^{\ast}(\hat{b}; \hat{b}) - \delta \circ \delta i = \hat{h} \circ \hat{h} [\hat{b}(\hat{b}; \hat{b})] \hat{b} \]

\[\begin{aligned}
\hat{h}^{\circ}o(0; \hat{b}) &= 1 + \hat{h}^{\circ}oo(0; \hat{b}) \hat{h}^{\circ}(0; \hat{b}) = 0 \hat{b} \hat{h}^{\circ}(\infty; \hat{b}) = 0 \hat{b} \\
\hat{h}^{\circ}(0; \hat{b}) &= \hat{h}^{\circ}(0; \hat{b}) \hat{h}^{\circ}(0; \hat{b}) = 1 \hat{b}
\end{aligned} \]

where \(\hat{b} \in [0, 1] \) denotes an embedding parameter and \(\lambda_n \) and \(\lambda_n \) are the nonzero auxiliary parameters. With Eqs. (4.12) and (4.19), the definitions of operators \(N_\hat{h} \) and \(N_\delta \) are

\[N_f \left[\hat{f}(\eta; p) \right] = \varepsilon_1 \frac{\partial^3 \hat{f}(\eta; p)}{\partial \eta^3} + \hat{f}(\eta; p) \frac{\partial^2 \hat{f}(\eta; p)}{\partial \eta^2} - \left(\frac{\partial \hat{f}(\eta; p)}{\partial \eta} \right)^2 - \lambda_{\varepsilon_1} \frac{\partial \hat{f}(\eta; p)}{\partial \eta} - (1 - \phi)^{2.5} M_{\varepsilon_1} \frac{\sigma_{nf} \hat{f}(\eta; p)}{\sigma_f} \frac{\partial \hat{f}(\eta; p)}{\partial \eta}, \]

The resulting problems at \(m_{\varepsilon_1} \) order are given by

\[L_\hat{h} \left[\hat{h}_n(\hat{b}) - \hat{h}_n h_{n-1}(\hat{b}) \right] = \hat{h} \circ \hat{h} h_{n}(\hat{b}) \hat{b} \]
\[L_\delta \left[E \hat{h}_\delta(\hat{b}) - E \hat{h}_\delta h_{\delta-1}(\hat{b}) \right] = \hat{h} \circ \hat{h} h_{\delta}(\hat{b}) \hat{b} \]

\[\hat{h}_n(0) = \hat{h}_n(0) - \hat{h}_n oo(0) = \hat{h}_n(0) - \hat{h}_n oo(0) = \hat{h}_n(\infty) = 0 \hat{b} \]
\(\chi_m = \begin{cases}
0, & m \leq 1 \\
1, & m > 1
\end{cases} \) \hspace{1cm} (4.35)

\[
\mathcal{N}_x(\dot{\xi}(\eta; p), \dot{f}(\eta; p)) = \frac{1}{Sc} \frac{\partial^2 \dot{\xi}(\eta; p)}{\partial \eta^2} + f(\eta; p) \frac{\partial \dot{\xi}(\eta; p)}{\partial \eta} - k_1 \left(\dot{\xi}(\eta; p) \right)^3
- k_1 \dot{\xi}(\eta; p) + 2k_1 \left(\dot{\xi}(\eta; p) \right)^2.
\] \hspace{1cm} (4.31)

\[
\mathcal{R}_{f,m}(\eta) = \varepsilon_1 f''_{m-1} + \sum_{l=0}^{m-1} \left[f_{m-1-l} f''_{l} - f'_{m-1-l} f'_{l} \right] - \lambda \varepsilon_1 f'_{m-1} - (1 - \phi)^{2,5} M \varepsilon_1 \frac{\sigma_{nf}}{\sigma_f} f'_{m-1}, \hspace{1cm} (4.36)
\]

\[
\mathcal{R}_{\xi,m}(\eta) = \frac{1}{Sc} \xi''_{m-1} + \sum_{l=0}^{m-1} \left[\xi'_{m-1-l} \xi'_{l} - k_1 \xi_{m-1-l} \sum_{j=0}^{l} \xi_{l-j} \xi_{j} + 2k_1 \xi_{m-1-l} \xi_{l} \right] - k_1 \xi_{m-1}. \hspace{1cm} (4.37)
\]
where the general solutions are

\[
\bar{u}_n(\eta) = \bar{u}^*_n(\eta) + U_1 + U_2 \eta + U_3 \eta^2
\]

\[
\bar{v}_n(\eta) = \bar{v}^*_n(\eta) + V_4 \eta^2 + V_5 \eta^3
\]

(4.38)

in which \(\bar{f}^*_m\) and \(\xi^*_m\) denote the special solutions. Constants \(\bar{u}_m(\bar{\zeta} = 1 - 5)\) can be determined by the boundary conditions (4.34). They are given by

\[
c_3 = \frac{1}{1 + \beta} \left[\frac{\partial f^*(\eta)}{\partial \eta} - \beta \frac{\partial^2 f^*(\eta)}{\partial \eta^2} \right]_{\eta = 0}, \quad c_1 = -c_3 - f^*(0),
\]

\[
c_2 = c_4 = 0, \quad c_5 = \frac{1}{1 + k_2} \left[\frac{\partial \xi^*(\eta)}{\partial \eta} \right]_{\eta = 0} - k_2^2 \xi^*(0).
\]

(4.39)

4.3 Convergence of the homotopy solutions

Now the solutions of Eqs. (4.12) and (4.19) subject to the boundary conditions (4.15) and (4.20) are computed by means of homotopy analysis method. We choose auxiliary parameters \(\bar{\eta}\) and \(\bar{\mu}\) for the functions \(\bar{u}\) and \(\bar{v}\) respectively. The convergence of obtained series and rate of the approximation for HAM strongly depend upon the values of the auxiliary parameters. For ranges of admissible values of \(\bar{\eta}_n\) and \(\bar{\mu}_n\) the \(\bar{\eta}\)–curves for 13th–order of approximations are plotted in the Figs. (4.2 and 4.3).

We can see that the permissible values of \(\bar{\mu}_n\) and \(\bar{\eta}_n\) for \(\bar{\mu}\)–water are \(-1.6 \leq \bar{\eta}_n \leq -0.5\) and \(-1.2 \leq \bar{\mu}_n \leq 0.3\) and for \(\bar{\mu}\)–water are \(-1.6 \leq \bar{\mu}_n \leq -0.6\) and \(-1 \leq \bar{\eta}_n \leq -0.1\). Further, the series solutions converge in the whole region of \(\bar{\eta}\)

\(\{0 \leq \bar{\eta} \leq \infty\}\) when \(\bar{\mu}_n = \bar{\eta}_n = -1\).
Fig. 4.2: $f''(0)$ and $\xi'(0)$ curves for Cu-water when $\varepsilon = 0\bar{4}$, $\varepsilon = 0\bar{4}$, $\varepsilon_1 = 0\bar{3}$, $\varepsilon_2 = 0\bar{3}$.

Fig. 4.3: $f''(0)$ and $\xi'(0)$ curves for Ag-water when $\varepsilon = 0\bar{4}$, $\varepsilon = 0\bar{4}$, $\varepsilon_1 = 0\bar{3}$, $\varepsilon_2 = 0\bar{3}$.

67
Table 4.1: Convergence of HAM solutions for different order of approximations when
\(\delta = 0 \), \(\beta = 0 \), \(\alpha = 0 \), \(\alpha_1 = 0 \), \(\alpha_2 = 0 \), \(\beta_1 = 0 \), \(\beta_2 = 0 \), \(\gamma = 0 \), \(\delta = 0 \), and \(\eta = 1 \)

<table>
<thead>
<tr>
<th>Order of approximations</th>
<th>(-\delta_0(0))</th>
<th>(\delta_0(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.5455</td>
<td>0.04916</td>
</tr>
<tr>
<td>5</td>
<td>0.5564</td>
<td>0.04835</td>
</tr>
<tr>
<td>10</td>
<td>0.5588</td>
<td>0.04788</td>
</tr>
<tr>
<td>15</td>
<td>0.5596</td>
<td>0.04755</td>
</tr>
<tr>
<td>17</td>
<td>0.5594</td>
<td>0.04736</td>
</tr>
<tr>
<td>20</td>
<td>0.5594</td>
<td>0.04736</td>
</tr>
<tr>
<td>25</td>
<td>0.5594</td>
<td>0.04736</td>
</tr>
</tbody>
</table>

4.4 Results and discussion

The effects of different parameters on the dimensionless flow and concentration profiles are investigated and presented graphically in this section.

4.4.1 Dimensionless velocity profiles

Figs. (4.4 – 4.7) exhibit the dimensionless velocity profiles for different values of nanoparticle volume fraction \(\delta \), Hartman number \(\beta \), velocity slip parameter \(\alpha_2 \) and porosity parameter \(\beta_2 \). Effects of volume fraction of nanoparticles \(\delta \) and \(\beta_2 \) on the velocity profile \(\delta_0 \) can be seen from Fig. 4.4. Here the velocity profile and boundary layer thickness decrease when volume fraction for the nanoparticles increases. The effects of Hartman number \(\beta \) on the velocity \(\delta_0 \) are depicted in Fig. 4.5. We analyzed that the velocity is reduced when we increase the values of Hartman number. In fact applied magnetic field has the tendency to slow down the movement of the fluid which leads to a decrease in the velocity and momentum boundary layer thickness. Variations of velocity slip parameter \(\alpha_2 \) on velocity profile \(\delta_0 \) can be seen in the Fig. 4.6. There is a decrease in velocity when velocity slip parameter \(\alpha_2 \) is increased. From Fig. 4.7, we have seen that larger values of porosity parameter \(\beta_2 \) correspond to the less velocity. Porosity parameter depends on the permeability.
Increase in porosity parameter leads to the lower permeability parameter. This lower permeability parameter causes a reduction in the fluid velocity.

Fig. 4.4. Influence of \(\phi \) on velocity field.

\[
\begin{align*}
M &= 0.5, \beta = 1, \lambda = 0.4 \\
\phi &= 0.02, 0.05, 0.1, 0.2
\end{align*}
\]

Fig. 4.5. Influence of \(\phi \) on velocity field.

\[
\begin{align*}
\phi &= 0.2, \beta = 1, \lambda = 0.4 \\
M &= 0.2, 0.4, 0.6, 0.8
\end{align*}
\]
4.4.2 Dimensionless concentration profiles

Effects of the measure of strength of the homogeneous reaction β_1, the measure of the strength of the heterogeneous reaction β_2 and the Schmidt number λ on the concentration profile ϕ are shown.
in the Figs. (4.8 – 4.10). Effect of \bar{k}_1 on the concentration is analyzed in Fig. 4.8. It is observed that increasing the measure of the strength of the homogeneous reaction \bar{k}_1 decreases the thermal boundary layer thickness. Fig. 4.9 illustrates the effects of \bar{k}_2 on concentration profile \bar{c}. There is an increase in concentration \bar{c} when the measure of the strength of the heterogeneous reaction \bar{k}_2 is increased. The behavior of Schmidt number \bar{S}_c on the concentration profile is similar to that of \bar{k}_2 (see Fig. 4.10).

![Graph](image)

Fig. 4.8. Influence of \bar{k}_1 on concentration field.
4.4.3 Skin friction coefficient and surface concentration

Fig. 4.11 shows the skin friction coefficient $\tilde{f}(0)$ as a function of nanoparticle volume fraction \tilde{f}. The skin friction coefficient enhances with increasing values of \tilde{f}. The results of the skin friction
coefficient are examined for both types of nanofluids. We observe that the \(\phi = \) water nanofluid gives a higher drag force opposite to the flow when compared with the \(\phi = \) water nanofluid.

The variation of dimensionless concentration for different values of \(\phi_1 \) and \(\phi_2 \) are shown in Figs. 4.12 and 4.13 respectively. From Fig. 4.12 it is observed that concentration at the surface decreases as the strength of the heterogeneous reaction increases for different types of nanofluids. One can see from Fig. 4.13 that \(\bar{c}(0) \) decreases with the increase of homogeneous reaction strength \(\phi_1 \). Influence of \(\phi_2 \) on \(\bar{c}(0) \) for two different types of nanoparticles is shown in Fig. 4.14. It is clear that the concentration decreases with an increase of Schmidt number.

In Table 4.3 some numerical values of skin friction coefficient are given for copper and silver nanoparticles. Tabular values show that skin friction coefficient enhances by increasing \(\phi_1 \) and \(\phi_2 \) while it decreases for larger \(\phi_1 \). Table 4.4 shows that surface concentration decreases by increasing \(\phi_1 \), \(\phi_2 \), \(\phi_3 \), \(\phi_4 \) and \(\phi_5 \).

Fig. 4.11. Influence of \(\phi \) on skin friction coefficient.

\[\text{Solid line : Cu-water} \]
\[\text{Dashed line : Ag-water} \]
\[\phi = 0.02, 0.05, 0.1 \]
Fig. 4.12: Influence of k_2 on surface concentration.

$$k_2 = 0.5, 1, 1.5$$

Fig. 4.13: Influence of k_1 on surface concentration.

$$k_1 = 0.5, 1, 1.5$$
Fig. 4.14: Influence of Φ on surface concentration.

Table 4.2: Thermophysical properties of water and nanoparticles [21].

<table>
<thead>
<tr>
<th></th>
<th>$\rho \times 10^{-3}$ (kg m$^{-3}$)</th>
<th>μ (Pa s)</th>
<th>κ (W m$^{-1}$ K$^{-1}$)</th>
<th>$\delta \times 10^5$ (m$^{-1}$)</th>
<th>σ (Ω m$^{-1}$) $^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure water</td>
<td>997.1</td>
<td>4179</td>
<td>0.613</td>
<td>21</td>
<td>0.05</td>
</tr>
<tr>
<td>Copper</td>
<td>8933</td>
<td>385</td>
<td>401</td>
<td>1.67</td>
<td>5.96×10^7</td>
</tr>
<tr>
<td>Silver</td>
<td>10500</td>
<td>235</td>
<td>429</td>
<td>1.89</td>
<td>3.6×10^7</td>
</tr>
<tr>
<td>Alumina</td>
<td>3970</td>
<td>765</td>
<td>40</td>
<td>0.85</td>
<td>1×10^{-10}</td>
</tr>
<tr>
<td>Titanium Oxide</td>
<td>4250</td>
<td>686.2</td>
<td>89538</td>
<td>0.09</td>
<td>1×10^{-12}</td>
</tr>
</tbody>
</table>

Table 4.3: Numerical values of skin friction coefficient for copper and silver when $\tilde{V} = 0$

1.5 Final remarks
Table 4.4: Numerical values of surface concentration for copper and silver when \(\theta = 0 \) and \(\theta = 0 \)

<table>
<thead>
<tr>
<th>(\phi)</th>
<th>(M)</th>
<th>(\beta)</th>
<th>(C_{sf} \sqrt{Re_x}) for Cu</th>
<th>(C_{sf} \sqrt{Re_x}) for Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.5</td>
<td>1.278</td>
<td>1.284</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td>1.465</td>
<td>1.475</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td>1.955</td>
<td>1.973</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.1</td>
<td>1.897</td>
<td>1.917</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td>1.928</td>
<td>1.945</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.1</td>
<td>1.981</td>
<td>1.996</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.1</td>
<td>4.542</td>
<td>4.672</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td>2.827</td>
<td>2.865</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
<td>2.079</td>
<td>2.098</td>
<td></td>
</tr>
</tbody>
</table>

This chapter investigates the MHD flow of nanofluid by a stretching sheet with homogeneous/heterogeneous reactions. Convergent approximate solution is constructed. The following obser-
lations are made:

- An increase in the values of \Rey_1, \Rey_2, \Rey_3, and \Rey_4 has similar effects on the velocity in a qualitative sense.

- Concentration profile increases for larger \Rey_2 and \Rey_3 while it decreases when \Rey_1 is increased.

- The values of skin friction coefficient are higher for \Rey_1–water when \Rey_1 enhances.

- Higher values of \Rey_1, \Rey_2, and \Rey_3 correspond to smaller values of dimensionless surface concentration.
Chapter 5

Impact of magnetohydrodynamics in bidirectional flow of nanofluid subject to second order slip velocity and homogeneous-heterogeneous reactions

This chapter addresses the steady three-dimensional boundary layer flow of viscous nanofluid. The flow is caused by a permeable stretching surface with second order velocity slip and homogeneous-heterogeneous reactions. Water is treated as base fluid and copper as nanoparticle. An incompressible fluid fills the porous space. The fluid is electrically conducting in the presence of an applied magnetic field. A system of ordinary differential equations is obtained by using suitable transformations. Convergent series solutions are derived. Impact of various pertinent parameters on the velocity, concentration and skin friction coefficient is discussed. Analysis of the obtained results shows that the flow field is influenced appreciably by the presence of velocity slip parameters. Also concentration distribution decreases for larger values of strength of homogeneous reaction parameter while it increases for strength of heterogeneous reaction parameter.

5.1 Model development

We consider the steady three-dimensional incompressible flow of nanofluid saturating porous medium with permeability k. The porous medium features have been characterized by using Darcy’s law. Material is water based nanofluid consisting of copper (Cu) as nanoparticle. Flow is induced by a permeable stretching sheet at $z = 0$. An incompressible fluid occupies $z \geq 0$. It is assumed that the sheet is stretched with velocities $\frac{dx}{dz} = \alpha$ and $\frac{dy}{dz} = \beta$, where $\alpha, \beta \geq 0$ are the stretching rates. A
uniform magnetic field of strength \(\mathbf{B}_0 \) is applied in the \(\mathbf{B} \) - direction. Electric and induced magnetic fields are omitted. Flow analysis is carried out with homogeneous-heterogeneous reactions. The homogeneous reaction for cubic autocatalysis can be expressed as follows [73]:

\[
\mathbf{A} + 2\mathbf{B} \rightarrow 3\mathbf{B} \quad \text{rate} = \mathbf{B}_0 \mathbf{B} \quad \text{rate} = \mathbf{B}_n \mathbf{B} \quad \text{rate} \quad (5.1)
\]

while first-order isothermal reaction on the catalyst surface is presented in the form

\[
\mathbf{C} \rightarrow \mathbf{D} \quad \text{rate} = \mathbf{B}_c \mathbf{D} \quad \text{rate} \quad (5.2)
\]

where \(\mathbf{C} \) and \(\mathbf{D} \) are the concentrations of the chemical species \(\mathbf{B} \) and \(\mathbf{C} \) and \(\mathbf{D} \) and \(\mathbf{D}_b \) are the rate constants. We assume that both reaction processes are isothermal. Using the nanofluid model as proposed by Tiwari and Das [4], the boundary layer equations governing the flow can be written as

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0, \quad (5.3)
\]

\[
\rho_{nf} \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right) = \mu_{nf} \frac{\partial^2 u}{\partial z^2} - \frac{\mu_{nf}}{K} u - \sigma_{nf} B_0^2 u, \quad (5.4)
\]

\[
\rho_{nf} \left(u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} \right) = \mu_{nf} \frac{\partial^2 v}{\partial z^2} - \frac{\mu_{nf}}{K} v - \sigma_{nf} B_0^2 v, \quad (5.5)
\]

\[
u \frac{\partial u}{\partial x} + \nu \frac{\partial a}{\partial y} + \nu \frac{\partial a}{\partial z} = D_A \frac{\partial a}{\partial z^2} - k_{ab} a^2, \quad (5.6)
\]

\[
\nu \frac{\partial b}{\partial x} + \nu \frac{\partial b}{\partial y} + \nu \frac{\partial b}{\partial z} = D_B \frac{\partial b}{\partial z^2} + k_{ab} b^2. \quad (5.7)
\]

The subjected boundary conditions are put into the form

\[
\mathbf{B} = \mathbf{B}_n + \mathbf{B}_{x,x} \mathbf{B} = \mathbf{B}_c + \mathbf{B}_{x,c} \mathbf{B} = \mathbf{B}_0 \mathbf{B} \quad \text{at} \quad \mathbf{B} = 0 \mathbf{B}
\]

\[
D_A \frac{\partial a}{\partial z} = k_a a, \quad D_B \frac{\partial b}{\partial z} = -k_a a \quad \text{at} \quad \mathbf{B} = 0 \mathbf{B}
\]

\[
\mathbf{B} \rightarrow 0 \mathbf{B} \quad \text{as} \quad \mathbf{B} \rightarrow \infty \mathbf{B} \quad (5.8)
\]
in which \(\bar{u} \) and \(\bar{v} \) are velocity components along \(-\bar{u} - \bar{v} - \bar{w}\) directions respectively, \(\bar{v}_0 \) is suction (\(\bar{v}_0 > 0 \)) or injection (\(\bar{v}_0 < 0 \)) velocity, \(\bar{D}_u \) and \(\bar{D}_v \) are diffusion species coefficients of \(\bar{u} \) and \(\bar{v} \) and \(\bar{v}_0 \) is positive dimensional constant. Effective density \(\bar{\rho}_{nf} \), dynamic viscosity \(\bar{\mu}_{nf} \) and electrical conductivity \(\bar{\sigma}_{nf} \) of nanofluid are given by

\[
\rho_{nf} = \rho_f (1 - \phi) + \rho_s \phi, \tag{5.9}
\]

\[
\mu_{nf} = \frac{\mu_f}{(1 - \phi)^{2.5}}, \tag{5.10}
\]

\[
\frac{\sigma_{nf}}{\sigma_f} = 1 + \frac{3}{2} \left(\frac{\sigma_s}{\sigma_f} - 1 \right) \phi \left(1 - \frac{\sigma_s}{\sigma_f} \right) - \frac{1}{2} \left(\frac{\sigma_s}{\sigma_f} - 1 \right) \phi. \tag{5.11}
\]

Here \(\phi \) is the solid volume fraction, \(\bar{\phi} \) in subscript is for nano-solid-particles and \(\bar{\phi} \) in subscript is for base fluid. Also \(\bar{\phi}_{nano} \) is the slip velocity at the wall. The Wu’s slip velocity model (valid for arbitrary Knudsen number, \(\bar{\phi} \)) is employed here as follows [60]:

\[
u_{slip} = \frac{2}{3} \left(\frac{3 - \kappa I^3}{\kappa} - \frac{3}{2} \frac{1 - I^2}{Kn} \right) \Lambda \frac{\partial u}{\partial z} - \frac{1}{4} \left(I^4 + \frac{2}{Kn^2} (1 - I^2) \right) \Lambda^2 \frac{\partial^2 u}{\partial z^2},
\]

\[
v_{slip} = \frac{2}{3} \left(\frac{3 - \kappa I^3}{\kappa} - \frac{3}{2} \frac{1 - I^2}{Kn} \right) \Lambda \frac{\partial v}{\partial z} - \frac{1}{4} \left(I^4 + \frac{2}{Kn^2} (1 - I^2) \right) \Lambda^2 \frac{\partial^2 v}{\partial z^2},
\]

where \(\bar{\phi} = \min \bar{\phi} \bar{\phi} \bar{\phi} \bar{\phi} \bar{\phi} \bar{\phi} \), \(\bar{\phi} \) is momentum accommodation coefficient with \(0 \leq \bar{\phi} \leq 1 \), \(\Lambda \) is molecular mean free path and \(\bar{\phi} \bar{\phi} \bar{\phi} \bar{\phi} \bar{\phi} \bar{\phi} \) is Knudsen number defined as mean free path \(\Lambda \) divided by a characteristic length for the flow. Based on the definition of \(\bar{\phi} \), it is seen that for any given value of \(\bar{\phi} \), we have \(0 \leq \bar{\phi} \leq 1 \). The molecular mean free path is always positive. Thus we know that \(\bar{\phi} \bar{\phi} \bar{\phi} \bar{\phi} \bar{\phi} \bar{\phi} \) are positive numbers.

Making use of the following similarity transformations

80
the continuity equation is satisfied automatically and Eqs. (5.4 − 5.8) are reduced to

\[\varepsilon_1 f''' - f'^2 + (f + g) f'' - \lambda f' - \varepsilon_1 (1 - \phi)^2.5 M \frac{\sigma n f}{\sigma f} f' = 0, \]
(5.14)

\[\varepsilon_1 g''' - g'^2 + (f + g) g'' - \lambda g' - \varepsilon_1 (1 - \phi)^2.5 M \frac{\sigma n f}{\sigma f} g' = 0, \]
(5.15)

\[\frac{1}{Sc} \xi'' + (f + g) \xi' - k_1 \xi h^2 = 0, \]
(5.16)

\[\frac{\delta}{Sc} h'' + (f + g) h' + k_1 \xi h^2 = 0, \]
(5.17)

\[x_0(0) = 1 + x_1 x_{00}(0) + x_2 x_{000}(0) \]
\[x_0(0) = x + x_3 x_{000}(0) + x_4 x_{0000}(0) \]

\[x_0(0) = x_2 x_0(0) \]
\[x_0(0) = x_2 x_0(0) \]
\[x_0(0) = x_3 x_0(0) \]
\[x_0(0) = x_4 x_0(0) \]
\[x_0(0) = x_0(\infty) \rightarrow 0 \]
\[x_0(\infty) \rightarrow 0 \]
\[x_0(0) = \frac{x_2 x_0(0)}{x_3 x_0(0)} \]
\[x_0(0) = \frac{x_2 x_0(0)}{x_4 x_0(0)} \]
\[x_0(0) = x_0(\infty) \rightarrow 1 \]
\[x_0(\infty) \rightarrow 0 \]
(5.18)
It is noticed that for \(\xi_0 = 0 \) and \(\xi_1 = 1 \) the two-dimensional and axisymmetric flows are respectively noticed. Here it is assumed that diffusion coefficients of chemical species \(\xi_0 \) and \(\xi_1 \) to be of a comparable size. This leads to make a further assumption that the diffusion coefficients \(D_{\xi_0} \) and \(D_{\xi_1} \) are equal, i.e. \(\xi_1 = 1 \) \[73\] and thus

\[
0(\xi) + 0(\xi) = 1
\]

Now Eqs. (5.16) and (5.17) yield

\[
\frac{1}{Sc} \xi'' + (f + g) \xi' - k_1 \xi(1-\xi)^2 = 0,
\]

with the boundary conditions

\[
0(0) = 0 \quad 0(\infty) = 1
\]

Skin friction coefficients along the \(x^- \) and \(y^- \) directions are defined as follows:

\[
C_{fx} = \frac{\tau_{wx}}{\rho_f u_w^2}, \quad C_{fy} = \frac{\tau_{wy}}{\rho_f v_w^2}
\]

where the surface shear stresses \(\tau_{wx} \) and \(\tau_{wy} \) along the \(x^- \) and \(y^- \) directions are given by

\[
\tau_{wx} = \mu_n f \frac{\partial u}{\partial z} \bigg|_{z=0}, \quad \tau_{wy} = \mu_n f \frac{\partial v}{\partial z} \bigg|_{z=0}.
\]

Dimensionless skin friction coefficients are

\[
C_{fx}(Re_x)^{1/2} = \frac{1}{(1-\phi)^{2.5}} f''(0), \quad C_{fy}(Re_y)^{1/2} = \frac{1}{(1-\phi)^{2.5}} g''(0),
\]

where \((Re_x)^{1/2} = \frac{x \sqrt{\nu_j}}{v} \) and \((Re_y)^{1/2} = \frac{y \sqrt{\nu_j}}{v} \) denotes the local Reynolds number.

5.2 Homotopic solutions

The initial approximations \(0(\xi) \), \(0_1(\xi) \), \(0_2(\xi) \) and \(0_3(\xi) \) and auxiliary linear operators \(L_0 \), \(L_1 \), \(L_2 \) and \(L_3 \) are taken as follows:

\[
f_0(\eta) = S + \frac{1}{1 + \beta_1 - \beta_2} (1-e^{-\eta}), \quad g_0(\eta) = \frac{\gamma}{1 + \beta_3 - \beta_4} (1-e^{-\eta}), \quad \xi_0(\eta) = 1 - \frac{1}{2} e^{-k_2 \eta}, \quad \xi_1(\eta) = \frac{1}{2} e^{-k_2 \eta}
\]
\[L_0 = \beta_{000} - \beta_{00} \]
\[L_1 = \beta_{000} - \beta_{00} \]
\[L_4 = \beta_{000} - \beta_{00} \]
\[(5.27) \]

\[L_0 \beta_{01} + \beta_{0} \beta_{0} + \beta_{0} \beta_{-1} = 0 \]

\[L_0 \beta_{04} + \beta_{0} \beta_{0} + \beta_{0} \beta_{-1} = 0 \]

\[L_0 \beta_{07} + \beta_{0} \beta_{0} = 0 \]

\[(5.28) \]

in which \(\beta_n (\beta = 1 - 8) \) are the constants.

If \(\beta \in [0,1] \) indicates the embedding parameter and \(\beta_0 \) and \(\beta_0 \) the non-zero auxiliary parameters then the zeroth order deformation problems are constructed as follows:

\[(1 - \beta)L_0 h \beta'(\theta, \beta) - \beta_0(\beta) = \beta_0 \beta_0 \beta'(\theta, \beta) \]

\[(5.29) \]

\[(1 - \beta)L_0 [h \beta'(\theta, \beta) - \beta_0(\beta)] = \beta_0 \beta_0 \beta'(\theta, \beta) \]

\[(5.30) \]

\[(1 - \beta)L_0 h \beta'(\theta, \beta) - \beta_0(\beta) = \beta_0 \beta_0 \beta'(\theta, \beta) \]

\[(5.31) \]

\[\beta_0'(0; \beta) = 1 + \beta_1 \beta_0'(0; \beta) + \beta_2 \beta_0'(0; \beta) + \beta_3 \beta_0'(0; \beta) = \beta_0(\infty; \beta) = 0 \]

\[(5.32) \]

\[\beta_0'(0; \beta) = \beta_1 \beta_0'(0; \beta) + \beta_2 \beta_0'(0; \beta) + \beta_3 \beta_0'(0; \beta) = 0 \]

\[(5.33) \]

\[\beta_0'(0; \beta) = \beta_1 \beta_0'(0; \beta) + \beta_2 \beta_0'(0; \beta) = 1 \]

\[(5.34) \]

where the nonlinear differential operators \(N_0 \) and \(N_0 \) are given by
\[N_f \left[f(\eta; p), \dot{g}(\eta; p) \right] = \varepsilon_1 \frac{\partial^3 f(\eta; p)}{\partial \eta^3} - \left(\frac{\partial f(\eta; p)}{\partial \eta} \right)^2 + \ddot{f}(\eta; p) \frac{\partial^2 f(\eta; p)}{\partial \eta^2} + \dot{g}(\eta; p) \frac{\partial^2 \dot{f}(\eta; p)}{\partial \eta^2} \\
- \left(\lambda + \varepsilon_1 (1 - \phi)^{2.5} M \frac{\sigma_{nf}}{\sigma_f} \right) \frac{\partial \ddot{f}(\eta; p)}{\partial \eta}
\]

(5.35)

\[N_g \left[g(\eta; p), \dot{f}(\eta; p) \right] = \varepsilon_1 \frac{\partial^3 g(\eta; p)}{\partial \eta^3} - \left(\frac{\partial g(\eta; p)}{\partial \eta} \right)^2 + \ddot{g}(\eta; p) \frac{\partial^2 g(\eta; p)}{\partial \eta^2} + \dot{f}(\eta; p) \frac{\partial^2 \dot{g}(\eta; p)}{\partial \eta^2} \\
- \left(\lambda + \varepsilon_1 (1 - \phi)^{2.5} M \frac{\sigma_{nf}}{\sigma_f} \right) \frac{\partial \dot{g}(\eta; p)}{\partial \eta}
\]

(5.36)

\[N_\xi \left[\xi(\eta; p), \dot{f}(\eta; p), \dot{g}(\eta; p) \right] = \frac{1}{Sc} \frac{\partial^2 \xi(\eta; p)}{\partial \eta^2} + \ddot{f}(\eta; p) \frac{\partial \xi(\eta; p)}{\partial \eta} + \dot{g}(\eta; p) \frac{\partial \dot{\xi}(\eta; p)}{\partial \eta} \\
- k_1 \left(\dddot{\xi}(\eta; p) - 2 \left(\dot{\xi}(\eta; p) \right)^2 + \left(\dddot{\xi}(\eta; p) \right)^3 \right).
\]

(5.37)

Here \(m \)th order deformation equations can be written in the forms

\[L_m \left[B_m(\theta) - B_{m-1}(\theta) \right] = R_{m,m-1}(\theta) \]

(5.38)

\[L_m \left[B_{m-1}(\theta) - B_{m-2}(\theta) \right] = R_{m,m-2}(\theta) \]

(5.39)

\[L_m \left[B_{m-2}(\theta) - B_{m-3}(\theta) \right] = R_{m,m-3}(\theta) \]

(5.40)

with

\[\tilde{B}_{m0}(0) - \tilde{B}_{m000}(0) = \tilde{B}_{m}(0) = \tilde{B}_{m0}(\infty) = 0 \]

\[\tilde{B}_{m0}(0) - \tilde{B}_{m000}(0) = \tilde{B}_{m}(0) = \tilde{B}_{m0}(\infty) = 0 \]

\(\xi'_m(0) - k_2 \xi_m(0) = \xi_m(\infty) = 0 \)

(5.41)

\[R_{f,m}(\eta) = \varepsilon_1 f_{m-1}'' + \sum_{k=0}^{m-1} \left[f_{m-1-k} f_k'' - f'_{m-1-k} f_k' + g_{m-1-k} f_k' \right] - \left(\lambda + \varepsilon_1 (1 - \phi)^{2.5} M \frac{\sigma_{nf}}{\sigma_f} \right) f'_{m-1}. \]

(5.42)
The general solutions comprising the special solutions \(\{ f_m^*, g_m^*, \xi_m^* \} \) are

\[
\begin{align*}
R_{g,m}(\eta) &= \varepsilon_1 g_m'' + \sum_{k=0}^{m-1} \left(f_{m-1-k}^{''} g_{m-k} - g_{m-1-k}^{''} f_{m-k} + g_{m-1-k}^{''} \right) - \left(\lambda + \varepsilon_1 (1 - \phi)^{2.5} M \frac{\sigma_{nf}}{\sigma_f} \right) g_{m-1}^{'}, \\
R_{\xi,m}(\eta) &= \frac{1}{S_{\sigma}} \xi_m'' - k_1 \xi_m' + \sum_{l=0}^{m-1} \left[\xi'_{m-1-l} \xi_l + \xi'_{m-1-l+1} \xi_l \right] - k_1 \left(\xi_{m-1-l}^{\prime} \xi_l + 2 \xi_{m-1-l} \xi_l \right), \\
\chi_m &= \begin{cases} 0, & m \leq 1 \\ 1, & m > 1 \end{cases}.
\end{align*}
\]

(5.44)

The constants \(c_2, c_3, c_4, c_5, c_6, c_7, c_8 \) through the boundary conditions (5.41) have the values

\[
\begin{align*}
c_2 &= c_5 = c_7 = 0, \quad c_1 = -c_3 - f_m^*(0), \quad c_4 = -c_6 - g_m^*(0), \\
c_3 &= \frac{1}{1 + \beta_1 - \beta_2} \left(\frac{\partial f_m^*(\eta)}{\partial \eta} - \beta_1 \frac{\partial^2 f_m^*(\eta)}{\partial \eta^2} - \beta_2 \frac{\partial^3 f_m^*(\eta)}{\partial \eta^3} \right) \bigg|_{\eta=0}, \\
c_6 &= \frac{1}{1 + \beta_3 - \beta_4} \left(\frac{\partial g_m^*(\eta)}{\partial \eta} - \beta_3 \frac{\partial^2 g_m^*(\eta)}{\partial \eta^2} - \beta_4 \frac{\partial^3 g_m^*(\eta)}{\partial \eta^3} \right) \bigg|_{\eta=0}, \\
c_8 &= \frac{1}{1 + \beta_2} \left(\frac{\partial \xi_m^*(\eta)}{\partial \eta} \bigg|_{\eta=0} - k_2 \xi_m^*(0) \right).
\end{align*}
\]

(5.47)

5.3 Convergence analysis

Homotopy analysis technique provides us great freedom and an easy way to adjust and control the convergence region of the series solutions. The auxiliary parameters \(\{ \varepsilon_1, \beta \} \) and \(\{ \varepsilon_2, \beta \} \) play an important role for the convergence of the series solutions. Therefore, we have sketched the \(\{ \varepsilon, \beta \} \)-curves at 10\(^{\text{th}} \)-order of approximations (see Fig. 5.1). The admissible ranges of the auxiliary
parameters are \(-1.14 \leq \xi \leq -0.15\) and \(-1.19 \leq \eta \leq -0.28\). Also, the HAM solutions converge in the whole region of \((0, \infty)\) when \(\eta = \xi = -1\) and \(\eta = -1.2\). Table 5.1 shows the convergence of series solutions of momentum and concentration equations. It is noted that 14th order of approximations are sufficient for the convergence of functions \(f_0(0)\), \(g_0(0)\), and \(\xi(0)\).

![Graph](image.png)

Fig. 5.1: ~-curves for \(f_0(0)\), \(g_0(0)\), and \(\xi(0)\) when \(\xi = \eta = 0.5\), \(\xi = 2\), \(\xi = 0.3\), and \(\xi = -0.2\).

Table 5.1: Convergence of HAM solutions for different order of approximations when...
\[\phi = M = 0.5, \lambda = \beta_2 = \gamma = 0.3, S = \beta_1 = Sc = 0.9, k_1 = k_2 = 0.7, \beta_3 = -0.3 \text{ and } \beta_4 = -0.2. \]

<table>
<thead>
<tr>
<th>Order of approximations</th>
<th>1</th>
<th>0.507202</th>
<th>0.200061</th>
<th>0.364126</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>0.491527</td>
<td>0.198039</td>
<td>0.395551</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.491387</td>
<td>0.197965</td>
<td>0.396517</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>0.491389</td>
<td>0.197965</td>
<td>0.396476</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.491389</td>
<td>0.197965</td>
<td>0.396476</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>0.491389</td>
<td>0.197965</td>
<td>0.396476</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.491389</td>
<td>0.197965</td>
<td>0.396476</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.491389</td>
<td>0.197965</td>
<td>0.396476</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.491389</td>
<td>0.197965</td>
<td>0.396476</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>0.491389</td>
<td>0.197965</td>
<td>0.396476</td>
</tr>
</tbody>
</table>

5.4 Results and discussion

This section presents the behavior of various involved parameters on the velocities along \(\vec{u} \) and \(\vec{v} \) directions and concentration in the form of graphical and tabulated results (see Figs. (5.2 – 5.15) and Tables (5.2 – 5.5)).

5.4.1 Dimensionless velocity profiles

The effects of nanoparticle volume fraction \(\phi \) on both the \(\vec{u} \) – and \(\vec{v} \) – components of velocity \(\vec{v}_0 \) and \(\vec{v}_1 \) are depicted in Fig. 5.2. It is observed that velocity profiles decrease when \(\phi \) is increased. Behaviors of porosity parameter \(p \) on velocity profiles \(\vec{v}_0 \) and \(\vec{v}_1 \) are displayed in Fig. 5.3. An increase in the porosity parameter leads to the lower permeability parameter which decreases the fluid motion. Hence velocity profiles decreases. Fig. 5.4 displays the velocity profiles for different values of \(\phi \). The applied magnetic field has the tendency to slow down the movement of the fluid which decreases the velocities and momentum boundary layer thickness. Influence of suction/injection
velocity parameter \(\dot{\beta} \) on \(\dot{\beta}_0 \) and \(\dot{\beta}_0 \) can be visualized in the Fig. 5. It is obvious that an increase in \(\dot{\beta} \) reduces the velocity fields. Here applying suction leads to draw the amount of the fluid particles into the wall and consequently the velocity fields decrease.

From Figs. (5.6 – 5.9) we have seen that larger values of first order slip velocity parameters and magnitude of second order slip velocity parameters correspond to lower velocity. With an increase in slip velocity parameter, stretching velocity is partially transferred to the fluid so velocity profile decreases. Fig. 5.10 illustrates the impact of stretching rates ratio \(\dot{\beta} \) on the velocity fields. Increasing values of \(\dot{\beta} \) indicates higher rate of stretching along the \(\vec{e}_1 \) direction in comparison to \(\vec{e}_2 \) direction. Therefore the velocity along \(\vec{e}_2 \) direction \(\dot{\beta}_0 \) decreases and velocity along \(\vec{e}_1 \) direction \(\dot{\beta}_0 \) increases when stretching rates ratio is increased.

![Graph showing variation of \(\dot{\beta} \) on \(\dot{\beta}_0(\dot{\beta}) \) and \(\dot{\beta}_0(\dot{\beta}) \) with \(\eta \).](image)

\[M = \beta_3 = 0.5, \beta_1 = S = Sc = 0.9, \beta_2 = -0.3, \lambda = \gamma = 0.3, \beta_4 = -0.2, k_1 = k_2 = 0.7 \]

\[\phi = 0.1, 0.2, 0.3, 0.4 \]

Fig. 5.2: Variation of \(\dot{\beta} \) on \(\dot{\beta}_0(\dot{\beta}) \) and \(\dot{\beta}_0(\dot{\beta})(\dot{\beta}) \)
Fig. 5.3: Variation of f on $\tilde{\phi}(\tilde{\eta})$ and $\tilde{\phi}(\tilde{\eta})$.

Fig. 5.4: Variation of f on $\tilde{\phi}(\tilde{\eta})$ and $\tilde{\phi}(\tilde{\eta})$.

\[\phi = \beta_3 = 0.5, \beta_1 = S = S_c = 0.9, \beta_2 = -0.3, \]
\[\gamma = 0.3, \beta_4 = -0.2, S_c = 0.9, k_1 = k_2 = 0.7 \]
\[\lambda = 0.1, 0.2, 0.3, 0.4 \]

\[\phi = \beta_3 = 0.5, \beta_1 = S = S_c = 0.9, \beta_2 = -0.3, \]
\[\lambda = \gamma = 0.3, \beta_4 = -0.2, k_1 = k_2 = 0.7 \]
\[M = 0.1, 0.3, 0.5, 0.9 \]
Fig. 5: Variation of $f_0(\eta)$ and $g_0(\eta)$.

$\phi = M = \beta_3 = 0.5, \beta_1 = Sc = 0.9, \beta_2 = -0.3,$
$\lambda = \gamma = 0.3, \beta_4 = -0.2, k_1 = k_2 = 0.7$

$S = 0.1, 0.3, 0.5, 0.7$

$g'(\eta)$

Fig. 6: Variation of f_1, g_1

$\beta_1 = 0.1, 0.5, 0.7, 0.9$

$\Gamma(\eta), g(\eta)$

Fig. on $f_0(\eta)$ and $g_0(\eta)$. 90
Fig. 5: Variation of \(\beta_2 \) on \(\phi_0(\phi) \) and \(\beta_0(\beta) \).

Fig. 6: Variation of \(\beta_3 \) on \(\phi_0(\phi) \) and \(\beta_0(\beta) \).
Fig. 5: Variation of β_4 on $\phi(\eta)$ and $\phi(\eta)$.

$\phi = M = \beta_3 = 0.5$, $\beta_1 = S = 0.9$, $\beta_2 = -0.3$,
$\lambda = \gamma = 0.3$, $Sc = 0.9$, $k_1 = k_2 = 0.7$

$\beta_4 = -0.1, -0.2, -0.3, -0.4$

Fig. 10: Variation of γ

$\phi = M = \beta_3 = 0.5$, $\beta_1 = S = 0.9$, $\beta_2 = -0.3$,
$\lambda = 0.3$, $Sc = 0.9$, $\beta_4 = -0.2$, $k_1 = k_2 = 0.7$

$\gamma = 0.1, 0.2, 0.3, 0.4$

92
5.4.2 Dimensionless concentration profiles

Figs. (5.11–5.13) exhibit the dimensionless concentration profile for different values of measure of the strength of homogeneous reaction k_1, measure of the strength of heterogeneous reaction k_2 and Schmidt number E. Effect of the strength of the homogeneous reaction k_1 on the concentration is analyzed in Fig. 5.11. There is a decrease in concentration when k_1 is increased. Fig. 5.12 illustrates the variation of measure of the strength of heterogeneous reaction k_2 on concentration field E. Here concentration profile enhances with an increase in k_2. Effect of Schmidt number E on concentration profile is shown in Fig. 5.13. Increasing behavior of concentration profile is noted for larger Schmidt number. In fact Schmidt number is the ratio of momentum diffusivity to mass diffusivity, so higher values of Schmidt number correspond to small mass diffusivity. Therefore concentration profile increases.

![Graph](image)

Fig. 5.11: Variation of k_1 on $E(\eta)$.

5.4.3 Surface concentration and skin friction coefficient

The variation of dimensionless wall concentration $\xi(0)$ for different values of the strength of heterogeneous reaction parameter k_2, strength of homogeneous reaction parameter k_1, and Schmidt number Sc.
number β_1 and β_2 are shown in Figs. 5.14 and 5.15 respectively. One can see from these Figs. that $\xi(0)$ decreases with the increase of the parameters β_1 and β_2. Some thermophysical properties of water and nanoparticles are given in Table 5.2. Effects of nanoparticle volume fraction for different types of nanofluids on skin friction coefficient along $\xi-$ and $\eta-$ directions are presented in Tables 5.3 and 5.4. Here we see that magnitude of skin friction coefficient increases with the increase in β_1. Numerical values of skin friction coefficient for different values of first and second order slip velocity parameters, porosity parameter, Hartman number and suction/injection parameter are presented in Table 5.5. It is noted that the skin friction coefficients decrease for increasing values of first order slip velocity parameters and magnitude of second order slip velocity parameters while it increases for larger porosity parameter, Hartman number and suction/injection parameter.

![Graph showing variations of $\xi(0)$ with β_1.](image)

$\xi(0)$ vs. $\beta_1 = 0.3, 0.6, 0.9, 1.5$

Fig. 5.14: Variations of β_1 and β_2 on $\xi(0)$.
Fig. 5: Variations of k_2 and ξ on $\xi(0)$.

Table 5: Thermophysical properties of water and nanoparticles [21].

<table>
<thead>
<tr>
<th></th>
<th>$\alpha \left(\text{m}^3/\text{kg} \right)$</th>
<th>$\beta \left(\text{m}^2/\text{kg} \right)$</th>
<th>$\gamma \left(\text{W/mK} \right)$</th>
<th>$\nu \times 10^5 \left(\text{m}^2/\text{s} \right)$</th>
<th>$\sigma \left(\Omega \text{-m} \right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure water</td>
<td>997.1</td>
<td>4179</td>
<td>0.613</td>
<td>21</td>
<td>0.05</td>
</tr>
<tr>
<td>Copper</td>
<td>8933</td>
<td>385</td>
<td>401</td>
<td>1.67</td>
<td>5.96 x 10^{-7}</td>
</tr>
<tr>
<td>Silver</td>
<td>10500</td>
<td>235</td>
<td>429</td>
<td>1.89</td>
<td>3.6 x 10^{-7}</td>
</tr>
<tr>
<td>Alumina</td>
<td>3970</td>
<td>765</td>
<td>40</td>
<td>0.85</td>
<td>1 x 10^{-10}</td>
</tr>
<tr>
<td>Titanium Oxide</td>
<td>4250</td>
<td>686.2</td>
<td>8.9538</td>
<td>0.9</td>
<td>1 x 10^{-12}</td>
</tr>
</tbody>
</table>

Table 5: Effects of the nanoparticle volume fraction for different types of nanofluids on skin friction coefficient along ξ-direction when $\bar{B}_1 = \bar{B}_2 = 0.05 \bar{B}_3 = \bar{B}_4 = 0.03 \bar{B}_5 = \bar{B}_6 = 0.09 \bar{B}_7$

$\bar{B}_1 = \bar{B}_2 = 0.07 \bar{B}_3 \bar{B}_2 = -0.03$ and $\bar{B}_4 = -0.02.$
Table 5.4: Effects of the nanoparticle volume fraction for different types of nanofluids on skin friction coefficient along $-\theta$-direction when $\theta_1 = \theta_3 = 0.0555 - \theta = 0.035 - \theta_1 = \theta_2 = 0.095$

<table>
<thead>
<tr>
<th>$\theta_1 = \theta_2$</th>
<th>θ_3</th>
<th>θ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>-0.6555</td>
<td>-0.6543</td>
</tr>
<tr>
<td>0.02</td>
<td>-0.3795</td>
<td>-0.3757</td>
</tr>
<tr>
<td>0.03</td>
<td>-1.229</td>
<td>-1.226</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\theta_1 = \theta_2$</th>
<th>θ_3</th>
<th>θ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>-1.704</td>
<td>-1.714</td>
</tr>
<tr>
<td>0.02</td>
<td>-2.296</td>
<td>-2.310</td>
</tr>
<tr>
<td>0.03</td>
<td>-3.184</td>
<td>-3.215</td>
</tr>
</tbody>
</table>
Table 2.5: Numerical values of skin friction coefficient for different values of α_1, α_2, α_3, and α_4

<table>
<thead>
<tr>
<th>$-C_{f_x}(Re_x)^{1/2}$</th>
<th>$-C_{f_y}(Re_y)^{1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.979</td>
<td>6.896</td>
</tr>
<tr>
<td>1.477</td>
<td>6.863</td>
</tr>
<tr>
<td>0.089</td>
<td>6.837</td>
</tr>
<tr>
<td>0.203</td>
<td>6.844</td>
</tr>
<tr>
<td>0.974</td>
<td>6.829</td>
</tr>
<tr>
<td>0.779</td>
<td>6.815</td>
</tr>
<tr>
<td>0.789</td>
<td>9.314</td>
</tr>
<tr>
<td>0.781</td>
<td>7.306</td>
</tr>
<tr>
<td>0.776</td>
<td>6.008</td>
</tr>
<tr>
<td>0.781</td>
<td>7.403</td>
</tr>
<tr>
<td>0.777</td>
<td>6.19</td>
</tr>
<tr>
<td>0.774</td>
<td>5.526</td>
</tr>
<tr>
<td>0.748</td>
<td>6.641</td>
</tr>
<tr>
<td>0.791</td>
<td>6.887</td>
</tr>
<tr>
<td>0.802</td>
<td>6.949</td>
</tr>
<tr>
<td>0.774</td>
<td>6.784</td>
</tr>
<tr>
<td>0.784</td>
<td>6.845</td>
</tr>
<tr>
<td>0.789</td>
<td>6.871</td>
</tr>
<tr>
<td>0.592</td>
<td>5.906</td>
</tr>
<tr>
<td>0.656</td>
<td>6.199</td>
</tr>
<tr>
<td>0.737</td>
<td>6.691</td>
</tr>
</tbody>
</table>

2.5 Conclusions

Here flow of Cu-water nanofluid induced by bidirectional stretching surface is investigated. The effects of homogeneous-heterogeneous reactions and second order velocity slip are also taken into account. The key points are summarized as follows:
• Velocity profiles \tilde{v}_0 and \bar{v}_0 are decreasing functions of velocity slip parameters and nanoparticle volume fraction.

• The velocity component \tilde{v}_0 decreases while \bar{v}_0 increases for larger stretching rates ratio.

• Concentration of the reactants decreases for higher values of strength of homogeneous reaction parameter.

• Strength of heterogeneous reaction parameter results in the enhancement of concentration profile.

• There is an enhancement in concentration profile when Schmidt number increases.
• Concentration at the surface decreases for increasing values of the strengths of homogeneous and heterogeneous reaction parameters.

• Skin friction coefficients decrease for increasing values of first and second order velocity slip parameters.
Chapter 6

Effects of homogeneous-heterogeneous reactions in flow of magnetite-Fe$_3$O$_4$ nanoparticles by a rotating disk

This chapter investigates the flow of ferrofluid due to a rotating disk in the presence of homogeneous-heterogeneous reactions. Water is used as base fluid while magnetite-Fe$_3$O$_4$ as nanoparticle. Fluid is electrically conducting in the presence of applied magnetic field. Effects of viscous dissipation are also considered. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are computed for the resulting nonlinear problems. Effects of different parameters on the velocity, temperature and concentration profiles are shown and analyzed. Computations for skin friction coefficient and Nusselt number are presented and examined for the influences of pertinent parameters. It is noted that concentration distribution decreases for larger values of strength of homogeneous reaction parameter while it increases for strength of heterogeneous reaction parameter. Skin friction coefficient and rate of heat transfer are enhanced when the strength of magnetic field is increased.

6.1 Model development

Here we consider an incompressible flow of ferrofluid induced by a rotating disk at $\Omega = 0$. Magnetite–Fe$_3$O$_4$ nanoparticles in water are known as ferrofluid. The disk rotates with constant angular velocity Ω about the \hat{z}–axis. Components of flow velocity are (\hat{x}, \hat{y}, \hat{z}) in the direction of
increasing (\bar{e}, Θ, \bar{u}), respectively. A uniform magnetic field of strength \bar{B} is applied parallel to the \bar{z}–axis. It is assumed that the induced magnetic field and the electric field effects are negligible.

Effects of viscous dissipation are taken into account. The disk is kept at uniform temperature \bar{e}_∞ while temperature far away from the disk is \bar{e}_∞ In view of the rotational symmetry, the derivatives in the azimuthal direction are neglected. Flow analysis is carried out with homogeneous-heterogeneous reactions of two chemical species \bar{e} and \bar{u}. The homogeneous reaction for cubic autocatalysis can be expressed as follows [73]:

$$\bar{e} + 2\bar{u} \rightarrow 3\bar{e} \quad \text{rate} = \bar{e}_s \bar{u}^{2}\bar{e}$$

(6.1)

while first-order isothermal reaction on the catalyst surface is presented in the form

$$\bar{u} \rightarrow \bar{u} \quad \text{rate} = \bar{e}_s \bar{e}$$

(6.2)

where \bar{e} and \bar{u} are the concentrations of the chemical species \bar{e} and \bar{u} and \bar{e}_s and \bar{u}_s are the rate constants. We assume that both reaction processes are isothermal. Under these assumptions the relevant mass, momentum, energy and concentration equations are

$$\frac{\partial u}{\partial r} + \frac{u}{r} + \frac{\partial w}{\partial z} = 0,$$

(6.3)

$$\rho_{nf} \left(\frac{u}{\partial r} - \frac{v^2}{r} + \frac{w}{\partial z} \right) = -\frac{\partial P}{\partial r} + \mu_{nf} \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} - \frac{u}{r^2} + \frac{\partial^2 u}{\partial z^2} \right) - \sigma_{nf} B_0^2 u,$$

(6.4)

$$\rho_{nf} \left(\frac{\partial v}{\partial r} + \frac{w}{r} + \frac{w}{\partial z} \right) = \mu_{nf} \left(\frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial v}{\partial r} - \frac{v}{r^2} + \frac{\partial^2 v}{\partial z^2} \right) - \sigma_{nf} B_0^2 v,$$

(6.5)

$$\rho_{nf} \left(\frac{w}{\partial r} + \frac{w}{\partial z} \right) = -\frac{\partial P}{\partial z} + \mu_{nf} \left(\frac{\partial^2 w}{\partial r^2} + \frac{1}{r} \frac{\partial w}{\partial r} + \frac{\partial^2 w}{\partial z^2} \right),$$

(6.6)

$$u \frac{\partial T}{\partial r} + w \frac{\partial T}{\partial z} = \alpha_{nf} \left(\frac{\partial^2 T}{\partial r^2} + \frac{1}{r} \frac{\partial T}{\partial r} + \frac{\partial^2 T}{\partial z^2} \right) + \mu_{nf} \left(\frac{\partial u}{\partial r} \right)^2 + \left(\frac{\partial w}{\partial z} \right)^2 \left(\frac{\partial w}{\partial r} \right)^2 + \left(\frac{\partial w}{\partial z} \right)^2 \left(\frac{\partial w}{\partial r} \right)^2,$$

(6.7)
\[
\frac{u}{r} \frac{\partial a}{\partial r} + w \frac{\partial a}{\partial z} = D_A \left(\frac{\partial^2 a}{\partial r^2} + \frac{1}{r} \frac{\partial a}{\partial r} + \frac{\partial^2 a}{\partial z^2} \right) - k_e a b^2, \\
\frac{u}{r} \frac{\partial b}{\partial r} + w \frac{\partial b}{\partial z} = D_B \left(\frac{\partial^2 b}{\partial r^2} + \frac{1}{r} \frac{\partial b}{\partial r} + \frac{\partial^2 b}{\partial z^2} \right) + k_e a b^2,
\]
(6.8)

with boundary conditions

\[
u = 0, \ v = r \Omega, \ w = 0, \ T = T_w, \ D_A \frac{\partial a}{\partial z} = k_s a, \ D_B \frac{\partial b}{\partial z} = -k_s a \text{ at } z = 0, \\
u \to 0, \ v \to 0, \ T \to T_\infty, \ a \to a_0, \ b \to 0 \text{ as } z \to \infty,
\]
(6.10)

where \(\nu \) is the pressure, \(T \) is the temperature, \(k_s = k_s(\bar{B}) \) is the thermal diffusivity and \(\bar{B} \) is the positive dimensional constant. The effective nanofluid dynamic viscosity \(\mu_{nf} \), density \(\rho_{nf} \), heat capacity \(\rho_{cp_{nf}} \), thermal conductivity \(k_{nf} \) and electric conductivity \(\sigma_{nf} \) are taken as follows:

\[
\mu_{nf} = \frac{\mu_f}{(1 - \phi)^{2.5}},
\]
(6.11)
\[
\rho_{nf} = (1 - \phi) \rho_f + \phi \rho_s,
\]
(6.12)
\[
(\rho c_p)_{nf} = (1 - \phi)(\rho c_p)_f + \phi(\rho c_p)_s,
\]
(6.13)
\[
k_{nf} = \frac{(k_s + 2k_f) - 2\phi(k_f - k_s)}{(k_s + 2k_f) + \phi(k_f - k_s)},
\]
(6.14)
\[
\sigma_{nf} = \frac{3}{\sigma_f} \left(\frac{\sigma_s}{\sigma_f} - 1 \right) \phi + \frac{3}{\sigma_f} + 2 \left(\frac{\sigma_s}{\sigma_f} - 1 \right) \phi,
\]
(6.15)

where \(\phi \) denotes the solid volume fraction of nanoparticles, \(\phi \) in subscript is for nano-solid particles and \(\phi \) in subscript is for base fluid. We now consider transformations

\[
u = r \Omega f(\eta), \ v = r \Omega g(\eta), \ w = \sqrt{\nu_f \Omega} H(\eta), \ \eta = \sqrt{\frac{\Omega}{\nu_f}} z, \ P - P_\infty = \rho_f \nu_f \Omega \bar{P}(\eta), \\
\theta(\eta) = \frac{T - T_\infty}{T_w - T_\infty}, \ a = a_0 \xi(\eta), \ b = a_0 h(\eta).
\]
(6.16)

Equations (6.8) – (6.10) after using Eq. (6.16) can be reduced as follows:
\[f'' - H f' - f^2 + g^2 - \left(\frac{\sigma_{nf}}{\sigma_f} \right) M_f = 0, \]
(6.18)

\[g'' - H g' - 2fg - \left(\frac{\sigma_{nf}}{\sigma_f} \right) M_g = 0, \]
(6.19)

\[\frac{1}{\Pr} \frac{k_n}{k_f} \theta'' - \left(1 - \phi + \phi \frac{(\rho c_p)_e}{(\rho c_p)_f} \right) H \theta' + \frac{Ec}{(1 - \phi)^{2.5}} \left(f'^2 + g'^2 + \frac{1}{Re_\nu} (4f'^2 + 2g'^2) \right) = 0, \]
(6.20)

\[\frac{1}{Sc} \xi'' - H \xi' - k_1 \xi h^2 = 0, \]
(6.21)

\[\frac{\delta}{Sc} k'' - H k' + k_1 \xi h^2 = 0, \]
(6.22)

\[\Theta(0) = 0 \quad \Theta'(0) = 0 \quad \Theta(0) = 1 \quad \Theta'(0) = 1 \quad \Theta(0) = \Theta(0) = -\Theta(0) \]

\[\Theta(\infty) \to 0 \quad \Theta'(\infty) \to 0 \quad \Theta(\infty) \to 0 \quad \Theta(\infty) \to 1 \quad \Theta(\infty) \to 0 \]

\[\Theta(\infty) \to 0 \quad \Theta'(\infty) \to 0 \quad \Theta(\infty) \to 0 \quad \Theta(\infty) \to 1 \quad \Theta(\infty) \to 0 \]

(6.23)

where \(\Theta = \Theta_\nu \Theta_0 \Theta_\kappa \Omega \) is the Hartman number, \(\Pr = \Theta_\nu \Theta_\kappa \) is the Prandtl number, \(\Theta = (\Theta_\Omega)^2 (\Theta_\nu \Theta_\kappa \Theta_\beta \Theta_\gamma \Theta_\kappa \Omega) \) is the local Eckert number, \(\Theta = (\Theta_\Omega)^2 (\Theta_\nu \Theta_\kappa \Theta_\beta \Theta_\gamma \Theta_\kappa \Omega) \) is the local Reynolds number, \(\Theta = \Theta_\nu \Theta_\kappa \) is the Schmidt number, \(\Theta_1 = \Theta_\nu^2 (\Theta_\kappa \Theta_\beta \Theta_\gamma) \) is the measure of strength of homogeneous reaction, \(\Theta = \Theta_\nu \Theta_\kappa \Theta_\beta \Theta_\gamma \Theta_\kappa \Theta_\Omega \) is the measure of strength of the heterogeneous reaction, \(k_2 = k_\nu \sqrt{\nu_f / D} \sqrt{\xi} \) is the measure of strength of the heterogeneous reaction.

Here it is assumed that diffusion coefficients of chemical species \(\Theta \) and \(\Theta \) to be of a comparable size. This leads to make a further assumption that the diffusion coefficients \(\Theta \) and \(\Theta \) are equal, i.e. \(\Theta = 1 \) and thus

\[\Theta(0) + \Theta(0) = 1 \Theta \]

(6.24)

Now Eqs. (6.21) and (6.22) yield

104
\[\frac{1}{Sc} \xi'' - H \xi' - k_1 \xi (1 - \xi)^2 = 0, \]

(6.25)

with the boundary conditions

\[\xi_0(0) = \xi_2(0) = \xi(\infty) \to 1 \]

(6.26)

The important physical quantities of interest in this problem are the local skin-friction coefficient \(\xi_{lm} \) and Nusselt number \(\xi \) which are given by

\[C_{sf} = \frac{\sqrt{\tau_e^2 + \tau_\theta^2}}{\rho (r \Omega)^2}, \quad Nu = \frac{r q_w}{k_f (T_w - T_\infty)}, \]

(6.27)

where the surface radial stress \(\tau_e \), tangential stress \(\tau_\theta \) and heat flux \(\tau_\nu \) are given by

\[\tau_e = \mu n \frac{\partial \nu}{\partial z}, \quad \tau_\theta = - \mu n \frac{\partial \theta}{\partial z}, \quad \tau_\nu = 0 \]

(6.28)

In dimensionless form the local skin-friction coefficient \(\xi_{lm} \) and Nusselt number \(\xi \) can be written as follows:

\[C_{sf} (Re_f)^{1/2} = \frac{1}{(1 - \phi)^2.5} \sqrt{[f'(0)]^2 + [g'(0)]^2}, \quad Nu (Re_f)^{-1/2} = -\frac{k_n}{k_f} \theta'(0). \]

(6.29)

6.2 Solutions procedure

Initial approximations \(\xi_0(0) \), \(\xi_1(0) \), \(\xi_0(\infty) \), \(\xi_1(\infty) \), and auxiliary linear operators \(L_1 \), \(L_2 \), \(L_3 \), \(L_4 \) and \(L_5 \) are taken in the forms

\[H_0(\eta) = 0, \quad f_0(\eta) = \eta e^{-\eta}, \quad g_0(\eta) = e^{-\eta}, \quad \theta_0(\eta) = e^{-\eta}, \quad \xi_0(\eta) = 1 - \frac{1}{2} e^{-k_2 \eta}, \]

(6.30)

\[\mathcal{L}_H = H', \quad \mathcal{L}_f = f'' - f, \quad \mathcal{L}_g = g'' - g, \quad \mathcal{L}_\theta = \theta'' - \theta, \quad \mathcal{L}_\xi = \xi'' - \xi, \]

(6.31)

subject to the properties

\[L_1[\xi_1] = 0 \]
\[L_{\mu}[\bar{u} \bar{F}^{m} + \bar{v} \bar{F}^{n-3}] = 0 \]
\[L_{\mu}[\bar{u} \bar{F}^{m} + \bar{v} \bar{F}^{n-3}] = 0 \]
\[L_{\mu}[\bar{u} \bar{F}^{m} + \bar{v} \bar{F}^{n-3}] = 0 \]
\[L_{\mu}[\bar{u} \bar{F}^{m} + \bar{v} \bar{F}^{n-3}] = 0 \]
\[(6.32) \]

in which \(\bar{a}_n (n = 1 - 9) \) are the constants.

If \(\phi \in [0,1] \) indicates the embedding parameter then the zeroth order deformation problems are constructed as follows:
\[(1 - \phi)L_{\mu}[\bar{\phi}^{1} \bar{F}^{m} - \bar{a}_{0}(\phi)] = \beta_1 \bar{N}_{\mu}[\bar{\phi}^{1}(\bar{\phi}^{1} \bar{F}^{m} - \bar{a}_{0}(\phi))] \] \((6.33) \)
\[(1 - \phi)L_{\mu}[\bar{\phi}^{1} \bar{F}^{m} - \bar{a}_{0}(\phi)] = \beta_1 \bar{N}_{\mu}[\bar{\phi}^{1}(\bar{\phi}^{1} \bar{F}^{m} - \bar{a}_{0}(\phi))] \] \((6.34) \)
\[(1 - \phi)L_{\mu}[\bar{\phi}^{1} \bar{F}^{m} - \bar{a}_{0}(\phi)] = \beta_1 \bar{N}_{\mu}[\bar{\phi}^{1}(\bar{\phi}^{1} \bar{F}^{m} - \bar{a}_{0}(\phi))] \] \((6.35) \)
\[(1 - \phi)L_{\mu}[\bar{\phi}^{1} \bar{F}^{m} - \bar{a}_{0}(\phi)] = \beta_1 \bar{N}_{\mu}[\bar{\phi}^{1}(\bar{\phi}^{1} \bar{F}^{m} - \bar{a}_{0}(\phi))] \] \((6.36) \)
\[(1 - \phi)L_{\mu}[\bar{\phi}^{1} \bar{F}^{m} - \bar{a}_{0}(\phi)] = \beta_1 \bar{N}_{\mu}[\bar{\phi}^{1}(\bar{\phi}^{1} \bar{F}^{m} - \bar{a}_{0}(\phi))] \] \((6.37) \)

\[\bar{\phi}^{1}(0 \bar{F}^{m}) = 1 \bar{\phi}^{1}(0 \bar{F}^{m}) = 1 \bar{\phi}^{1}(0 \bar{F}^{m}) = 1 \bar{\phi}^{1}(0 \bar{F}^{m}) = 1 \bar{\phi}^{1}(0 \bar{F}^{m}) \]
\[(6.38) \]

where \(\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \) and \(\beta_5 \) are the nonzero auxiliary parameters and the nonlinear operators \(N_{\mu} \), \(N_{\mu} \), \(N_{\mu} \), and \(N_{\mu} \) are given by

\[N_{\mu} = \frac{\partial \bar{H}(\eta, p)}{\partial \eta} + 2 \bar{f}(\eta, p), \] \((6.39) \)

\[N_{f} = \frac{1}{(1 - \phi)^{2.5}} \left(\frac{\sigma_{f}}{\sigma_{f}} \right) \frac{\partial^{2} \bar{f}(\eta, p)}{\partial \eta^{2}} - \bar{H}(\eta, p) \frac{\partial \bar{f}(\eta, p)}{\partial \eta} - \left(\bar{f}(\eta, p) \right)^{2} \]
\[+ \left(\bar{g}(\eta, p) \right)^{2} - \left(\frac{\sigma_{f}}{\sigma_{f}} \right) \frac{\sigma_{f}}{(1 - \phi)^{2.5}} \bar{f}(\eta, p), \] \((6.40) \)
\[\mathcal{N}_g = \frac{1}{(1 - \phi)^2} \frac{\partial^2 \hat{g}(\eta, p)}{\partial \eta^2} - \hat{H}(\eta, p) \frac{\partial \hat{g}(\eta, p)}{\partial \eta} - 2 \hat{f}(\eta, p) \hat{g}(\eta, p) \]

\[- \left(\frac{\sigma_n \Gamma}{\sigma_f} \right) M \hat{g}(\eta, p), \]

(6.41)

\[\mathcal{N}_\theta = \frac{1}{Pr} \frac{k_n \Gamma}{k_f} \frac{\partial^2 \hat{\theta}(\eta, p)}{\partial \eta^2} - \left(1 - \phi + \phi \frac{(\rho c_p)_{\infty}}{(\rho c_p)_f} \right) \hat{H}(\eta, p) \frac{\partial \hat{\theta}(\eta, p)}{\partial \eta} + \frac{Ec}{(1 - \phi)^2} \left[\left(\frac{\partial \hat{f}(\eta, p)}{\partial \eta} \right)^2 + \left(\frac{\partial \hat{H}(\eta, p)}{\partial \eta} \right)^2 \right] + \left(\frac{\partial \hat{g}(\eta, p)}{\partial \eta} \right)^2 + \frac{1}{Re} \left[4 \left(\hat{f}(\eta, p) \right)^2 + 2 \left(\frac{\partial \hat{H}(\eta, p)}{\partial \eta} \right) \right], \]

(6.42)

\[\mathcal{N}_z = \frac{1}{Sc} \frac{\partial^2 \hat{\xi}(\eta, p)}{\partial \eta^2} - \hat{H}(\eta, p) \frac{\partial \hat{\xi}(\eta, p)}{\partial \eta} - k_1 \hat{\xi}(\eta, p) \left(1 - \hat{\xi}(\eta, p) \right)^2. \]

(6.43)

The resulting problems at m-th order can be presented in the following forms:

\[L_m \left[\bar{\phi}_n(\Phi) - \bar{\phi}_{n-1}(\Phi) \right] = \bar{\eta} R_{m\eta}(\Phi) \]

(6.44)

\[L_m \left[\bar{\phi}_n(\Phi) - \bar{\phi}_{n-1}(\Phi) \right] = \bar{\eta} R_{m\eta}(\Phi) \]

(6.45)

\[L_m \left[\bar{\phi}_n(\Phi) - \bar{\phi}_{n-1}(\Phi) \right] = \bar{\eta} R_{m\eta}(\Phi) \]

(6.46)

\[L_m \left[\bar{\phi}_n(\Phi) - \bar{\phi}_{n-1}(\Phi) \right] = \bar{\eta} R_{m\eta}(\Phi) \]

(6.47)

\[L_m \left[\bar{\phi}_n(\Phi) - \bar{\phi}_{n-1}(\Phi) \right] = \bar{\eta} R_{m\eta}(\Phi) \]

(6.48)

\[\bar{\phi}_n(0) = \bar{\phi}_n(0) = \bar{\phi}_n(\infty) = \bar{\phi}_n(0) = \bar{\phi}_n(\infty) = \bar{\phi}_n(0) = \bar{\phi}_n(0) = \bar{\phi}_n(\infty) = 0 \]

(6.49)

\[R_{m\eta}(\Phi) = \bar{\phi}_{m-1}^0 + 2 \bar{\phi}_{m-1}^0 \]

(6.50)
\(R_{f,m}(\eta) = \frac{1}{(1 - \phi)^{2.5} \left(1 - \phi + \frac{\rho_k}{\rho_f}\right)} \int_{m-1}^{\eta} \left[H_{m-1-k} f_k' + f_{m-1-k} f_k - g_{m-1-k} g_k \right] \right) - \left(\frac{\sigma_{nf}}{\sigma_f} \right) M f_{m-1}, \)

(6.51)

\(R_{g,m}(\eta) = \frac{1}{(1 - \phi)^{2.5} \left(1 - \phi + \frac{\rho_k}{\rho_f}\right)} \int_{m-1}^{\eta} \left[H_{m-1-k} g_k' + 2 f_{m-1-k} g_k \right] \right) - \left(\frac{\sigma_{nf}}{\sigma_f} \right) M g_{m-1}, \)

(6.52)

\(R_{\theta,m}(\eta) = \frac{1}{Pr} \int_{f_f}^{\eta} \int_{k-1}^{\eta} \left[1 - \phi + \frac{\rho_k}{\rho_f} \right] \left[\sum_{k=0}^{m-1} H_{m-1-k} \theta_k' + \frac{E_c}{(1 - \phi)^{2.5}} \sum_{k=0}^{m-1} [f_m - 1_k f_k' + g_m' - 1_k g_k'] \right] + \theta_{m-1-k} g_k' + \frac{1}{Re} \left(4 f_{m-1-k} f_k + 2 H_{m-1-k} H_k' \right), \)

(6.53)

\(R_{\xi,m}(\eta) = \frac{1}{Sc} \xi_{m-1} - \sum_{k=0}^{m-1} \left[H_{m-1-k} \xi_k - k_1 \left(\xi_{m-1-l} \xi_j - 2 \xi_{m-1-l} \xi_l \right) \right] - k_1 \xi_{m-1}, \)

(6.54)

\[\chi_m = \begin{cases} 0, & m \leq 1 \\ 1, & m > 1 \end{cases} \]

(6.55)

The general solutions \((H_m^*, f_m^*, g_m^*, \theta_m^*, \xi_m^*)\) comprising the special solutions \((H_m, f_m, g_m, \theta_m, \xi_m)\) are

\[H_m(\eta) = H_m^*(\eta) + c_1, \]

\[f_m(\eta) = f_m^*(\eta) + c_2 e^\eta + c_3 e^{-\eta}, \]

\[g_m(\eta) = g_m^*(\eta) + c_4 e^\eta + c_5 e^{-\eta}, \]

\[\theta_m(\eta) = \theta_m^*(\eta) + c_6 e^\eta + c_7 e^{-\eta}, \]

\[\xi_m(\eta) = \xi_m^*(\eta) + c_8 e^\eta + c_9 e^{-\eta}, \]

(6.56)

where the constants \((c = 1 - 9)\) through the boundary conditions (6.49) have the values
\[c_1 = -H_{\infty}^{*}(0), \quad c_2 = c_4 = c_6 = c_8 = 0, \quad c_3 = -f_{\infty}^{*}(0), \quad c_5 = -g_{\infty}^{*}(0). \]
\[c_7 = \theta_{\infty}^{*}(0), \quad c_9 = \left. \frac{1}{1 + k_2} \left[\frac{\partial \xi_{\infty}^{*}(\eta)}{\partial \eta} \right]_{\eta = 0} - k_2 \xi_{\infty}^{*}(0) \right]. \] (6.57)

6.3 Convergence of series solutions

The auxiliary parameters \(\eta, \beta, \gamma, \) and \(\delta \) play an important role for convergence of series solutions. The \(\eta \)-curves are sketched at 10th–order of approximations to obtain valid ranges of these parameters (see Fig. 6.1). Permissible values of the auxiliary parameters are

\[-1 \leq \eta \leq -0.7, \quad -1 \leq \beta \leq -0.6, \quad -1 \leq \gamma \leq -0.6 \quad \text{and} \quad -1 \leq \delta \leq -0.5. \]

Further the series solutions converge in the whole region of \(\eta \) \((0 \leq \eta \leq \infty)\) when \(\eta = \beta = \gamma = \delta = -0.7 \) and \(\eta = \beta = \gamma = \delta = -1 \). Also Table 6.1 ensures that the series solutions are convergent up to four decimal places.

![Fig. 6.1: The \(\eta \)-curves for different values of \(\eta, \beta, \gamma, \) and \(\delta \).](image)

Table 6.1: Convergence of HAM solutions for different order of approximations when

\[\eta = \beta = \gamma = \delta = 0.3 \quad \text{Pr} = 6 \quad \text{Re} = 0.7 \quad \text{and} \quad \text{Re} = 0.9 \]
<table>
<thead>
<tr>
<th>Order of approximations</th>
<th>$-\varepsilon_\infty(0)$</th>
<th>$\varepsilon_0(0)$</th>
<th>$\varepsilon_0(0)$</th>
<th>$-\varepsilon_0(0)$</th>
<th>$\varepsilon_0(0)$</th>
<th>$\varepsilon_0(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1400</td>
<td>0.4754</td>
<td>0.9230</td>
<td>0.1656</td>
<td>0.1349</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.8466</td>
<td>0.4276</td>
<td>0.7790</td>
<td>1.8343</td>
<td>0.1260</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.8832</td>
<td>0.4420</td>
<td>0.7672</td>
<td>1.660</td>
<td>0.1208</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.8863</td>
<td>0.4434</td>
<td>0.7680</td>
<td>1.797</td>
<td>0.1194</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.8858</td>
<td>0.4429</td>
<td>0.7683</td>
<td>1.830</td>
<td>0.1190</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.8858</td>
<td>0.4429</td>
<td>0.7683</td>
<td>1.839</td>
<td>0.1193</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0.8858</td>
<td>0.4429</td>
<td>0.7683</td>
<td>1.839</td>
<td>0.1193</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>0.8858</td>
<td>0.4429</td>
<td>0.7683</td>
<td>1.839</td>
<td>0.1193</td>
<td></td>
</tr>
</tbody>
</table>

6.4 Discussion

The effects of different parameters on the dimensionless velocity, temperature and concentration are examined graphically in this section. Effects of Hartman number H on the axial velocity profile $\varepsilon(\theta)$ can be seen from Fig. 6.2. Here negative values of $\varepsilon(\theta)$ indicate downward flow in the vertical direction. As the magnetic field has the tendency to slow down the movement of the fluid which leads to a decrease in the velocity and momentum boundary layer thickness. Fig. 6.3 illustrates the behavior of ε on the radial component of velocity $\varepsilon(\theta)$. There is a decrease in velocity and associated boundary layer thickness when ε is increased. Also flow distribution is parabolic and positive values of $\varepsilon(\theta)$ indicate radially outward flow. Fig. 6.4 depicts the distribution of azimuthal velocity $\varepsilon(\theta)$ at various values of ε. It is observed that $\varepsilon(\theta)$ is a decreasing function of Hartman number H.

Influence of Hartman number H on the temperature profile $\varepsilon(T)$ is analyzed in Fig. 6.5. Since Lorentz force is a resistive force which opposes the fluid motion therefore heat is produced and consequently thermal boundary layer thickness increases. Fig. 6.6 shows that temperature is an increasing function of nanoparticle volume fraction ϕ. It is because of the fact that when the volume fraction of nanoparticles increases, the thermal conductivity enhances and consequently thermal boundary layer thickness increases. Variations of Eckert number ε on temperature profile $\varepsilon(T)$ can be seen in Fig. 6.7. When ε is increased the temperature profile first rises to a maximum value and
then it asymptotically approaches to zero. It reveals that "Sparrow-Gregg type Hill" phenomenon exists in the presence of viscous dissipation. Fig. 6.8 represents the effect of rotational Reynolds number Reₜ on temperature profile $\theta(\theta)$. Here the temperature profile and thermal boundary layer thickness decrease when Reₜ is increased.

Fig. 6.9 shows the impact of strength of homogeneous reaction parameter \mathcal{B}_1 on the concentration profile $\theta(\theta)$. Concentration decreases since the reactants are consumed during homogeneous reaction. Influence of strength of heterogeneous reaction parameter \mathcal{B}_2 on the concentration distribution is analyzed in Fig. 6.10. It is noted that for higher values of \mathcal{B}_2 the diffusion reduces and less diffused particles enhance the concentration. Influence of Schmidt number \mathcal{S}_c on concentration profile $\theta(\theta)$ is shown in Fig. 6.11. Increasing behavior of concentration profile is noted for larger Schmidt number. In fact Schmidt number is the ratio of viscous diffusion rate to molecular diffusion rate. Therefore higher values of Schmidt number correspond to higher viscous diffusion rate which in turn increases the fluid concentration.

Fig. 6.12 presents the skin friction coefficient $\mathcal{F}_m(Re_\infty)^{1/2}$ as a function of nanoparticles volume fraction φ for different values of Hartman number \mathcal{H}_m. When φ increases the magnitude of $\mathcal{F}_m(Re_\infty)^{1/2}$ grows in nonlinear way. Also magnitude of $\mathcal{F}_m(Re_\infty)^{1/2}$ is directly proportional to φ. Fig. 6.13 shows local Nusselt number $\mathcal{F}_n(Re_\infty)^{-1/2}$ as a function of φ at different values of Re_∞. There is an increase in the magnitude of $\mathcal{F}_n(Re_\infty)^{-1/2}$ when φ is increased. While magnitude of $\mathcal{F}_n(Re_\infty)^{-1/2}$ has inverse relationship with Re_∞.

Variations of surface concentration $\theta(0)$ via nanoparticles volume fraction φ for different values of the strength of homogeneous reaction parameter \mathcal{B}_1 and strength of heterogeneous reaction parameter \mathcal{B}_2 are shown in the Figs. 6.14 and 6.15. One can see from these Figs. that $\theta(0)$ decreases with the increase of \mathcal{B}_1 and \mathcal{B}_2. It is in view of the fact that surface concentration reduces due to the consumption of reactants during homogeneous-heterogeneous reactions.

Some thermophysical properties of water and magnetite Fe₃O₄ are given in Table 6.2. In Table 6.3 we compared the results of $\theta(0)$, $\theta(\infty)$ and $\theta(0)$ with existing literature in limiting sense. Obtained results are in good agreement. Table 6.4 includes the values of local Nusselt number...
$\theta \sim (Re_\theta)^{-1/2}$ for different values of Re_θ and θ. It is noted that heat transfer rate enhances by increasing $\frac{\theta}{Re_\theta} \sim (Re_\theta)^{-1/2}$ for different values of θ and Re_θ.
Fig. 6.2: Influence of ϕ on $f(\eta)$.
Fig. 6: Influence of \(\phi \) on \(g(\eta) \)

\[\phi = 0.2 \]

\[M = 0.1, 0.5, 1, 2 \]

Fig. 5: Influence of \(\phi \) on \(\theta(\eta) \)

\[\phi = 0.2, Ec = 0.7, Re_p = 0.9 \]

\[M = 0.1, 0.5, 1, 2 \]
Fig. 6: Influence of ϕ on $\theta(\eta)$

$M = 0.3, Ec = 0.7, Re_\tau = 0.9$

$\phi = 0.01, 0.05, 0.1, 0.2$

$\theta(\eta)$

Fig. 7: Influence of Ec on $\theta(\eta)$

$M = 0.3, \phi = 0.2, Re_\tau = 0.9$

$Ec = 0.1, 0.3, 0.5, 0.7$
Fig. 68: Influence of Re_∞ on $\theta(\eta)$

$M = 0.3, \phi = 0.2, Ec = 0.7$

$Re_\infty = 0.1, 0.5, 0.9, 1.5$

Fig. 9: Influence of k_1 on $\xi(\eta)$

$k_1 = 0.1, 0.3, 0.5, 0.7$

$M = 0.3, \phi = 0.2, k_2 = 0.3, Sc = 0.9$
Fig. 6.10: Influence of k_2 on $\xi(\eta)$

$\xi(\eta)$

$k_2 = 0.3, 0.45, 0.7, 0.9$

$M = 0.3, \phi = 0.2, k_1 = 0.3, \text{Sc} = 0.9$

Fig. 6.11: Influence of Sc on $\xi(\eta)$

$\xi(\eta)$

$\text{Sc} = 0.1, 0.5, 0.7, 0.9$

$M = 0.3, \phi = 0.2, k_1 = k_2 = 0.3$
Fig. 6.12: Influence of ϕ on $\frac{1}{(1-\phi)^{2.5}}\sqrt{[f'(0)]^2 + [g'(0)]^2}$

Fig. 6.13: Influence of Re on $\frac{k_{nf}}{k_f}\theta(0)$
Table 6.2: Thermophysical properties of water and magnetite Fe₃O₄

<table>
<thead>
<tr>
<th></th>
<th>(Ω⁻¹)</th>
<th>(m²/s)</th>
<th>(K/m)</th>
<th>(W/mK)</th>
<th>(kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>997</td>
<td>4179</td>
<td>0.613</td>
<td>0.05</td>
<td>1000</td>
</tr>
<tr>
<td>Fe₃O₄</td>
<td>5180</td>
<td>670</td>
<td>9.7</td>
<td>25000</td>
<td>1000</td>
</tr>
</tbody>
</table>
Table 6.3: Comparison of present results with previously published works when $\theta = \phi = H = 0$.

<table>
<thead>
<tr>
<th></th>
<th>Kelson and Desseaux [53]</th>
<th>Bachok et al. [54]</th>
<th>Turkyilmazoglu [56]</th>
<th>Present</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta(0)$</td>
<td>0.510233</td>
<td>0.5101</td>
<td>0.51023262</td>
<td>0.5102</td>
</tr>
<tr>
<td>$-\phi(0)$</td>
<td>0.615922</td>
<td>0.6158</td>
<td>0.61592201</td>
<td>0.6160</td>
</tr>
<tr>
<td>$-\phi(\infty)$</td>
<td>0.884474</td>
<td>—</td>
<td>0.88447411</td>
<td>0.8843</td>
</tr>
<tr>
<td>$\theta(0)$</td>
<td>—</td>
<td>0.9337</td>
<td>0.93387794</td>
<td>0.9335</td>
</tr>
</tbody>
</table>

Table 6.4: Numerical values of Nusselt number $\theta(0) (Re)_{1/2}$ for different values of ϕ, θ, and ϕ when $Pr = 6.2$ and $Re_H = 0.9$.

<table>
<thead>
<tr>
<th>ϕ</th>
<th>θ</th>
<th>ϕ</th>
<th>$\frac{\theta(0) - \theta(0)}{\theta(0)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.51</td>
<td>0</td>
<td>-1.89</td>
</tr>
<tr>
<td>0.05</td>
<td>0.51</td>
<td>0.7</td>
<td>-1.532</td>
</tr>
<tr>
<td>0.1</td>
<td>0.51</td>
<td>1</td>
<td>-1.047</td>
</tr>
<tr>
<td>0.2</td>
<td>0.51</td>
<td>5</td>
<td>-2.853</td>
</tr>
<tr>
<td>0.7</td>
<td>0.51</td>
<td>3.065</td>
<td>-3.391</td>
</tr>
<tr>
<td>1</td>
<td>0.51</td>
<td>3.91</td>
<td>-3.291</td>
</tr>
<tr>
<td>0.3</td>
<td>0.51</td>
<td>4</td>
<td>-1.229</td>
</tr>
<tr>
<td>0.6</td>
<td>0.51</td>
<td>2</td>
<td>-2.327</td>
</tr>
<tr>
<td>0.8</td>
<td>0.51</td>
<td>3</td>
<td>-3.549</td>
</tr>
</tbody>
</table>

6.5 Main points

Here flow of ferrofluid induced by a rotating disk is investigated. Effects of homogeneous—heterogeneous reactions and viscous dissipation are also taken into account. The following observations are made.

- The axial, radial and azimuthal velocity profiles are decreasing functions of Hartman number.

- Opposite behavior of homogeneous and heterogeneous reaction parameters are seen on the concentration profiles.

- Surface drag force has direct relationship with the strength of magnetic field.
• Heat transfer rate rises for increasing values of nanoparticles volume fraction, Hartman number and Eckert number.

• Surface concentration decreases for both the strength of homogeneous reaction and heterogeneous reaction parameters.

• There is an excellent agreement between present and previously published results in limiting case when $\hat{\phi} = \hat{\psi} = \hat{n} = 0$.
Chapter 7

Melting heat transfer in the MHD flow of Cu-water nanofluid with viscous dissipation and Joule heating

An analysis has been carried out in this chapter for the characteristics of non-uniform melting heat transfer in the boundary layer flow of nanofluid past a stretching sheet. Water is treated as a base fluid and copper as nanoparticle. An incompressible fluid saturates the porous space. Effects of viscous dissipation and Joule heating are also examined. Fluid is electrically conducting in the presence of applied magnetic field. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are computed for the velocity and temperature. Effects of different parameters on the velocity and temperature profiles are shown and analyzed. It is revealed that an increase in the melting parameter increases the velocity and decreases the temperature. Impact of different parameters on skin friction coefficient and Nusselt number are computed through numerical values. It is concluded that temperature gradient at the surface increases for higher Hartman number and nanoparticle volume fraction.

7.1 Problem development

We consider the steady two-dimensional incompressible flow of nanofluid past a stretching sheet situated at $\bar{z} = 0$. We have taken \bar{z}– and $\bar{\eta}$– axes along and perpendicular to the sheet respectively. Flow is confined to $\bar{z} \geq 0$. It is assumed that the velocity of the stretching sheet is $\bar{U}_z(\bar{z}) = \bar{u} \bar{z}$ where \bar{u} is a positive constant. We have chosen $\bar{T}_\infty = \bar{T}_\infty(\bar{z})$ where $\bar{T}_\infty = \bar{T}_\infty - \bar{T}_\infty^2 \bar{z}$ is the non-uniform temperature of the melting surface and \bar{T}_∞ is the ambient temperature. Also a uniform magnetic field of intensity \bar{B}_0 acts in the \bar{z}–direction. The magnetic Reynolds number is assumed to
be small so that the induced magnetic field is negligible in comparison with the applied magnetic field.

We incorporate the Joule heating and viscous dissipation effects in the energy equation. The continuity, momentum and energy equations which govern such type of flow are written as:

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \quad (7.1)
\]

\[
\frac{u}{\partial x} + v \frac{\partial u}{\partial y} = \nu_{nf} \frac{\partial^2 u}{\partial y^2} - \frac{\nu_{nf}}{K} u - \frac{\sigma_{nf} B_0^2}{\rho_{nf}} u, \quad (7.2)
\]

\[
\frac{u}{\partial x} + v \frac{\partial T}{\partial y} = \alpha_{nf} \frac{\partial^2 T}{\partial y^2} + \frac{\mu_{nf}}{(\rho c_p)_{nf}} \left(\frac{\partial u}{\partial y} \right)^2 + \frac{\sigma_{nf} B_0^2}{(\rho c_p)_{nf}} u^2. \quad (7.3)
\]

The subjected boundary conditions are

\[
\vec{u} = \vec{v} = \vec{r} = \vec{0} \quad \text{at} \quad \vec{r} = \vec{0}
\]

\[
\vec{u} \rightarrow 0 \quad \text{as} \quad \vec{r} \rightarrow \infty \quad (7.4)
\]

and

\[
k_{nf} \left(\frac{\partial T}{\partial y} \right)_{\vec{r}=0} = \rho_{nf} [\Gamma + c_s(T_m - T_0) v(x, 0)], \quad (7.5)
\]

where \(\vec{u} \) and \(\vec{v} \) are the velocity components along the \(x \)- and \(y \)- directions respectively, \(\vec{r} \) is the permeability of porous medium, \(\vec{r} \) is the stretching constant, \(\Gamma = \Gamma_0 \vec{r}^2 \) is the non-uniform latent heat of the fluid and \(\vec{r} \) is the heat capacity of the solid surface. The boundary condition (7.5) shows that the heat conducted to the melting surface is equal to the heat of melting plus the sensible heat required to raise the solid temperature \(T_0 = T_0 - \vec{r}^2 \) to its melting temperature \(\vec{T}_m \).

The effective nanofluid dynamic viscosity \(\vec{\nu}_{nf} \), density \(\vec{\rho}_{nf} \), thermal diffusivity \(\vec{\alpha}_{nf} \), heat capacitance \(\vec{c}_s \), thermal conductivity \(\vec{\lambda}_{nf} \) and electrical conductivity \(\vec{\sigma}_{nf} \) are
\[\mu_{nf} = \frac{\mu_f}{(1-\phi)^{2.5}}, \]

(7.6)

\[\rho_{nf} = \rho_f(1-\phi) + \rho_s \phi, \]

(7.7)

\[\alpha_{nf} = \frac{k_{nf}}{(pc_p)_nf}, \]

(7.8)

\[(pc_p)_{nf} = (pc_p)_f(1-\phi) + (pc_p)_s \phi, \]

(7.9)

\[\frac{k_{nf}}{k_f} = \frac{k_s + 2k_f - 2\phi(k_f - k_s)}{k_s + 2k_f + 2\phi(k_f - k_s)}, \]

(7.10)

\[\frac{\sigma_{nf}}{\sigma_f} = 1 + \frac{3(\frac{\sigma_s}{\sigma_f} - 1)\phi}{\left(\frac{\sigma_s}{\sigma_f} + 2\right) - \left(\frac{\sigma_s}{\sigma_f} - 1\right)\phi}, \]

(7.11)

where \(\phi \) denotes the solid volume fraction of nanoparticles. Here the subscripts \(\phi \) represents the thermophysical properties of the nanofluid, \(\phi \) explains base fluid and \(\phi \) is defined as nano solid particles. We now introduce the following similarity transformations

\[u = c x f' (\eta), \quad v = -\sqrt{\nu f' c f (\eta)}, \quad \eta = \sqrt{\frac{c}{\nu f}} y, \quad \theta (\eta) = \frac{T - T_m}{T_\infty - T_m}, \]

(7.12)

Now Eq. (7.1) is satisfied automatically and substituting Eq. (7.12) into Eqs. (7.2) and (7.3) we get the following ordinary differential equations:

\[\varepsilon_1 \left(f'' - \lambda f' \right) - f'^2 + f f'' - M \varepsilon_1 (1-\phi)^{2.5} \frac{\sigma_{nf}}{\sigma_f} f' = 0, \]

(7.13)

\[1 - \frac{\varepsilon_1}{\varepsilon_1} \frac{\sigma_{nf}}{\sigma_f} (1-\phi)^{2.5} (1-\phi)^2 + \frac{\sigma_{nf}}{\sigma_f} (1-\phi)^2 = 0 \]

(1.14)

1 where prime indicates the differentiation with respect to \(\eta \), \(\phi \) is the porosity parameter, \(\phi \) is the Hartman number, \(Pr \) is the Prandtl number and \(\phi \) is the Eckert number. These quantities are defined as

\[\lambda = \frac{\nu_f}{cK}, \quad M = \frac{\sigma_f B_0^2}{cp_f}, \quad \frac{\nu_f}{Pr} = \frac{\rho_f u_w^2}{(pc_p)_f (T_\infty - T_m)} = \frac{\rho_f c^2}{(pc_p)_f \tilde{a}}, \]

(7.15)

The boundary conditions (7.4) and (7.5) become

\[f'(0) = 1, \quad \varepsilon_3 Pr f(0) + \frac{k_{nf}}{k_f} \phi' (0) = 0, \quad \theta (0) = 0, \]

\[f' (\infty) \rightarrow 0, \quad \theta (\infty) \rightarrow 1, \]

(7.16)
where \(\bar{\epsilon} \) is the dimensionless melting parameter

\[
\epsilon = \frac{c_f(T_\infty - T_m)}{\Gamma + c_s(T_m - T_0)} = \frac{c_f \bar{\epsilon}}{1 + c_s \bar{\epsilon}},
\]

which is a combination of the Stefan numbers \(\bar{\epsilon}_\infty (\bar{\epsilon}_\infty - \bar{\epsilon}_s) \bar{\epsilon} \Gamma \) and \(\bar{\epsilon}_s (\bar{\epsilon}_s - \bar{\epsilon}_s) \bar{\epsilon} \Gamma \) for the liquid and solid phases, respectively. When \(\bar{\epsilon} = 0 \) we obtain the governing equations for a viscous fluid. Also

\[
\varepsilon_1 = \frac{1}{(1 - \phi)^{2.5}}, \quad \varepsilon_2 = \frac{1}{(1 - \phi)^{2.5} (1 - \phi + \frac{\rho_s}{\rho_f} \phi)}, \quad \varepsilon_3 = 1 - \phi + \frac{\rho_s}{\rho_f} \phi.
\]

Local skin friction coefficient \(C_{sf} \) and Nusselt number \(Nu \) are given by

\[
C_{sf} = \frac{\tau_w}{\rho u_w^2}, \quad Nu = \frac{x q_w}{k_{nf} (T_\infty - T_m)}.
\]

where the surface shear stress \(\tau_w \) and wall heat flux \(q_w \) are given by

\[
\tau_w = \mu_f \frac{\partial u}{\partial y}, \quad q_w = -k_{nf} \frac{\partial T}{\partial y}\bigg|_{y=0}.
\]

By using the above equations we get

\[
C_{sf} (Re_x)^{1/2} = \frac{1}{(1 - \phi)^{2.5}} f''(0), \quad Nu (Re_x)^{-1/2} = -\frac{k_{nf}}{k_f} \theta'(0),
\]

where \(Re_x = \bar{\eta} p \bar{\epsilon} \bar{\epsilon} \bar{\epsilon} \) is the local Reynolds number.

7.2 Homotopic solutions

The initial approximations \(f_0(\bar{\eta}) \) and \(\theta_0(\bar{\eta}) \) and auxiliary linear operators \(L_f \) and \(L_\theta \) are taken as follows:

\[
f_0(\bar{\eta}) = 1 - e^{-\eta} - \frac{k_{nf} \theta}{k_f \varepsilon_3 \bar{\epsilon} \bar{\epsilon} \bar{\epsilon}}, \quad \theta_0(\bar{\eta}) = 1 - e^{-\eta},
\]

\[
L_f = f''' - f', \quad L_\theta = \theta'' - \theta,
\]

with

\[
L_f L_1 + L_2 \bar{\eta}^2 + L_3 \bar{\eta}^{-3} = 0
\]

\[
L_f L_4 \bar{\eta}^2 + L_5 \bar{\eta}^{-3} = 0
\]
in which \(\bar{\alpha} (\bar{\alpha} = 1 - 5) \) are the constants.

If \(\bar{\alpha} \in [0, 1] \) indicates the embedding parameter then the zeroth order deformation problems are established as follows:

\[
\begin{align*}
(1 - p) L_\theta \left[\bar{\theta}(\eta, p) - \theta_0(\eta) \right] &= p h_\theta N_\theta[\bar{\theta}(\eta, p), \bar{f}(\eta, p)], \\
\bar{f}'(0; p) &= 1, \ v_3 \text{Pr} \bar{f}(0; p) + \frac{k_{nf}}{k_f} \bar{\theta}'(0; p) = 0, \ \bar{f}'(\infty; p) = 0.
\end{align*}
\]

(7.25)

\[
(1 - \bar{\alpha}) L_\theta h \bar{\gamma}(\bar{\gamma}; \bar{\alpha}) - \bar{\gamma}_0(\bar{\alpha}) i = \bar{\beta}_1 n N_\theta[\bar{\theta}^*(\bar{\alpha}; \bar{\gamma})]
\]

(7.26)

(7.27)

\[\bar{\beta}(0; \bar{\alpha}) = 0, \ \bar{\beta}(\infty; \bar{\alpha}) = 1\bar{\alpha}\]

where nonzero auxiliary parameters are represented as \(\bar{\epsilon}_2 \) and \(\bar{\epsilon}_3 \) and the nonlinear operators \(N_\theta \) and \(N_f \) are

\[
\begin{align*}
N_\theta \left[\bar{\theta}(\eta, p), \bar{f}(\eta, p) \right] &= \bar{\epsilon}_1 \left(\frac{\partial^3 \bar{f}(\eta, p)}{\partial \eta^3} - \lambda \frac{\partial \bar{f}(\eta, p)}{\partial \eta} \right) - \left(\frac{\partial \bar{f}(\eta, p)}{\partial \eta} \right)^2 + \bar{f}(\eta, p) \frac{\partial^2 \bar{f}(\eta, p)}{\partial \eta^2} \\
&- M \bar{\epsilon}_1 (1 - \phi) 2.5 \frac{\sigma_{nf}}{\sigma_f} \frac{\partial \bar{\theta}(\eta, p)}{\partial \eta}, \\
N_f \left[\bar{f}(\eta, p) \right] &= \frac{1}{\text{Pr} k_f} \bar{\epsilon}_2 (1 - \phi) 2.5 \frac{\partial^2 \bar{f}(\eta, p)}{\partial \eta^2} + \bar{f}(\eta, p) \frac{\partial \bar{\theta}(\eta, p)}{\partial \eta} \\
&+ \bar{\epsilon}_2 E_c \left(\frac{\partial^2 \bar{f}(\eta, p)}{\partial \eta^2} \right)^2 - 2 \frac{\partial \bar{f}(\eta, p)}{\partial \eta} \frac{\partial \bar{\theta}(\eta, p)}{\partial \eta} + 2 \frac{\partial \bar{\theta}(\eta, p)}{\partial \eta}.
\end{align*}
\]

(7.29)

(7.30)

The \(m^{th} \) order deformation problems can be written as follows

\[
L_\theta \left[\bar{\beta}_m(\bar{\beta}) - \bar{\beta}_{m-1}(\bar{\beta}) \right] = \bar{\beta}_1 R_{m+1}(\bar{\beta})
\]

(7.31)
\[L_0 \left[\theta_m(\eta) - x_m \theta_{m-1}(\eta) \right] = h \theta_m(\eta), \]
\[f_m'(0) = \varepsilon_3 \text{Pr} f_m(0) + \frac{k_{nf}}{k_f} \theta_m'(0) = f_m'(\infty) = \theta_m(0) = \theta_m(\infty) = 0, \]
\[\mathcal{R}_{f,m}(\eta) = \varepsilon_1 \left(f_m''(\eta) - \lambda f_m'(\eta) \right) + \sum_{k=0}^{m-1} \left[f_m''(\eta) - f_m'(\eta) \right] - M \varepsilon_1 (1 - \phi)^{2.5} \frac{\sigma_{nf}}{\sigma_f} f_m'(\eta), \]
(7.34)

\[\mathcal{R}_{\theta,m}(\eta) = \frac{1}{\text{Pr}} \frac{k_{nf}}{k_f} \varepsilon_2 (1 - \phi)^{2.5} \theta_m''(\eta) + \sum_{k=0}^{m-1} f_m''(\eta) + \varepsilon_3 Ec \sum_{k=0}^{m-1} f_m''(\eta) f_k', \]
(7.35)

\[\chi_m = \begin{cases} 0, & m \leq 1 \\ 1, & m > 1 \end{cases} \]
(7.36)

The general solutions \((\bar{f}_m, \bar{\theta}_m)\) comprising the special solutions \((f_m^*, \theta_m^*)\) are

\[\bar{f}_m(\eta) = \frac{f_m^*(\eta)}{m} + c_1 + c_2 e^{\eta} + c_3 e^{-\eta}, \]
\[\bar{\theta}_m(\eta) = \frac{\theta_m^*(\eta)}{m} + c_4 e^{\eta} + c_5 e^{-\eta}. \]
(7.37)

7.3 Convergence of homotopic solutions

Homotopy analysis method is employed to obtain the solutions of Eqs. (7.13) and (7.14) along with the boundary conditions (7.16). The auxiliary parameters \(\varepsilon_1 \) and \(\sigma_{nf} \) play an important role for the convergence of the series solutions. Here \(\varepsilon \)-curves are sketched at 14th order of approximations to get valid ranges of these parameters (see Fig. 7.1). The permissible values of auxiliary parameters are \(-1\leq \sigma_{nf} \leq 0\) and \(-1\leq \varepsilon_1 \leq 1\). The residual errors are calculated for momentum and energy equations by the expressions

\[\Delta_{\text{m}} = \text{h} \bar{f}_m(\bar{f}_m), \]
\[\Delta_{\text{n}} = \text{h} \bar{\theta}_m(\bar{\theta}_m). \]
(7.38)
In Figs. (7.2 − 7.3), the ~-curves for residual error of \bar{b} and \bar{a} are sketched in order to get the admissible range for \bar{c}. It is noted that correct result up to 4th decimal place is obtained by choosing the values of \bar{c} from this range. Also, the HAM solutions converge in the whole region of \bar{b} ($0 \leq \bar{b} \leq \infty$) when $\bar{a} = -1.5$ and $\bar{a} = -1$. Table 7.1 is prepared to check the convergence of obtained HAM solutions. Tablular values show that convergence is attained for the functions $\bar{f}_\infty(0)$ and $\bar{f}_0(0)$ at 24th and 40th order of approximations respectively.

Fig. 7.1: Combined ~-curves for velocity and temperature when $\bar{b} = 0.7$, $\bar{a} = 0.3$

$\bar{b} = \bar{a} = 0.5$ and $\bar{b} = 0.1$
Fig. 7.2: I_l–curve for the residual error Δ_{il}.

Fig. 7.3: I_{θ}–curve for the residual error Δ_{θ}.

Table 7.1: Convergence of HAM solutions for different order of approximations when
$\bar{\delta} = 0.07\bar{\delta} = 0.03\bar{\delta} = 0.05$ and $\bar{\delta} = 0.1\bar{\delta}$

<table>
<thead>
<tr>
<th>Order of approximations</th>
<th>$-\bar{\delta}_{00}(0)$</th>
<th>$\bar{\delta}_{0}(0)$</th>
</tr>
</thead>
</table>

129
7.4 Results and discussion

This section presents the effects of various parameters on the velocity, temperature, skin friction coefficient and Nusselt number in the form of graphical and tabulated results (see Figs. (7.4 – 7.17) and Table 7.2).

7.4.1 Dimensionless velocity field

Fig. (7.4 – 7.7) exhibit the dimensionless velocity profiles for different values of porosity parameter Θ, Hartman number Θ, nanoparticle volume fraction Θ and melting parameter Θ. Fig. 7.4 displays the velocity profiles for different values of porosity parameter Θ. The porosity parameter depends on the permeability parameter Θ. An increase in the porosity parameter leads to the lower permeability parameter. This lower permeability parameter causes a reduction in the fluid velocity. Fig. 7.5 illustrates the influence of Hartman number Θ on the velocity $\Theta_o(\Theta)$. As the applied magnetic field is a resistive force which reduces the fluid motion, so the velocity field decreases. The effects of nanoparticle volume fraction Θ on the velocity field $\Theta_o(\Theta)$ are depicted in the Fig. 7.6. It is evident that an increase in the values of nanoparticle volume fraction corresponds to a decrease in the velocity profile $\Theta_o(\Theta)$. The effect of melting parameter Θ is seen in Fig. 7.7. It is quite obvious from the Fig.
that larger values of \(\theta \) increase the velocity profile. It is because of the fact that an increase in melting causes an increase in the molecular motion which enhances the flow.

7.4.2 Dimensionless temperature field

Effects of Eckert number \(E \), Hartman number \(H \), nanoparticle volume fraction \(\phi \) and melting parameter \(\theta \) on the temperature profile \(\theta \) are shown in the Figs. (7.8 – 7.11). Fig. 7.8 depicts that temperature is an increasing function of the Eckert number \(E \). Eckert number is defined as the ratio of kinetic energy to enthalpy. With the increase in \(E \), kinetic energy increases which consequently enhances temperature. Effect of Hartman number \(H \) on the temperature is analyzed in Fig. 7.9. As the Lorentz force opposes the fluid motion, so heat is produced and as a result the thermal boundary layer thickness increases. Fig. 7.10 illustrates the variation of nanoparticle volume fraction \(\phi \) on temperature field \(\theta \). Here temperature profile \(\theta \) increases for an increase in \(\phi \). Since there is enhancement in thermal conductivity by increasing the volume fraction of nanoparticles so thermal boundary layer thickness enhances. Fig. 7.11 shows the variations of melting parameter \(\theta \) on temperature profile. It is noted that temperature profile decreases for larger values of melting parameter due to the fact that temperature difference increases between ambient and melting surface which reduces the temperature of the fluid.

Further the thermal boundary layer thickness increases when melting parameter is increased.

7.4.3 Skin friction coefficient and Nusselt number

Figs. (7.12 – 7.14) represent variation of skin friction coefficient for larger values of porosity parameter, nanoparticles volume fraction and melting parameter. It is observed that \(C_r \) and \(C_f \) are increasing functions of \(\phi \) whereas with the increase of \(\theta \) it decreases. The variation of heat transfer rate for \(C_r \), \(C_f \) and \(N \) is shown in Figs. (7.15 – 7.17). It is found that the Nusselt number decreases with the increase of \(\phi \) while it increases by increasing \(C_r \) and \(C_f \).

Some thermophysical properties of water and copper are given in Table 7.2. CPU time in seconds is given for different order of approximations in Table 7.3. Table 7.4 presents some numerical values
of $-\frac{1}{2}(Re)^{1/2}$ and $-\frac{1}{2}(Re)^{-1/2}$ for different parameters. It is noted here that magnitude of skin friction coefficient increases for higher $-\frac{1}{2}$-nanoparticles volume fraction ϕ, Hartman number M and porosity parameter ϵ. However it decreases when Eckert number λ and melting parameter λ are increased. The increase in the values of $-\frac{1}{2}$-nanoparticles volume fraction ϕ, Hartman number M, porosity parameter ϵ and Eckert number λ enhances the magnitude of local Nusselt number. Furthermore rate of heat transfer decreases when melting parameter λ is increased.

![Graph of $f'(\eta)$ vs η for Cu-water with parameters $\epsilon = 0.5$, $M = 0.7$, $Ec = 0.5$, $\phi = 0.1$, $Pr = 6.2$, $\lambda = 0.1, 0.3, 0.5, 0.7$.]

Fig. 74: Influence of λ on velocity field.
Fig. 7.5: Influence of \(\eta \) on velocity field.

Cu-water

\[\lambda = 0.3, \epsilon = 0.5, E\epsilon = 0.5, \phi = 0.1, Pr = 6.2 \]

\[M = 0.1, 0.4, 0.7, 0.9 \]

Fig. 7.6: Influence of \(\eta \) on velocity field.

Cu-water

\[\lambda = 0.3, M = 0.7, E\epsilon = 0.5, \epsilon = 0.5, Pr = 6.2 \]

\[\phi = 0.01, 0.05, 0.1, 0.2 \]
Fig. 7: Influence of on velocity field.

Cu-water

\[
\begin{align*}
\lambda &= 0.3, \ M = 0.7, \ Ec = 0.5, \ \phi = 0.1, \ Pr = 6.2 \\
\epsilon &= 0.1, \ 0.2, \ 0.3, \ 0.4
\end{align*}
\]

Fig. 8: Influence of on temperature field.

Cu-water

\[
\begin{align*}
Ec &= 0.1, \ 0.2, \ 0.3, \ 0.4 \\
\lambda &= 0.3, \ M = 0.7, \ \epsilon = 0.5, \ \phi = 0.1, \ Pr = 6.2
\end{align*}
\]
Fig. 7.9: Influence of ϕ on temperature field.

Cu-water

$M = 0.1, 0.4, 0.7, 0.9$

$\lambda = 0.3, \epsilon = 0.5, Ec = 0.5, \phi = 0.1, Pr = 6.2$

Fig. 7.10: Influence of ϕ on temperature field.

Cu-water

$\phi = 0.01, 0.05, 0.1, 0.2$

$\lambda = 0.3, M = 0.7, Ec = 0.5, \epsilon = 0.5, Pr = 6.2$
Fig. 7(b): Influence of ϵ on temperature field.

Cu-water

$\epsilon = 0.1, 0.8, 1.3, 2$

$\lambda = 0.3, M = 0.7, Ec = 0.5, \phi = 0.1, Pr = 6.2$

Fig. 7(c): Influences of λ and M on skin friction coefficient.
Fig. 7.13: Influences of ϵ and ϕ on skin friction coefficient.

$C_{df}(Re_x)^{1/2}$

$\epsilon = 0.1, 0.4, 0.7, 0.9$

$\phi = 0, 0.01, 0.05, 0.1$

Fig. 7.14: Influences of ϵ and ϕ on skin friction coefficient.
Fig. 7.15: Influences of \bar{D} and \bar{D} on Nusselt number.

Fig. 7.16: Influences of \bar{D} and \bar{D} on Nusselt number.
Fig. 7.17: Influences of ϕ and \bar{c} on Nusselt number.

Table 7.2: Thermophysical properties of water and copper [21].

<table>
<thead>
<tr>
<th></th>
<th>$\delta(\text{m}^2)$</th>
<th>$\delta(\text{m}^2)$</th>
<th>$\delta(\text{m}^2)$</th>
<th>$\delta(\Omega^{-1})$</th>
<th>$\delta(\Omega^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure water</td>
<td>997.1</td>
<td>4179</td>
<td>613</td>
<td>21</td>
<td>0.05</td>
</tr>
<tr>
<td>Copper</td>
<td>8933</td>
<td>385</td>
<td>401</td>
<td>1.67</td>
<td>5.96 10^7</td>
</tr>
</tbody>
</table>

Table 7.3: CPU time (seconds) used by HAM for different order of approximations.

<table>
<thead>
<tr>
<th>Order of approximations</th>
<th>CPU time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.387022</td>
</tr>
<tr>
<td>4</td>
<td>0.932053</td>
</tr>
<tr>
<td>6</td>
<td>1.99511</td>
</tr>
<tr>
<td>8</td>
<td>3.84522</td>
</tr>
<tr>
<td>10</td>
<td>6.46637</td>
</tr>
<tr>
<td>12</td>
<td>10.3336</td>
</tr>
<tr>
<td>14</td>
<td>15.6849</td>
</tr>
<tr>
<td>16</td>
<td>20.6332</td>
</tr>
</tbody>
</table>

139
Table 7.4: Numerical values of skin friction coefficient and Nusselt number for different parameters.

<table>
<thead>
<tr>
<th>$-\frac{\theta}{\theta_{c}}(Re_{x})^{1/2}$</th>
<th>$N_{u}(Re_{x})^{-1/2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.9187</td>
<td>3</td>
</tr>
<tr>
<td>.2285</td>
<td>8</td>
</tr>
<tr>
<td>.6398</td>
<td>0.01</td>
</tr>
<tr>
<td>.1486</td>
<td>0.05</td>
</tr>
<tr>
<td>.4009</td>
<td>1.3065</td>
</tr>
<tr>
<td>.7915</td>
<td>3.05</td>
</tr>
<tr>
<td>4</td>
<td>1.6971</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>.5939</td>
<td>1.8347</td>
</tr>
<tr>
<td>.6167</td>
<td>.1119</td>
</tr>
<tr>
<td>.6615</td>
<td>.8563</td>
</tr>
<tr>
<td>.5463</td>
<td>.8745</td>
</tr>
<tr>
<td>.2512</td>
<td></td>
</tr>
</tbody>
</table>

3.5 Concluding remarks

Influence of MHD flow of water–water nanofluid over a stretching sheet is presented in this article. Melting heat transfer and effects of viscous dissipation are also considered. HAM is used to obtain semi-analytic solutions. It is observed that velocity profile is decreasing function of Eckert number, Hartman number and nanoparticle volume fraction. Melting parameter enhances the velocity and reduces the temperature field. Temperature profile increases when volume fraction of copper nanoparticles is increased. Higher values of Cu-nanoparticles volume fraction, Hartman
Chapter 8

Unsteady flow of nanofluid with double stratification and magnetohydrodynamics

This chapter aims to examine the unsteady flow of viscous nanofluid caused by an inclined stretching sheet. Effects of thermal radiation, viscous dissipation and stratification process due to temperature and concentration are analyzed. Fluid is electrically conducting in the presence of applied magnetic field. The flow consideration is subjected to small magnetic Reynolds number. Induced magnetic field is absent. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent solutions are computed. Interval of convergence is determined. Effects of different parameters on the velocity, temperature and concentration profiles are shown number and porosity parameter correspond to larger values of skin friction coefficient and local Nusselt number. Temperature gradient at the surface decreases for larger values of melting parameter.
and analyzed. It is concluded that thermal and solutal stratification parameters reduce the velocity distribution. It is also observed that velocity is decreasing function of Hartman number.

8.1 Flow equations

Consider an unsteady two-dimensional incompressible flow of nanofluid past a stretching sheet. The sheet makes an angle Ψ with the horizontal direction. The \bar{x}– and \bar{y}–axes are perpendicular to each other. Thermal and concentration buoyancy forces are applied to the fluid with double stratified phenomena due to temperature and concentration. The sheet is maintained at temperature $\bar{T}_S = \bar{T}_0 + \bar{R}_T(1 - \bar{R}_T)$ and concentration $\bar{C}_S = \bar{C}_0 + \bar{R}_C(1 - \bar{R}_C)$ The temperature and mass concentration of the ambient fluid are assumed to be stratified in the form $\bar{T}_\infty = \bar{T}_0 + \bar{R}_T(1 - \bar{R}_T)$ and $\bar{C}_\infty = \bar{C}_0 + \bar{R}_C(1 - \bar{R}_C)$ respectively (see Fig. 8.1).

![Geometry of the problem.](image)

It is assumed that a uniform magnetic field of intensity \bar{B}_0 acts in the \bar{z}–direction. The magnetic Reynolds number is assumed small and the induced magnetic field is negligible in comparison with the applied magnetic field. In addition the effects of thermal radiation and viscous dissipation are considered. The continuity, momentum, energy and concentration equations
yield
\[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0. \] (8.1)

\[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \nu \frac{\partial^2 u}{\partial y^2} + g \sin \Psi \left[\beta_T (T - T_\infty)(1 - C_\infty) + \frac{(\rho^* - \rho)}{\rho} (C - C_\infty) \right] - \frac{\sigma B_0^2 u}{\rho}, \] (8.2)

\[\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} + \tau \left[D_B \frac{\partial C}{\partial y} + D_T \frac{(\partial T)}{T_\infty} \right] + \mu \frac{\partial^2 u}{\partial y^2}, \] (8.3)

\[\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_B \frac{\partial^2 C}{\partial y^2} + \frac{D_T}{T_\infty} \frac{\partial^2 T}{\partial y^2}. \] (8.4)

The boundary conditions are

\[u = U = \frac{cx}{1 - a^*t}, \quad v = 0, \quad T = T_w = T_0 + \frac{A*s}{1 - a^*t}, \quad C = C_w = C_0 + \frac{D*s}{1 - a^*t} \text{ at } y = 0, \] (8.5)

\[u \to 0, \quad T \to T_\infty = T_0 + \frac{B*s}{1 - a^*t}, \quad C \to C_\infty = C_0 + \frac{E*s}{1 - a^*t} \text{ as } y \to \infty, \]

where \(u \) and \(v \) are the velocity components along the \(x^- \) and \(y^- \) directions respectively, \(\nu \) is the kinematic viscosity, \(\beta_T \) is the coefficient of thermal expansion, \(\alpha \) is the gravitational acceleration, \(\beta_a \) is the coefficient of thermal conductivity of the fluid, \(\beta_g \) is the density and electrical conductivity of the fluid, \(\rho \) is the fluid temperature, \(\theta \) is the ambient fluid temperature, \(\beta_x \) is the fluid concentration and \(\beta_y \) is the ambient fluid concentration, \(\alpha = \beta \beta (\beta \beta \beta) \) is the effective heat capacity of the nanoparticle material and heat capacity of the fluid, \(\beta_b \) is the Brownian diffusion coefficient, \(\beta_t \) is the thermophoretic diffusion coefficient, \(\beta^* \) is the mean absorption coefficient, \(\beta^* \) is the Stefan-Boltzmann constant, \(\beta \) is the thermal conductivity, \(\beta \) and \(\beta^* \) are positive constants having dimension \(\beta^{-1} \beta^* \), \(\beta \beta \beta \beta \) and \(\beta \beta \beta \) are the dimensional constants having dimension \(\beta^{-1} \beta \) and \(\beta^* \) and \(\beta^* \) are the reference temperature and concentration.

We now introduce the following similarity transformations
\[u = \frac{cx}{1-a*^t} f'(\eta), \quad v = -\sqrt{\frac{\nu c}{1-a*^t}} f(\eta), \quad \eta = \sqrt{\frac{c}{\nu(1-a*^t)}} y, \]
\[\theta(\eta) = \frac{T-T_{\infty}}{T_w-T_0}, \quad \Phi(\eta) = \frac{C-C_{\infty}}{C_w-C_0}. \] (8.6)

Now Eq. (8.1) is satisfied automatically and Eqs. (8.2) – (8.5) after using Eq. (8.6) can be reduced as follows:

\[f''' - f'^2 + f f'' - \delta^* \left(f' + \frac{1}{2} \eta f'' \right) + N_c \sin \Psi[\theta + N_r \Phi] - M f' = 0, \] (8.7)

\[\left(1 + \frac{4}{3} R_d \right) \theta'' + f \theta' - f' \theta - S_t f' - \delta^* \left(S_t + \theta + \frac{1}{2} \eta \theta' \right) + N_b \theta' \Phi' + N_t \theta'^2 + E_c f'' = 0, \]

\[\frac{1}{Pr} \Phi'' + S_c (f \Phi' - f' \Phi) - S_m S_c f' - \delta^* S_c \left(S_m + \Phi + \frac{1}{2} \eta \Phi' \right) + \frac{N_c}{N_b} \theta' = 0, \] (8.8)

\[\Phi(0) = 1 \Phi(0) = 0 \Phi(0) = 1 - \Phi(0) \Phi(0) = 1 - \Phi(0) \]
\[\Phi(\infty) = 0 \Phi(\infty) = 0 \Phi(\infty) = 0 \Phi(\infty) = 0 \] (8.9)

where prime indicates the differentiation with respect to \(\eta \). Moreover the unsteady parameter \(\delta^* \), mixed convection parameter \(\delta_r \), Buoyancy ratio \(\delta_b \), Hartman number \(\delta_h \), Prandtl number \(\text{Pr} \), radiation parameter \(\delta_r \), thermal stratification parameter \(\delta_t \), Brownian motion parameter \(\delta_b \), thermophoresis parameter \(\delta_t \), Eckert number \(\delta_e \), Schmidt number \(\delta_s \) and solutal stratification parameter \(\delta_s \) are defined by the following definitions:

\[\delta^* = \frac{a*}{c}, \quad N_c = \frac{g(1-a*^t)^2}{c^2} \beta_T (1-C_{\infty})(T_w-T_0), \quad N_r = \frac{\left(\rho - \rho \right)\left(C_w-C_0 \right)}{\rho \beta_T (T_w-T_0)(1-C_{\infty})}, \]
\[M = \frac{\sigma B_0^2 (1-a*^t)}{\rho c} \text{Pr} = \frac{\nu}{\alpha}, \quad R_d = \frac{4 \sigma T^3}{3 k k^*}, \quad S_t = \frac{B^*}{A^*}, \quad N_b = \frac{\tau D_B (C_w-C_0)}{\nu}, \]
\[N_t = \frac{\tau D_B (T_w-T_0)}{\nu T_\infty}, \quad E_c = \frac{\rho U^2}{(\rho c)_f f(T_w-T_0)}, \quad S_c = \frac{\nu}{D_B}, \quad S_m = \frac{E^*}{D^*}. \] (8.11)

The important physical quantities of interest in this problem are the local skin friction coefficient \(C_{sf} \), Nusselt number \(\text{Nu} \) and Sherwood number \(\text{Sh} \). These are given by

\[C_{sf} = \frac{T_w}{2 \rho U^2}, \quad \text{Nu} = \frac{x q_w}{k (T_w-T_\infty)}, \quad \text{Sh} = \frac{x q_m}{D_B (C_w-C_\infty)}. \] (8.12)
where the surface shear stress τ_w, wall heat flux q_w and wall mass flux q_m are given by

$$
\tau_w = \mu \frac{\partial u}{\partial y} \bigg|_{y=0}, \quad q_w = -\left(k + \frac{16\sigma^{*}T_{\infty}^{3}}{3k^{*}}\right) \frac{\partial T}{\partial y} \bigg|_{y=0}, \quad q_m = -D_B \frac{\partial C}{\partial y} \bigg|_{y=0}.
$$

(8.13)

By using the above equations we get

$$
C_{sf} \left(\frac{Re_x}{2}\right)^{1/2} = f''(0), \quad Nu(Re_x)^{-1/2} = -\left(1 + \frac{4}{3} R_d\right) \left(\frac{1}{1 - S_t}\right) \theta'(0),
$$

$$
Sh(Re_x)^{-1/2} = -\left(\frac{1}{1 - S_m}\right) \Phi'(0),
$$

(8.14)

where Re_x is the local Reynolds number.

8.2 Homotopy analysis solutions

Initial approximations $\bar{f}_0(\tilde{\xi})$, $\bar{\theta}_0(\tilde{\xi})$ and $\Phi_0(\tilde{\xi})$ are taken in the forms
If \(\bar{\alpha} \in [0; 1] \) indicates the embedding parameter then the zeroth order deformation problems are constructed as follows:

\[
(1 - \bar{\alpha})L_h h^\circ(\bar{\alpha}; \bar{\nu}) - \bar{\alpha} h(\bar{\nu}) = \bar{\alpha} H_\bar{\alpha} N_{\bar{\alpha}}[\phi^*(\bar{\alpha}; \bar{\nu}) \phi^*(\bar{\alpha}; \bar{\nu}) \phi^*(\bar{\alpha}; \bar{\nu})] \bar{\nu} \tag{8.19}
\]

\[
(1 - \bar{\alpha})L_h h^\circ(\bar{\alpha}; \bar{\nu}) - \bar{\alpha} h(\bar{\nu}) = \bar{\alpha} H_\bar{\alpha} N_{\bar{\alpha}}[\phi^*(\bar{\alpha}; \bar{\nu}) \phi^*(\bar{\alpha}; \bar{\nu}) \phi^*(\bar{\alpha}; \bar{\nu})] \bar{\nu} \tag{8.20}
\]

\[
(1 - \bar{\alpha})L_\Phi \phi^*(\bar{\alpha}; \bar{\nu}) - \Phi(\bar{\nu}) = \bar{\alpha} H_\bar{\alpha} N_{\bar{\alpha}}[\phi^*(\bar{\alpha}; \bar{\nu}) \phi^*(\bar{\alpha}; \bar{\nu}) \phi^*(\bar{\alpha}; \bar{\nu})] \bar{\nu} \tag{8.21}
\]

\[
\phi^*(0; \bar{\nu}) = 1 - \bar{\alpha} \phi^*(\infty; \bar{\nu}) = 0 \bar{\nu} \tag{8.22}
\]

where \(\lambda_{\bar{\alpha}}, \lambda_{\bar{\nu}} \) and \(\lambda_{\bar{\nu}} \) are the nonzero auxiliary parameters and the nonlinear operators \(N_{\bar{\alpha}} \) \(N_{\bar{\nu}} \) and \(N_{\bar{\nu}} \) are given by
\[N_f \left[f(\eta; p), \theta(\eta; p), \Phi(\eta; p) \right] = \frac{\partial^3 \hat{f}(\eta; p)}{\partial \eta^3} - \left(\frac{\partial \hat{f}(\eta; p)}{\partial \eta} \right)^2 + \hat{f}(\eta; p) \frac{\partial^2 \hat{f}(\eta; p)}{\partial \eta^2} - \delta^* \left(\frac{\partial \hat{f}(\eta; p)}{\partial \eta} + \frac{1}{2} \frac{\partial^2 \hat{f}(\eta; p)}{\partial \eta^2} \right) + N_c \sin \Psi \hat{\theta}(\eta; p) + N_r \Phi(\eta; p) - M \frac{\partial \hat{f}(\eta; p)}{\partial \eta}, \] (8.23)

\[N_\theta \left[\theta(\eta; p), \hat{f}(\eta; p), \Phi(\eta; p) \right] = \frac{1}{Pr} \left(1 + \frac{4}{3} R_d \right) \frac{\partial^2 \hat{\theta}(\eta; p)}{\partial \eta^2} + \hat{f}(\eta; p) \frac{\partial \hat{\theta}(\eta; p)}{\partial \eta} - \dot{\theta}(\eta; p) \frac{\partial \hat{f}(\eta; p)}{\partial \eta} - S_t \frac{\partial \hat{f}(\eta; p)}{\partial \eta} - \delta^* \left(S_t + \dot{\theta}(\eta; p) + \frac{1}{2} \frac{\partial \hat{\theta}(\eta; p)}{\partial \eta} \right) + N_t \left(\frac{\partial \hat{\theta}(\eta; p)}{\partial \eta} \right)^2 \]

\[+ N_b \frac{\partial \hat{\theta}(\eta; p)}{\partial \eta} \frac{\partial \Phi(\eta; p)}{\partial \eta} + E \left(\frac{\partial \hat{\theta}(\eta; p)}{\partial \eta} \right)^2, \] (8.24)

\[N_\Phi \left[\Phi(\eta; p), \hat{f}(\eta; p), \dot{\theta}(\eta; p) \right] = \frac{\partial^2 \Phi(\eta; p)}{\partial \eta^2} + S_c \left(\frac{\hat{f}(\eta; p)}{\partial \eta} \frac{\partial \Phi(\eta; p)}{\partial \eta} - \dot{\Phi}(\eta; p) \frac{\partial \hat{f}(\eta; p)}{\partial \eta} \right) - S_m S_c \frac{\partial \hat{f}(\eta; p)}{\partial \eta} - \delta^* S_c \left(S_m + \Phi(\eta; p) + \frac{1}{2} \frac{\partial \Phi(\eta; p)}{\partial \eta} \right) \]

\[+ \frac{N_t}{N_b} \frac{\partial^2 \hat{\theta}(\eta; p)}{\partial \eta^2}. \] (8.25)

The resulting problems at \(m \) order can be presented in the following forms

\[L_m [f_m(\bar{y}) - f_m(\bar{y} - 1(\bar{y})] = \{ \} R_{m+1}(\bar{y}) \bar{R} \] (8.26)

\[L_m [\Phi_m(\bar{y}) - \Phi_m(\bar{y} - 1(\bar{y})] = \{ \} R_{m+1}(\bar{y}) \bar{R} \] (8.27)

\[L_\Phi [\Phi_m(\bar{y}) - \Phi_m(\bar{y} - 1(\bar{y})] = \{ \} R_{m+1}(\bar{y}) \bar{R} \] (8.28)

\[147 \]
The general solutions \(\Phi_m(0) = \Phi_m(\infty) = \theta_m(0) = \theta_m(\infty) = \Phi_m(0) = \Phi_m(\infty) = 0 \), \(m = 1, 2, \ldots, m-1 \) subject to the special solutions \(\Phi_m(0) = \Phi_m(\infty) = \theta_m(0) = \theta_m(\infty) = \Phi_m(0) = \Phi_m(\infty) = 0 \), \(m = 1, 2, \ldots, m-1 \) are
\[
R_{f,m}(\eta) = f_m'' + \sum_{k=0}^{m-1} \left[f_{m-1-k} f'_k - f_{m-1-k} f'_k \right] - \delta^* \left(f_m'' + \frac{1}{2} \eta f_m'' \right) + N_c \sin \Psi \left[\theta_{m-1} + N_c \Phi_{m-1} \right] - M f_m' .
\]
\(R_{\theta,m}(\eta) = \frac{1}{Pr} \left(1 + \frac{4}{3} \eta \right) \theta_m' + \sum_{k=0}^{m-1} \left(f_m'_{m-1-k} \theta'_k - f_m'_{m-1-k} f'_k \right) - S f_m' - \delta^* \left(S + \theta_m' + \frac{1}{2} \eta \theta_m'' \right)
\]
\(+ \sum_{k=0}^{m-1} \left(N_b \theta_m'_{m-1-k} \Phi'_k + N_t \theta_m'_{m-1-k} \Phi'_k + E f_m'_{m-1-k} f'_k \right) \),
\(R_{\Phi,m}(\eta) = \Phi_m'' + S c \sum_{k=0}^{m-1} \left(f_m'_{m-1-k} \Phi'_k - \Phi_m'_{m-1-k} f'_k \right) - S_m S c f_m'_{m-1} - \delta^* S c \left(S + \Phi_m' + \frac{1}{2} \eta \Phi_m'' \right) + \frac{N_t}{N_b} \theta_m'' \),
\(\chi_m = \begin{cases} 0, & m \leq 1 \\ 1, & m > 1 \end{cases} .
\)

The residual errors are calculated for momentum, energy and concentration.

8.3 Convergence of the homotopy solutions

Now the solutions of Eqs. (8.7 - 8.9) subject to the boundary conditions (8.10) are computed by means of homotopy analysis method. The convergence of the series solutions is highly dependent upon the auxiliary parameters \(\eta, }_{m} \) and \(}_{\Phi} \). For valid ranges of these parameters, we have sketched the \(}_{\Phi} \) curves at 15th-order of approximations (see Fig. 8.2). We can see that the admissible values of \(}_{m} \) and \(}_{\Phi} \) are \(-1 \leq }_{m} \leq -0 \) and \(-1 \leq }_{\Phi} \leq -0 \). The residual errors are calculated for momentum, energy and concentration.

148
equations by the expressions

\[
\begin{align*}
\Delta_f &= \int_0^1 \left[R_m^f (\eta, h_f) \right]^2 d\eta, \\
\Delta_\theta &= \int_0^1 \left[R_m^\theta (\eta, h_\theta) \right]^2 d\eta, \\
\Delta_\Phi &= \int_0^1 \left[R_m^\Phi (\eta, h_\Phi) \right]^2 d\eta.
\end{align*}
\] (8.36)

In Figs. (8.3 − 8.5), the \(\eta \)-curves for residual error of \(\eta \) and \(\Phi \) are sketched in order to get the admissible range for \(\eta \). It is noted that correct result up to 4th decimal place is obtained by choosing the values of \(\eta \) from this range. Further the series solutions converge in the whole region of \(\eta \) (0 < \(\eta \) < \(\infty \)) when \(\eta = -1 \) and \(\eta = -1/1 \) and \(\Phi = -0 \).

![Graph of curves](image)

Fig. 8.2. \(\eta \)-curves for \(f''(0) \), \(\theta'(0) \), \(\Phi'(0) \), and \(f_0(0) \) and \(\Phi_0(0) \).
Fig. 8.3: Δ_m^f curve for the residual error Δ_m^f.

Fig. 8.4: Δ_m^θ curve for the residual error Δ_m^θ.
Table 8.1: Convergence of HAM solutions for different order of approximations when $\bar{c} = 0.07$ and $\Psi = 0.04$

\begin{tabular}{c|ccc}
Order of approximations & $\Phi^{(0)}$ & $\Phi^{(0)}$ & $\Phi^{(0)}$
\hline
1 & 1.358 & 0.7193 & 0.9608
5 & 1.341 & 0.6832 & 0.9856
10 & 1.342 & 0.6839 & 0.9815
14 & 1.343 & 0.6855 & 0.9810
20 & 1.343 & 0.6868 & 0.9808
25 & 1.343 & 0.6876 & 0.9809
29 & 1.343 & 0.6880 & 0.9810
35 & 1.343 & 0.6887 & 0.9810
40 & 1.343 & 0.6887 & 0.9810
\end{tabular}
8.4 Interpretation of results

The effects of different parameters on the velocity, temperature and concentration fields are investigated through plots in this section. Figs. (8.6 – 8.12) exhibit the dimensionless velocity profiles for different values of inclination angle Ψ, unsteady parameter \ast, Hartman number H, mixed convection parameter P_{m}, buoyancy ratio P_{b}, thermal stratification parameter P_{s} and solutal stratification parameter P_{s}. Variation in velocity with an increase in angle of inclination Ψ can be seen from Fig. 8.6. It is noticed that with an increase in Ψ i.e. when the sheet moves from horizontal to vertical direction, the strength of buoyancy force increases and consequently the velocity and boundary layer thickness increase. Influence of unsteady parameter \ast on the velocity profile \bar{u}_0 can be seen in Fig. 8.7. Increasing values of \ast indicate smaller stretching rate in the y direction which eventually decrease the velocity and boundary layer thickness. The effects of Hartman number H are displayed in Fig. 8.8, which shows that an increase in H reduces the velocity profile. It is because of the reason that Lorentz force acts as a retarding force. Such retarding force enhances the frictional resistance opposing the fluid motion in the momentum boundary layer thickness. Fig. 8.9 elucidates the behavior of mixed convection parameter P_{m} on the velocity profile. This Fig. shows that the values of velocity function \bar{u}_0 and the boundary layer thickness increase by increasing P_{m}. This is because a larger value of P_{m} accompanies a stronger buoyancy force which leads to an increase in velocity. The effects of buoyancy ratio P_{b} on the velocity profile are depicted in Fig. 8.10. This Fig. shows that velocity profile enhances when P_{b} increases. P_{b} is the ratio of concentration to thermal buoyancy forces. With an increase in buoyancy ratio parameter, concentration buoyancy force increases which results in higher velocity profile. Fig. 8.11 is plotted to show the influence of thermal stratification parameter P_{s} on the velocity profile $\bar{u}_0(\text{y})$. With an increase in thermal stratification parameter the density of fluid in the lower region is high than the upper region. So thermal stratification reduces the convective flow between the sheet and ambient fluid. Therefore velocity profile decreases. Behavior of solutal stratification parameter P_{s} on velocity profile is
sketched in Fig. 8.12. It is depicted that velocity and boundary layer thickness decrease with an increase in solutal stratification parameter.

Effects of Prandtl number Pr, unsteady parameter $\tilde{\epsilon}^*$, Brownian motion parameter B, thermophoresis parameter T, thermal stratification parameter θ, radiation parameter θ_r and Eckert number ϵ on the temperature profile θ are shown in the Figs. (8.13 − 8.19). Fig. 8.13 indicates that temperature profile θ is a decreasing function of Pr. In fact thermal diffusivity decreases by increasing Pr and thus heat diffuses away slowly from the heated surface. Effect of unsteady parameter $\tilde{\epsilon}^*$ on the temperature is analyzed in Fig. 8.14. It is observed that the temperature and thermal boundary layer thickness are decreasing function of $\tilde{\epsilon}^*$. Fig. 8.15 illustrates the effects of Brownian motion parameter B on temperature profile θ. When B increases, random motion of nanoparticles increases. Therefore collision of particles increases and kinetic energy converted to heat energy. Hence temperature profile θ increases for an increase in B. The behavior of B on the temperature profile is similar to that of B (see Fig. 8.16). Also the temperature profile θ and thermal boundary layer thickness decrease when the thermal stratification parameter θ increases (see Fig. 8.17). Because temperature difference gradually decreases between the sheet and ambient fluid which causes a reduction in the temperature profile.

Radiation effects on the temperature profile are displayed in Fig. 8.18. An increase in θ_r enhances the heat flux from the sheet which gives rise to the fluid's temperature. Therefore the temperature profile and thermal boundary layer increase with an increase in θ_r. Fig. 8.19 depicts that temperature is an increasing function of the Eckert number ϵ. Eckert number is defined as the ratio of kinetic energy to enthalpy. With the increase in ϵ, kinetic energy increases which consequently enhances temperature.

Figs. (8.20 − 8.24) illustrate the effects of Schmidt number S, unsteady parameter $\tilde{\epsilon}^*$, Brownian motion parameter B, thermophoresis parameter T, and concentration stratification number δ on the dimensionless nanoparticle volume fraction profile Φ. It is observed that the mass fraction Φ and the associated boundary layer decrease for an increase in Schmidt number S (see Fig. 8.20). It is due to the fact that an increase in S reduces the molecular diffusivity. Fig. 8.21 indicates that an increase in the unsteady parameter $\tilde{\epsilon}^*$ decreases the concentration profile. The effects of Brownian motion parameter B on the concentration profile are depicted in Fig. 8.22. This Fig. shows that Φ decreases when B increases. Also the concentration profile Φ increases when
thermophoresis parameter Ψ is increased (see Fig. 8.23). Variations of solutal stratification parameter Φ on the dimensionless nanoparticle volume fraction profile Φ can be seen in Fig. 8.24. It is noted that there is a decrease in concentration profile when Φ is increased. In fact, an increase in Φ decreases the concentration difference between the sheet and ambient fluid.

Table 8.1 shows the convergence of the series solutions. It is observed that convergence for velocity, temperature, and concentration is achieved at $14^{\text{th}}, 35^{\text{th}}$, and 29^{th} order of approximations respectively. Table 8.2 shows the comparison of the present results with the numerical solution of Ibrahim and Shankar [64] in limiting case. It is found that our solution has good agreement with the limiting numerical solution. In Table 8.3 some numerical values of skin friction coefficient are given. Tabular values show that skin friction coefficient decreases by increasing Ψ, Φ, and ρ_n while it increases for larger values of Φ, ϕ, ρ_n, and ρ_m. Numerical values of local Nusselt and Sherwood numbers for different emerging parameters are presented in Table 8.4. It is noted that local Nusselt number increases for larger values of ρ_n, ρ_m, and Pr. However, it decreases for larger values of ρ_n, ρ_m, and Pr. It is noted that local Sherwood number decreases by increasing Φ, ρ_n, and Pr and it increases for larger values of ρ_n, ρ_m, and Pr.

\[
M = 0.7, \quad N_c = R_d = 0.4, \quad \gamma = 0.3, \quad Pr = 1.2, \quad S_t = 0.2, \quad \delta^* = N_b = N_f = 0.5, \quad Ec = 0.6, \quad Sc = 0.9, \quad S_m = 0.1
\]

$\Psi = \pi/10, \pi/6, \pi/4, \pi/3$

Fig. 8.6: Influence of Ψ on $\Phi_0(\Phi)$
Fig. 8.7: Influence of δ^* on $f'(\eta)$

$M = 0.7$, $N_c = R_d = 0.4$, $N_r = 0.3$, $Pr = 1.2$, $\Psi = \pi/4$
$St = 0.2$, $N_b = N_f = 0.5$, $Ec = 0.6$, $Sc = 0.9$, $S_m = 0.1$
$\delta^* = 0.1, 0.5, 0.9, 1.5$

Fig. 8.8: Influence of M on $f'(\eta)$

$N_c = R_d = 0.4$, $N_r = 0.3$, $\Psi = \pi/4$, $Pr = 1.2$, $St = 0.2$
$\delta^* = N_b = N_f = 0.5$, $Ec = 0.6$, $Sc = 0.9$, $S_m = 0.1$
$M = 0.1, 0.2, 0.3, 0.4$
Fig. 8.9: Influence of N_c on $f'(\eta)$

- $M = 0.7$, $R_d = 0.4$, $N_r = 0.3$, $\Psi = \pi/4$, $Pr = 1.2$, $S_t = 0.2$
- $\delta^* = N_b = N_f = 0.5$, $Ec = 0.6$, $Sc = 0.9$, $S_m = 0.1$
- $N_c = 0.1, 0.5, 0.9, 1.5$

Fig. 8.10: Influence of N_r on $f'(\eta)$

- $M = 0.7$, $N_c = R_d = 0.4$, $\Psi = \pi/4$, $Pr = 1.2$, $S_t = 0.2$
- $\delta^* = N_b = N_f = 0.5$, $Ec = 0.6$, $Sc = 0.9$, $S_m = 0.1$
- $N_r = 0.1, 0.4, 0.6, 0.9$
Fig. 8.11: Influence of R_δ on $f'(\eta)$

$M = 0.7, N_c = R_\delta = 0.4, \Psi = \pi/4, \text{Pr} = 1.2, N_r = 0.3,$
$\delta^* = N_\delta = N_r = 0.5, Ec = 0.6, Sc = 0.9, S_m = 0.1$

$S_t = 0.1, 0.4, 0.7, 1$

Fig. 8.12: Influence of R_o on $f'(\eta)$

$M = 0.7, N_c = R_\delta = 0.4, \Psi = \pi/4, \text{Pr} = 1.2, N_r = 0.3,$
$\delta^* = N_\delta = N_r = 0.5, Ec = 0.6, Sc = 0.9, S_t = 0.2$

$S_m = 0.1, 0.3, 0.6, 0.9$
Fig. 8.13: Influence of Pr on $\theta(\eta)$

$M = 0.7, N_c = R_d = 0.4, \Psi = \pi/4, N_r = 0.3, S_t = 0.2,$
$\delta^* = N_b = N_f = 0.5, Ec = 0.6, Sc = 0.9, S_n = 0.2$

Pr = 1.2, 1.5, 1.7, 1.9

$\theta(\eta)$

Fig. 8.14: Influence of δ^* on $\theta(\eta)$

$M = 0.7, N_c = R_d = 0.4, \Psi = \pi/4, Pr = 1.2, N_r = 0.3,$
$N_b = N_f = 0.5, Ec = 0.6, Sc = 0.9, S_t = 0.2, S_n = 0.1$

$\delta^* = 0.1, 0.5, 0.7, 0.9$
Fig. 8.15: Influence of N_b on $\theta(\eta)$.

$M = 0.7$, $N_c = R_d = 0.4$, $\Psi = \pi/4$, $Pr = 1.2$, $N_r = 0.3$
$\delta^* = N_t = 0.5$, $Ec = 0.6$, $Sc = 0.9$, $S_r = 0.2$, $S_m = 0.1$
$N_b = 0.1, 0.4, 0.7, 1$

Fig. 8.16: Influence of N_r on $\theta(\eta)$.

$M = 0.7$, $N_c = R_d = 0.4$, $\Psi = \pi/4$, $Pr = 1.2$, $N_r = 0.3$
$\delta^* = N_b = 0.5$, $Ec = 0.6$, $Sc = 0.9$, $S_r = 0.2$, $S_m = 0.1$
$N_r = 0.1, 0.4, 0.7, 0.9$
Fig. 8.17: Influence of S_t on $\theta(\eta)$

$M = 0.7, N_c = R_d = 0.4, \Psi = \pi/4, \text{Pr} = 1.2, N_r = 0.3, \delta^* = N_b = N_l = 0.5, \text{Ec} = 0.6, \text{Sc} = 0.9, S_m = 0.1$

$S_t = 0.1, 0.2, 0.3, 0.4$

Fig. 8.18: Influence of R_d on $\theta(\eta)$

$M = 0.7, N_c = 0.4, \Psi = \pi/4, \text{Pr} = 1.2, N_r = 0.3, S_t = 0.$

$\delta^* = N_b = N_l = 0.5, \text{Ec} = 0.6, \text{Sc} = 0.9, S_m = 0.1$

$R_d = 0.1, 0.4, 0.7, 0.9$
Fig. 8.19: Influence of $ Ec $ on $ \theta(\eta) $.

$ M = 0.7, N_c = R_d = 0.4, \Psi = \pi/4, Pr = 1.2, N_r = 0.3, $ $ \delta^* = N_b = N_l = 0.5, S_t = 0.2, Sc = 0.9, S_m = 0.1 $ $ Ec = 0.1, 0.3, 0.5, 0.8 $.

Fig. 8.20: Influence of $ Sc $ on $ \Phi(\eta) $.

$ M = 0.7, N_c = R_d = 0.4, \Psi = \pi/4, Pr = 1.2, N_r = 0.3, $ $ \delta^* = N_b = N_l = 0.5, Ec = 0.6, S_t = 0.2, S_m = 0.1 $ $ Sc = 0.5, 0.9, 1.5, 2 $.
Fig. 8.21: Influence of $\Phi(\eta)$ on $\Phi(\eta)$

$M = 0.7$, $N_c = R_d = 0.4$, $\Psi = \pi/4$, $Pr = 1.2$, $N_r = 0.3$,
$N_b = N_f = 0.5$, $Ec = 0.6$, $Sc = 0.9$, $S_t = 0.2$, $S_m = 0.1$

$\delta^* = 0.1, 0.3, 0.5, 0.7$

Fig. 8.22: Influence of $\Phi(\eta)$ on $\Phi(\eta)$

$M = 0.7$, $N_c = R_d = 0.4$, $\Psi = \pi/4$, $Pr = 1.2$, $N_r = 0.3$,
$\delta^* = N_f = 0.5$, $Ec = 0.6$, $Sc = 0.9$, $S_t = 0.2$, $S_m = 0.1$

$N_b = 0.3, 0.4, 0.5, 0.8$
Fig. 8.23: Influence of δ^* on $\Phi(\eta)$

$M = 0.7, N_c = R_d = 0.4, \Psi = \pi/4, Pr = 1.2, N_r = 0.3,$
$\delta^* = N_0 = 0.5, Ec = 0.6, Sc = 0.9, S_t = 0.2, S_m = 0.1$

Fig. 8.24: Influence of N_1 on $\Phi(\eta)$

$M = 0.7, N_c = R_d = 0.4, \Psi = \pi/4, Pr = 1.2, N_r = 0.3,$
$\delta^* = N_0 = N_1 = 0.5, Ec = 0.6, Sc = 0.9, S_t = 0.2$

$N_1 = 0.1, 0.2, 0.3, 0.4$
Table 8.2: Comparison of skin friction coefficient with Ibrahim and Shankar [64] when

<table>
<thead>
<tr>
<th>$n = b = f = \Psi = Pr = b* = b = b = b = b = b = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ibrahim and Shankar [64]</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Table 8.3: Numerical values of skin friction coefficient for different parameters when $\bar{h} = 0\text{.}9\bar{h} = 0\text{.}2\bar{h} = 1\text{.}2\bar{h} = 0\text{.}9\bar{h} = 0\text{.}4$ and $\bar{h} = 0\text{.}6\bar{h}$
<table>
<thead>
<tr>
<th>Ψ</th>
<th>M</th>
<th>λ</th>
<th>N_r</th>
<th>δ</th>
<th>S_t</th>
<th>S_m</th>
<th>$-f''(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi/6$</td>
<td>0.7</td>
<td>0.4</td>
<td>0.3</td>
<td>0.6</td>
<td>0.1</td>
<td>0.1</td>
<td>1.365</td>
</tr>
<tr>
<td>$\pi/3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.294</td>
</tr>
<tr>
<td>$\pi/2$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.269</td>
</tr>
<tr>
<td>$\pi/4$</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.252</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.289</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.360</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.428</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.359</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.291</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.306</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.297</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.287</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.169</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.203</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.235</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.325</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.342</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.359</td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.330</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.336</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.341</td>
</tr>
</tbody>
</table>

Table 8.4: Numerical values of Nusselt and Sherwood numbers for different parameters

when $\Gamma = 0.7$, $\kappa = 0.4$, $\beta = 0.3$, $\Psi = 4$, $\Gamma = 0.4$, $\varphi = 0.6$ and $\Phi = 0.6$.
8.5 Concluding remarks

MHD unsteady flow of viscous nanofluid due to an inclined stretching sheet has been studied. Effects of different parameters on the velocity, temperature and concentration profiles are analyzed. The following observations are worth mentioning.

- Angle of inclination enhances the velocity.
- Velocity profile decreases with an increase in thermal and solutal stratification parameters.
- Increase in the mixed convection parameter enhances the velocity profile.
• Thermal stratification parameter reduces the temperature field.

• Concentration profile decreases with the increase in solutal stratification parameter.

• Impact of thermophoresis parameter and Schmidt number on the concentration profile is opposite.

• Higher values of solutal stratification parameter correspond to larger values of local Nusselt and Sherwood numbers.
Chapter 9

Magnetohydrodynamic stagnation point flow of Jeffrey nanofluid with Newtonian heating

The purpose of present chapter is to explore the stagnation point flow of Jeffrey nanofluid towards a stretching surface with Newtonian heating. Fluid is electrically conducting in the presence of applied magnetic field. Governing nonlinear ordinary differential system is computed for the convergent solutions. Results of velocity, temperature and concentration fields are calculated in series forms. Effects of different parameters on the velocity, temperature and concentration profiles are shown and analyzed. Skin friction coefficient, Nusselt and Sherwood numbers are also computed and examined.

9.1 Flow equations

The extra stress tensor for Jeffrey fluid is

\[
S = \frac{\mu}{1 + \lambda_1} \left[A_1 + \lambda_2 \frac{dA_1}{dt} \right].
\]

In above expressions \(\mu \) is the dynamic viscosity, \(\lambda_1 \) is the ratio of relaxation to retardation times, \(\lambda_2 \) is the retardation time, \(A_1 \) is the first Rivlin-Erickson tensor, \(\frac{d}{dt} \) is the material derivative defined as

\[
\frac{d}{dt} = \frac{\partial}{\partial t} + (\mathbf{V} \cdot \nabla).
\]

Eq. (9.1) reduces to a Newtonian fluid when \(\lambda_1 = \lambda_2 = 0 \).
9.2 Problem formulation

Let us consider the steady two-dimensional stagnation point flow of Jeffrey nanofluid towards a stretching surface. The \(\bar{x} \)-axis is taken along the stretching surface in the direction of motion and \(\bar{y} \)-axis is perpendicular to it. A uniform transverse magnetic field of strength \(B_0 \) is applied parallel to the \(\bar{y} \)-axis. It is assumed that the induced magnetic field and the electric field effects are negligible. Effects of Brownian motion and thermophoresis are presented. Further, the surface exhibits Newtonian heating boundary condition. The boundary layer flow problems are

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \tag{9.3}
\]

\[
u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = \frac{\mu}{1 + \lambda_1} \left(\frac{\partial^2 u}{\partial y^2} + \lambda_2 \left(\frac{\partial u}{\partial y} \frac{\partial^2 u}{\partial x \partial y} + u \frac{\partial^3 u}{\partial x \partial y^2} - \frac{\partial u}{\partial x} \frac{\partial^2 u}{\partial y^2} + v \frac{\partial^2 u}{\partial y^3} \right) \right) + U_\infty \frac{\partial U_\infty}{\partial x} + \frac{\sigma B_0^2}{\rho} (U_\infty - u), \tag{9.4}
\]

\[
u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} + \tau \left[D_B \frac{\partial T}{\partial y} \frac{\partial C}{\partial y} + \frac{D_T}{T_\infty} \left(\frac{\partial T}{\partial y} \right)^2 \right], \tag{9.5}
\]

\[
u \frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} = D_B \frac{\partial^2 C}{\partial y^2} + \frac{D_T}{T_\infty} \frac{\partial^2 C}{\partial y^2}. \tag{9.6}
\]

\[
u = u_w(x) = cx, \quad v = 0, \quad \frac{\partial T}{\partial y} = -h_s T, \quad C = C_w \quad \text{at } \bar{y} = 0\bar{y} \]

\[
u \to dx, \quad T \to T_\infty, \quad C \to C_\infty \quad \text{as } y \to \infty. \tag{9.7}
\]

where \(\bar{u} \) and \(\bar{v} \) are the velocity components along the \(\bar{x} \)- and \(\bar{y} \)- directions respectively, \(\bar{\rho} \), \(\bar{\mu} \), \(\bar{C}_w \) and \(\bar{h}_s \) are the dynamic viscosity, density and electrical conductivity of the fluid, \(\bar{\lambda}_1 \) is the ratio of relaxation to retardation times, \(\bar{\lambda}_2 \) is the retardation time, \(\bar{U}_\infty \) is the free stream velocity, \(\bar{\bar{u}} \), \(\bar{\bar{v}} \), \(\bar{\bar{C}}_w \) and \(\bar{\bar{h}}_s \) are the fluid temperature, ambient fluid temperature, constant wall concentration and ambient fluid concentration, \(\bar{\bar{e}} = \left(\bar{\bar{\rho}} \bar{\bar{C}}_w \bar{\bar{h}}_s \right)_m \) is the ratio between the effective heat capacity of the nanoparticle
material and heat capacity of the fluid, \(\overline{D} \) is the Brownian diffusion coefficient, \(\overline{S} \) is the thermophoretic diffusion coefficient, \(\overline{B} = \overline{D}/(\overline{S} \overline{b}) \) is the thermal diffusivity and \(\overline{b} \) is the heat transfer parameter.

We now use the following similarity transformations

\[
 u = c x f'(\eta), \quad v = -\sqrt{\nu} c f(\eta), \quad \eta = \sqrt{\frac{c}{\nu}} y, \quad \theta(\eta) = \frac{T - T_\infty}{T_\infty}, \quad \Phi(\eta) = \frac{C - C_\infty}{C_w - C_\infty}.
\]

Eq. (9.8) is satisfied automatically and Eqs. (9.4 − 9.7) after using Eq. (9.8) can be reduced as follows:

\[
 \overline{B} \Phi'' + (1 + \overline{B}_1)(\overline{D} \Phi - \overline{S} \Phi') + \overline{B}_2(\overline{B}_0 \Phi'' - \overline{B}_1 \Phi''') + (1 + \overline{B}_1)(\overline{B}_0 \Phi' + \overline{B}_1 \Phi'') = 0 \tag{9.9}
\]

\[
 \frac{1}{\Pr} \frac{\Phi'''}{\Phi'} + f \theta' + N_b \theta' \Phi' + N_t \theta'^2 = 0, \tag{9.10}
\]

\[
 \Phi'' + S c f \frac{\Phi'}{\Phi'} + \frac{N_h \theta'}{N_b} = 0, \tag{9.11}
\]

\[
 f'(0) = 1, \quad f(0) = 0, \quad \theta'(0) = -\gamma^* [1 + \theta(0)], \quad \Phi(0) = 1
\]

\[
 f'(\infty) \rightarrow \frac{d}{c} = \gamma, \quad \theta(\infty) \rightarrow 0, \quad \Phi(\infty) \rightarrow 0, \tag{9.12}
\]

where \(\overline{\gamma} = \overline{\alpha} \overline{\theta}_2 \) is the Deborah number, \(\overline{H} = \overline{D} \overline{B}_0 \overline{B}_3 \) is the Hartman number, \(\Pr = \overline{B} \overline{H} \) is the Prandtl number, \(\overline{B}_0 = \overline{D} \overline{B}_0 \overline{B}_4 \) is the Brownian motion parameter, \(\overline{H}_n = \overline{D} \overline{B}_n \overline{B}_5 \) is the thermophoresis parameter, \(\overline{B}_1 = \overline{D} \overline{B} \overline{B}_7 \) is the conjugate parameter for Newtonian heating, \(\overline{B}_2 = \overline{D} \overline{B} \overline{B}_8 \) is the ratio of rates and \(\overline{B}_3 = \overline{D} \overline{B}_3 \overline{B}_9 \) is the Schmidt number.

The important physical quantities of interest in this problem are the local skin-friction coefficient \(\overline{C}_s \), local Nusselt number \(\overline{B} \) and the local Sherwood number \(\overline{B} \) which are given by

\[
 C_s \overline{f} = \frac{\tau_w}{\frac{1}{2} \rho U_w^2}, \quad N \overline{u} = \frac{x q_w}{k(T - T_\infty)}, \quad S \overline{h} = \frac{x q_m}{D B (C_w - C_\infty)}, \tag{9.13}
\]

170
where the surface shear stress τ_w, wall heat flux \dot{q}_w and wall mass flux \dot{m}_w are given by

$$
\tau_w = \mu \frac{\partial u}{\partial y} \bigg|_{y=0} \quad \dot{q}_w = -\frac{1}{\gamma^*} \frac{\partial \Theta}{\partial y} \bigg|_{y=0} \quad \dot{m}_w = -\frac{1}{\gamma^*} \frac{\partial \Phi}{\partial y} \bigg|_{y=0}
$$

(9.14)

By using the above equations, we get

$$
C_s f(Re_x)^{1/2} = f''(0), \quad Nu(Re_x)^{-1/2} = \gamma^* \left[1 + \frac{1}{\theta(0)} \right], \quad Sh(Re_x)^{-1/2} = -\Psi'(0).
$$

(9.15)

where $Re_w = \frac{\dot{m}_w}{\mu \dot{q}_w}$ is the local Reynolds number.

9.3 Series solutions

Initial approximations $f_0(\eta)$, $\Theta_0(\eta)$ and $\Phi_0(\eta)$ and auxiliary linear operators L_n, L_n and L_Φ are taken in the forms

$$
f_0(\eta) = \gamma \eta + (1 - \gamma)(1 - e^{-\eta}), \quad \Theta_0(\eta) = \frac{\gamma^* e^{-\eta}}{1 - \gamma^* e^{-\eta}}, \quad \Phi_0(\eta) = e^{-\eta},
$$

(9.16)

$$
\mathcal{L}_f = f''' + f'', \quad \mathcal{L}_\Theta = \Theta'' - \Theta, \quad \mathcal{L}_\Phi = \Phi'' - \Phi,
$$

(9.17)

subject to the properties

$$
L_0[1 \dot{f}_1 + \dot{f}_2 + \dot{f}_3 + \dot{f}_{-n}] = 0
$$

$$
L_0[\dot{f}_4 + \dot{f}_5 + \dot{f}_{-n}] = 0
$$

(9.18)

$$
L_0[\dot{f}_6 + \dot{f}_7 + \dot{f}_{-n}] = 0
$$

in which $\bar{\alpha}_n (\bar{\alpha} = 1 - 7)$ are the constants.

If $\bar{\alpha} \in [0, 1]$ indicates the embedding parameter then the zeroth order deformation problems are constructed as follows:

$$
(1 - \bar{\alpha})L_n[\hat{f}(\bar{\alpha}; \bar{\alpha}) - \bar{f}_0(\bar{\alpha})] = \bar{\alpha} \dot{f}_n N \hat{f}(\bar{\alpha}; \bar{\alpha}) \bar{\alpha}
$$

(9.19)
\[(1 - \xi)\mathbf{L}_N[\Phi(0;\eta) - \Phi_0(\eta)] = \mathbf{R}_N[\Phi(0;\eta) - \Phi_0(\eta)] \Phi(0;\eta) \] (9.20)

\[(1 - \xi)\mathbf{L}_N[\Phi^*(0;\eta) - \Phi_0(\eta)] = \mathbf{R}_N[\Phi^*(0;\eta) - \Phi_0(\eta)] \Phi(0;\eta) \] (9.21)

where \(\lambda_0, \lambda_1\) and \(\lambda_2\) are the nonzero auxiliary parameters and the nonlinear operators \(N_0, N_1\) are given by

\[
\mathcal{N}_f \left[\hat{f}(\eta; p) \right] = \frac{\partial^3 \hat{f}(\eta; p)}{\partial \eta^3} + (1 + \lambda_1) \left[\hat{f}(\eta; p) \frac{\partial^2 \hat{f}(\eta; p)}{\partial \eta^2} - \left(\frac{\partial \hat{f}(\eta; p)}{\partial \eta} \right)^2 \right] + \beta^* \left[\left(\frac{\partial^2 \hat{f}(\eta; p)}{\partial \eta^2} \right) - \hat{f}(\eta; p) \frac{\partial^4 \hat{f}(\eta; p)}{\partial \eta^4} \right] + (1 + \lambda_1) \left[\gamma^2 \phi(\eta; p) \right] + M \left(\gamma - \frac{\partial \hat{f}(\eta; p)}{\partial \eta} \right),
\]

(9.23)

\[
\mathcal{N}_\theta \left[\hat{\theta}(\eta; p), \hat{f}(\eta; p), \Phi(\eta; p) \right] = \frac{1}{\phi} \frac{\partial^2 \hat{\theta}(\eta; p)}{\partial \eta^2} + \hat{f}(\eta; p) \frac{\partial \hat{\theta}(\eta; p)}{\partial \eta} + N_1 \frac{\partial \hat{\theta}(\eta; p)}{\partial \eta} \frac{\partial \hat{\Phi}(\eta; p)}{\partial \eta} + N_2 \left(\frac{\partial \hat{\theta}(\eta; p)}{\partial \eta} \right)^2,
\]

(9.24)

\[
\mathcal{N}_\Phi \left[\hat{\Phi}(\eta; p), \hat{f}(\eta; p), \hat{\theta}(\eta; p) \right] = \frac{\partial^2 \hat{\Phi}(\eta; p)}{\partial \eta^2} + S \hat{f}(\eta; p) \frac{\partial \hat{\Phi}(\eta; p)}{\partial \eta} + N_1 \frac{\partial^2 \hat{\theta}(\eta; p)}{\partial \eta^2}.
\]

(9.25)

The \(m\)-order deformation equations can be presented in the following forms

\[
\mathbf{L}_m \left[\Phi_m(\eta) - \Phi_m+1(\eta) \right] = \mathbf{R}_m \Phi_m(\eta)
\]

(9.26)

\[
\mathbf{L}_m \left[\Phi_m(\eta) - \Phi_m+1(\eta) \right] = \mathbf{R}_m \Phi_m(\eta)
\]

(9.27)
\[L_\Phi[\Phi_m(\eta) - \Phi_{m-1}(\eta)] = \Phi R_\Phi[\Phi(\eta)] \]
\[f_m(0) = f'_m(0) = f'_m(\infty) = \theta'_m(0) + \gamma^* \theta_m(0) = \theta_m(\infty) = \Phi_m(0) = \Phi_m(\infty) = 0, \]
\[(9.28) \]
\[R_{\Phi,m}(\eta) = \frac{1}{Pr} \theta''_{m-1} + \sum_{k=0}^{m-1} [f_{m-1-k} \theta''_k + N_b \theta'_m - k \Phi'_k + N_t \theta'_m - k \theta'_k]. \]
\[\Phi_{m-1} + \sum_{k=0}^{m-1} f_{m-1-k} \Phi'_k + N_t \theta'_m = 0. \]
\[(9.31) \]
\[\mathcal{R}_{\Phi,m}(\eta) = \Phi^0_{m-1} + Sc \sum_{k=0}^{m-1} f_{m-1-k} \Phi'_k + \frac{N_t}{N_b} \theta'_m - k \theta'_k. \]
\[\chi_m = \begin{cases}
0, & m \leq 1 \\
1, & m > 1
\end{cases} \]
\[(9.32) \]
\[(9.33) \]
\[\text{The general solutions } (\Phi_m, \theta'_m, \Phi'_m) \text{ comprising the special solutions } (f^*_m, \theta^*_m, \Phi^*_m) \text{ are} \]
\[f_m(\eta) = f^*_m(\eta) + c_1 + c_2 \eta + c_3 e^{-\eta}, \]
\[\theta_m(\eta) = \theta^*_m(\eta) + c_4 e^\eta + c_5 e^{-\eta}, \]
\[\Phi_m(\eta) = \Phi^*_m(\eta) + c_6 e^\eta + c_7 e^{-\eta}. \]
\[(9.34) \]

9.4 Convergence analysis

Now the solutions of Eqs. (9.9 - 9.11) subject to the boundary conditions (9.12) is computed by means of homotopy analysis method. The convergence of the series solutions is highly dependent upon the auxiliary parameters \(\delta \), \(\delta \), and \(\Phi \). For valid ranges of these parameters, we have sketched the \(\delta \)-curves at 15th order of approximations (see Figs. 9.1 - 9.3). We can see that the admissible values of \(\delta \), \(\delta \), and \(\Phi \) are \(-1 \leq \delta \leq 0 \), \(-1 \leq \delta \leq 0 \), and \(-1 \leq \delta \leq 0 \). Further, the series solutions converge in the whole region of \(\delta \) (0 \(\delta \) \(\infty \)) when \(\delta = -1 \) and \(\Phi = -1 \).
Fig. 9.1: }– curve for the velocity field.

$M = \beta^* = \gamma = N_b = N_t = \gamma^* = 0.1,$
$\lambda_1 = 0.2, \text{ Pr} = 1.5, \text{ Sc} = 0.8$

Fig. 9.2: }– curve for the temperature field.

$M = \beta^* = \gamma = N_b = N_t = \gamma^* = 0.1,$
$\lambda_1 = 0.2, \text{ Pr} = 1.5, \text{ Sc} = 0.8$
Fig. 9: 3 $-$ curve for the concentration field.

Table 9.1: Convergence of HAM solutions for different order of approximations when $\lambda_1 = 0.2$, $Pr = 1.5$, $Sc = 0.8$.

<table>
<thead>
<tr>
<th>Order of approximations</th>
<th>$-\Phi_{00}(0)$</th>
<th>$-\Phi_0(0)$</th>
<th>$-\Phi_0(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.08225</td>
<td>0.113764</td>
<td>0.459778</td>
</tr>
<tr>
<td>5</td>
<td>1.05658</td>
<td>0.116260</td>
<td>0.433609</td>
</tr>
<tr>
<td>8</td>
<td>1.05648</td>
<td>0.116289</td>
<td>0.428189</td>
</tr>
<tr>
<td>15</td>
<td>1.05648</td>
<td>0.116273</td>
<td>0.427542</td>
</tr>
<tr>
<td>18</td>
<td>1.05648</td>
<td>0.116273</td>
<td>0.427544</td>
</tr>
<tr>
<td>20</td>
<td>1.05648</td>
<td>0.116273</td>
<td>0.427544</td>
</tr>
<tr>
<td>25</td>
<td>1.05648</td>
<td>0.116273</td>
<td>0.427544</td>
</tr>
<tr>
<td>30</td>
<td>1.05648</td>
<td>0.116273</td>
<td>0.427544</td>
</tr>
<tr>
<td>35</td>
<td>1.05648</td>
<td>0.116273</td>
<td>0.427544</td>
</tr>
</tbody>
</table>
9.5 Results and discussion

The effects of different parameters on the dimensionless flow and heat and mass transfer rates are investigated and presented graphically in this section. Figs. (9.4 – 9.7) exhibit the dimensionless velocity profiles for different values of ratio of relaxation to retardation times \(\tilde{\tau}_1 \), Hartman number \(\tilde{H} \), Deborah number \(\tilde{D} \), and ratio parameter \(\tilde{r} \). Effects of \(\tilde{\tau}_1 \) on the velocity profile \(\tilde{v}_0 \) can be seen from Fig. 9.4. Here the values of \(\tilde{v}_0 \) and boundary layer thickness decrease when \(\tilde{\tau}_1 \) increases. Effects of Hartman number \(\tilde{H} \) on the velocity \(\tilde{v}_0 \) are depicted in Fig. 9.5. The graph shows that the values of velocity \(\tilde{v}_0 \) and the boundary layer thickness decrease by increasing \(\tilde{H} \). As the magnetic field has the tendency to slow down the movement of the fluid which leads to a decrease in the velocity and momentum boundary layer thickness. Fig. 9.6 shows that larger values of Deborah number \(\tilde{D} \) correspond to higher velocity. Fig. 9.7 illustrates the influence of ratio parameter \(\tilde{r} \) on the velocity profile \(\tilde{v}_0 \). There is an increase in velocity field \(\tilde{v}_0 \) and boundary layer thickness when the velocity of the stretching sheet exceeds the free stream velocity \(\tilde{v}_1 \).

Effects of ratio of relaxation to retardation times \(\tilde{\tau}_1 \), Hartman number \(\tilde{H} \), Deborah number \(\tilde{D} \), ratio parameter \(\tilde{r} \), Prandtl number \(\tilde{\nu} \), Brownian motion parameter \(\tilde{\xi} \), thermophoresis parameter \(\tilde{\gamma} \), Schmidt number \(\tilde{\eta} \), and Newtonian heating parameter \(\tilde{\theta} \) on the temperature profile \(\tilde{T} \) are shown in the Figs. (9.8–9.16). Effect of \(\tilde{\tau}_1 \) on the temperature is analyzed in Fig. 9.8. It is observed that the temperature and the thermal boundary layer thickness are increasing function of \(\tilde{\tau}_1 \). Fig. 9.9 illustrates the effects of \(\tilde{r} \) on temperature profile \(\tilde{T} \). As Lorentz force is a resistive force that opposes the fluid motion. So heat is produced and as a result thermal boundary layer thickness increases. Variations of \(\tilde{\tau}_1 \), \(\tilde{H} \), \(\tilde{D} \), and \(\tilde{\nu} \) on temperature profile \(\tilde{T} \) can be seen in the Figs. (9.10 – 9.12). There is a decrease in temperature \(\tilde{T} \) when Deborah number \(\tilde{D} \), ratio parameter \(\tilde{r} \) and Prandtl number \(\tilde{\nu} \) are increased. In fact the thermal diffusivity decreases by increasing \(\tilde{\nu} \) and the heat diffused away slowly from the heated surface. Fig. 9.13 represents the effect of Brownian motion parameter \(\tilde{\xi} \) on temperature profile \(\tilde{T} \). Temperature profile \(\tilde{T} \) increases for an increase in \(\tilde{\xi} \) and the behavior of \(\tilde{T} \) on the temperature profile is similar to that of \(\tilde{\tau}_1 \).
(see Fig. 9.14). Also the temperature profile Φ and thermal boundary layer thickness decrease when the Schmidt number \mathcal{S}_c increases. This is due to the fact that an increase in \mathcal{S}_c reduces the molecular diffusivity. Fig. 9.16 displays the effect of Newtonian heating parameter \mathcal{N}_h on temperature field Φ. The temperature field Φ is found to increase when \mathcal{N}_h increases.

Figs. $(9.17 - 9.25)$ illustrate the effects of ratio of relaxation to retardation times \mathcal{R}_r, Hartman number \mathcal{H}, Deborah number \mathcal{D}_d, ratio parameter \mathcal{R}_r Brownian motion parameter \mathcal{B}_m, Schmidt number \mathcal{S}_c, Prandtl number Pr, thermophoresis parameter \mathcal{P}_t, and Newtonian heating parameter \mathcal{N}_h on the dimensionless nanoparticle volume fraction profile Φ. It is observed that the mass fraction Φ and the associated boundary layer decrease when the values of \mathcal{R}_r, \mathcal{H}, \mathcal{D}_d, \mathcal{R}_r, \mathcal{B}_m, \mathcal{S}_c, Pr, \mathcal{P}_t, and \mathcal{N}_h are increased and these quantities increase for higher Pr, \mathcal{B}_m and \mathcal{N}_h.

Table 9.1 shows the convergence of the series solutions. It is observed that convergence is achieved at 18th order of approximations. In Table 9.2 some numerical values of skin friction coefficient are given. Tabulated values depict that skin friction coefficient decreases by increasing \mathcal{D}_d and \mathcal{B}_m while it increases for larger values of \mathcal{P}_t and \mathcal{P}_t. Table 9.3 includes the values of local Nusselt and Sherwood numbers. It is noted that Nusselt number decreases by increasing \mathcal{D}_d, \mathcal{B}_m, \mathcal{P}_t, and \mathcal{P}_t while Sherwood number increases for higher \mathcal{B}_m and it decreases for larger values of \mathcal{D}_d, \mathcal{B}_m and \mathcal{P}_t.
Fig. 9: Influence of λ_1 on $f'(\eta)$

$M = \beta^* = \gamma = 0.1$

$\lambda_1 = 0.1, 0.5, 0.7, 0.9$
Fig. 9.5: Influence of λ on $f'(\eta)$

$\lambda_1 = 0.2, \beta^* = \gamma = 0.1$

$M = 0.1, 0.4, 0.6, 0.8$

Fig. 9.6: Influence of β^* on $f'(\eta)$

$\lambda_1 = 0.2, M = \gamma = 0.1$

$\beta^* = 0.1, 0.3, 0.5, 0.7$
Fig. 9.7: Influence of λ on $f'(\eta)$

$\lambda_1 = 0.2, M = \beta^* = 0.1$

$\gamma = 0.1, 0.2, 0.3, 0.4$

Fig. 9.8: Influence of λ on $\theta(\eta)$

$M = \beta^* = \gamma = N_b = N_t = \gamma^* = 0.1,$

$Pr = 1.5, Sc = 0.8$

$\lambda_1 = 0.1, 0.3, 0.5, 1$
\[\lambda_1 = 0.2, \beta^* = \gamma = N_b = N_t = \gamma^* = 0.1, \]
\[\text{Pr} = 1.5, \text{Sc} = 0.8 \]

\[M = 0.3, 0.5, 0.7, 0.9 \]

\[\beta^* = 0.1, 0.5, 1, 1.5 \]

Fig. 9: Influence of \(\beta^* \) on \(\theta(\eta) \)

Fig. 10: Influence of \(\beta^* \) on \(\theta(\eta) \)
Fig. 9.11: Influence of γ on $\theta(\eta)$.

$\lambda_1 = 0.2$, $\gamma = 0.1, 0.2, 0.3, 0.4$

$M = \beta^* = N_b = N_\ell = \gamma^* = 0.1$, $\Pr = 1.5$, $Sc = 0.8$

Fig. 9.12: Influence of Pr on $\theta(\eta)$.

$M = \beta^* = \gamma = N_b = N_\ell = \gamma^* = 0.1$, $\lambda_1 = 0.2$, $Sc = 0.8$

$Pr = 1, 1.2, 1.5, 2$
Fig. 9.13: Influence of N_b on $\theta(\eta)$

$$\lambda_1 = 0.2, M = \beta^*, \gamma = N_t = \gamma^* = 0.1,$$
$$Pr = 1.5, Sc = 0.8$$

$N_b = 0.1, 0.2, 0.3, 0.4$

Fig. 9.14: Influence of N_t on $\theta(\eta)$

$$\lambda_1 = 0.2, M = \beta^*, \gamma = N_b = \gamma^* = 0.1,$$
$$Pr = 1.5, Sc = 0.8$$

$N_t = 0.1, 0.5, 1, 1.5$
Fig. 9.15: Influence of η on $\theta(\eta)$

$M = \beta^* = \gamma = N_b = N_t = \gamma^* = 0.1$
$\lambda_1 = 0.2$, $Pr = 1.5$
$Sc = 0.1, 0.3, 0.5, 1$

Fig. 9.16: Influence of γ^* on $\theta(\eta)$

$\lambda_1 = 0.2$, $M = \beta^* = \gamma = N_b = N_t = 0.1$
$Pr = 1.5$, $Sc = 0.8$
$\gamma^* = 0.1, 0.2, 0.3, 0.4$
Fig. 9.17: Influence of λ_1 on $\Phi(\eta)$

$M = \beta^\ast = \gamma = N_b = N_t = \gamma^\ast = 0.1, Pr = 1.5, Sc = 0.8$

$\lambda_1 = 0.1, 0.5, 0.7, 0.9$

Fig. 9.18: Influence of λ_1 on $\Phi(\eta)$

$\lambda_1 = 0.2, \beta^\ast = \gamma = N_b = N_t = \gamma^\ast = 0.1,$

$Pr = 1.5, Sc = 0.8$

$M = 0.1, 0.3, 0.7, 0.9$
Fig. 9.19: Influence of β^* on $\Phi(\eta)$

$\lambda_1 = 0.2$, $M = \gamma = N_b = N_f = \gamma^* = 0.1$, $Pr = 1.5$, $Sc = 0.8$

$\beta^* = 1, 1.5, 2, 2.5$

Fig. 9.20: Influence of γ on $\Phi(\eta)$

$\lambda_1 = 0.2$, $M = \beta^* = N_b = N_f = \gamma^* = 0.1$, $Pr = 1.5$, $Sc = 0.8$

$\gamma = 0.1, 0.2, 0.3, 0.4$
Fig. 9.21: Influence of η on $\Phi(\eta)$

- $\lambda_1 = 0.2$, $M = \beta^* = \gamma = N_t = \gamma^* = 0.1$,
- $Pr = 1.5$, $Sc = 0.8$

$N_b = 0.1, 0.2, 0.3, 0.4$

Fig. 9.22: Influence of η on $\Phi(\eta)$

- $M = \beta^* = \gamma = N_b = N_t = \gamma^* = 0.1$,
- $Pr = 1.5$, $\lambda_1 = 0.2$

$Sc = 0.1, 0.3, 0.5, 1$
Fig. 9.23: Influence of Pr on $\Phi(\eta)$

$M = \beta^* = \gamma = N_b = N_t = \gamma^* = 0.1,$
$\lambda_1 = 0.2, \text{Sc} = 0.8$

$Pr = 1, 1.3, 1.5, 2$

Fig. 9.24: Influence of N_t on $\Phi(\eta)$

$\lambda_1 = 0.2, M = \beta^* = \gamma = N_b = \gamma^* = 0.1,$
$Pr = 1.5, \text{Sc} = 0.8$

$N_t = 0.1, 0.2, 0.3, 0.5$
Fig. 9: Influence of γ^* on $\Phi(\eta)$

$\lambda_1 = 0.2$, $M = \beta^* = \gamma = N_b = N_t = 0.1$, $Pr = 1.5$, $Sc = 0.8$

$\gamma^* = 0.1, 0.2, 0.3, 0.4$
Table 9.2: Numerical values of skin friction coefficient for different values of \tilde{R}_1, \tilde{R}_2, \tilde{R}_3 and \tilde{R}_4

<table>
<thead>
<tr>
<th>\tilde{R}_1</th>
<th>\tilde{R}_2</th>
<th>\tilde{R}_3</th>
<th>\tilde{R}_4</th>
<th>$\tilde{R}_1^{1/2} (Re)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>-1.05648</td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>-1.09962</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td>-1.14114</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td>-1.18116</td>
</tr>
<tr>
<td>0.2 0.15</td>
<td></td>
<td></td>
<td></td>
<td>-1.03400</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td>-1.09737</td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>-1.13684</td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td>-1.17502</td>
</tr>
<tr>
<td>0.1 0.15</td>
<td></td>
<td></td>
<td></td>
<td>-1.03399</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td>-1.01290</td>
</tr>
<tr>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
<td>-0.993061</td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td>-0.974349</td>
</tr>
<tr>
<td>0.1 0.01</td>
<td></td>
<td></td>
<td></td>
<td>-1.09255</td>
</tr>
<tr>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td>-1.08605</td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
<td>-1.07866</td>
</tr>
<tr>
<td>0.07</td>
<td></td>
<td></td>
<td></td>
<td>-1.07040</td>
</tr>
</tbody>
</table>

Table 9.3: Numerical values of local Nusselt and Sherwood numbers when $\tilde{R}_1 = 0.02\tilde{R}$

$\tilde{R}_+ = \tilde{R} = 0.01\tilde{R}$ Pr = 1.05 and $\tilde{R}_- = 0.08\tilde{R}$
<table>
<thead>
<tr>
<th>n</th>
<th>(1 + \frac{1}{\Phi(n)}) − (\Phi(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>714516</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n</th>
<th>(1 + \frac{1}{\Phi(n)}) − (\Phi(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>427544</td>
<td>0 1 0 1</td>
</tr>
<tr>
<td>468469</td>
<td>0 1 0 1 0</td>
</tr>
<tr>
<td>482122</td>
<td>0</td>
</tr>
<tr>
<td>493069</td>
<td>0</td>
</tr>
<tr>
<td>46337</td>
<td>0</td>
</tr>
<tr>
<td>265221</td>
<td>0</td>
</tr>
<tr>
<td>84186</td>
<td>0</td>
</tr>
<tr>
<td>103238</td>
<td>0</td>
</tr>
<tr>
<td>21407</td>
<td>0</td>
</tr>
<tr>
<td>148477</td>
<td>0</td>
</tr>
<tr>
<td>15635</td>
<td>0</td>
</tr>
<tr>
<td>10193</td>
<td>0</td>
</tr>
<tr>
<td>76091</td>
<td>0</td>
</tr>
<tr>
<td>14421</td>
<td>0</td>
</tr>
<tr>
<td>238845</td>
<td>0</td>
</tr>
</tbody>
</table>

0 0 2 0 673145 0 0 699108 0 633230 0 43430

0 557819 0 0 710164 0

0 705776 0 0 4 0

701351 0

0 696886 0 0 708029 0 0 704905 0

0 701856 0 0 695969 0
9.6 Conclusions

Here MHD stagnation point flow of Jeffrey nanofluid towards a stretching sheet is studied. Effects of different parameters on the velocity, temperature and concentration profiles are analyzed. The following observations are made.

- Velocity profile decreases by increasing α_1 and α while it increases when α^* and α are increased.
- An increase in the values of β_1, β_2, β_3, β_4 and β^* have similar effects on the temperature $T(x)$ in a qualitative sense.
- Temperature profile decreases by increasing β^* and β.
- An increase in Prandtl number Pr reduces the temperature and thermal boundary layer thickness.
- Concentration profile $\Phi(x)$ decreases by increasing β_1, β_2, β_3, β_4, β_5 and β^*.
- The values of skin friction coefficient are higher for increasing values of β^* and β.
- Higher values of β_1 and β^* correspond to smaller values of local Nusselt and Sherwood numbers.
Chapter 10

MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation

An analysis has been carried out in this chapter to investigate three-dimensional flow of viscous nanofluid in the presence of partial slip and thermal radiation effects. The flow is induced by a permeable stretching surface. Water is treated as a base fluid and alumina as a nanoparticle. Fluid is electrically conducting in the presence of applied magnetic field. Entire different concept of nonlinear thermal radiation is utilized in the heat transfer process. Different from the previous literature, the nonlinear system for temperature distribution is solved and analyzed. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Convergent series solutions are computed for the velocity and temperature. Effects of different parameters on the velocity, temperature, skin friction coefficient and Nusselt number are computed and examined. It is concluded that heat transfer rate increases when temperature and radiation parameters are increased.

10.1 Flow description

Consider the steady three-dimensional nanofluid flow over a stretching sheet situated at $z = 0$. Let (U, V, W) be the velocity components along the (x, y, z) directions, respectively. A constant magnetic field of strength B_0 is applied in the z–direction. The governing boundary layer equations can be written as
\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0, \quad (10.1) \quad (10.2)
\]
\[
\frac{u}{\partial x} + \frac{v}{\partial y} + \frac{w}{\partial z} = \nu_n f \frac{\partial^2 u}{\partial z^2} \frac{\sigma_n f}{\rho_n f}, \quad (10.3)
\]
with the boundary conditions given by
\[
u \frac{\partial v}{\partial x} + \frac{v}{\partial y} + \frac{w}{\partial z} = \nu_n f \frac{\partial^2 v}{\partial z^2} \frac{\sigma_n f}{\rho_n f},
\]
\[
\begin{align*}
u & = cx + 2 - \frac{\sigma_v}{\sigma_v} \lambda_0 \frac{\partial u}{\partial z}, \\
v & = dy + 2 - \frac{\sigma_v}{\sigma_v} \lambda_0 \frac{\partial v}{\partial z}, \\
w & = -W \quad \text{at } \bar{R} = 0
\end{align*}
\]
\[
u \rightarrow 0, \quad v \rightarrow 0 \quad \text{as } z \rightarrow \infty, \quad (10.4)
\]

where \(\bar{R} \) and \(\bar{R} \) are stretching rate constants, \(\bar{R}(\bar{R} 0) \) is the suction velocity, \(\bar{R} \) is the tangential momentum accommodation coefficient and \(\bar{R}_0 \) is the molecular mean free path. The effective nanofluid dynamic viscosity \(\bar{R}_n \) density \(\bar{R}_n \) thermal diffusivity \(\bar{R}_n \) heat capacitance \(\bar{R}_n \) thermal conductivity \(\bar{R}_n \) and electrical conductivity \(\bar{R}_n \) are given by
\[
\rho_n f = \rho_f (1 - \phi) + \rho_s \phi, \quad (10.5)
\]
\[
\nu^2_n f = \frac{\nu^2_f}{(1 - \phi)^{2.5}}, \quad (10.6)
\]
\[
(\rho c_p)_n f = (\rho c_p)_f (1 - \phi) + (\rho c_p)_s \phi, \quad (10.7)
\]
\[
\begin{align*}
k_n f & = k_f + 2k_j - 2\phi (k_f - k_s) \\
k_f & = k_f + 2k_j + 2\phi (k_f - k_s)
\end{align*} \quad (10.8)
\]
\[
\frac{\sigma_n f}{\sigma f} = 1 + \frac{3 \left(\frac{\sigma_s}{\sigma f} - 1 \right) \phi}{\left(\frac{\sigma_s}{\sigma f} + 2 \right) - \left(\frac{\sigma_s}{\sigma f} - 1 \right) \phi}, \quad (10.9)
\]

Here \(\bar{R} \) is the nanoparticle volume fraction, \(\bar{R} \) and \(\bar{R} \) are the densities of the fluid and of the solid fractions, respectively, \(\bar{R} \) and \(\bar{R} \) are the thermal conductivities of the fluid and of the solid fractions, respectively, and \(\bar{R} \) and \(\bar{R} \) are the electrical conductivity of the fluid and of the solid fractions, respectively.

Making use of the following transformations
\[
u = c x f'(\eta), \quad v = c y g'(\eta), \quad w = -\sqrt{\nu f c}(f + g), \quad \eta = \frac{c}{\nu f} z, \quad (10.10)
\]
equation (10.1) is identically satisfied and Eqs. (10.2 – 10.4) become

\[
\frac{1}{(1 - \phi)^{2.5}[1 - \phi + \frac{\rho_s}{\rho_f}\phi]}f''' - f'^2 + (f + g)f'' - \frac{M}{1 - \phi + \frac{\rho_s}{\rho_f}\phi} \frac{\sigma_{nf}}{\sigma_f} f' = 0, \tag{10.11}
\]

\[
\frac{1}{(1 - \phi)^{2.5}[1 - \phi + \frac{\rho_s}{\rho_f}\phi]}g''' - g'^2 + (f + g)g'' - \frac{M}{1 - \phi + \frac{\rho_s}{\rho_f}\phi} \frac{\sigma_{nf}}{\sigma_f} g' = 0, \tag{10.12}
\]

\[
\eta_0(0) = 1 + \eta_0(0) \eta_0(0) = \eta_0(0) \eta_0(0) + \eta_0(0) = \eta_0(0)
\]

\[
\eta'(\infty) \to 0, \quad g'(\infty) \to 0, \tag{10.13}
\]

where prime denotes the differentiation with respect to \(\eta \), \(\phi \) is the Hartman number, \(\beta \) is the velocity slip parameter, \(\alpha \) is the ratio of stretching rates and \(\beta \) is the suction/injection parameter. These quantities are defined by

\[
M = \frac{\sigma_f B_0^2}{\rho_f c}, \quad \beta = \frac{2 - \sigma_v}{\sigma_v} \sqrt{\frac{c}{\nu_f}} \lambda_0, \quad \gamma = \frac{d}{c}, \quad S = \frac{W}{\sqrt{\nu_f c}}. \tag{10.14}
\]

10.2 Heat transfer analysis

The boundary layer energy equation in the presence of thermal radiation effects is given by

\[
v \frac{\partial T}{\partial x} + \nu \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \alpha_{nf} \frac{\partial^2 T}{\partial z^2} - \frac{1}{(\rho c_p)_{nf}} \frac{\partial q_r}{\partial z}, \tag{10.15}
\]

where \(T \) is the temperature, \(\nu_{nf} \) is the nanofluid thermal diffusivity, \(\rho \) is the specific heat at constant pressure and \(q_r \) is the radiative heat flux. Using Rosseland approximation for thermal radiation, the radiative heat flux is simplified as follows:

\[
q_r = -\frac{4\sigma \sqrt{\nu}}{3k^*} \frac{\partial T^4}{\partial z} = -\frac{16\sigma \sqrt{\nu}}{3k^*} T^3 \frac{\partial T}{\partial z}, \tag{10.16}
\]

in which \(\sigma \) and \(k^* \) are the Stefan-Boltzmann constant and the mean absorption coefficient, respectively. Now Eq. (10.15) can be written in the form

\[
v \frac{\partial T}{\partial x} + \nu \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \alpha_{nf} \frac{\partial^2 T}{\partial z^2} + \frac{16\sigma}{3k^*(\rho c_p)_{nf}} \frac{\partial}{\partial z} \left(T^3 \frac{\partial T}{\partial z} \right). \tag{10.17}
\]
It is worth mentioning to note that for thermal radiation effect in the existing literature, d^4 in Eq. (10.16) was expanded about the ambient temperature \bar{T}_∞. However in the present case this has been avoided to get more meaningful results. Therefore in present analysis the energy equation is nonlinear.

The boundary conditions are

$$\bar{T} = \bar{T}_\infty \text{ at } \eta = 0 \quad \bar{T} \to \bar{T}_\infty \text{ as } \eta \to \infty$$

(10.18)

where \bar{T}_∞ and \bar{T}_∞ are the sheet and ambient fluid temperatures respectively. We define the non-dimensional temperature by

$$\theta(\eta) = \frac{T - T_\infty}{T_w - T_\infty}$$

or

$$\bar{T} = \bar{T}_\infty (1 + (\bar{T}_w - 1) \bar{T})$$

(10.19)

(10.20)

where $\bar{T}_w = \bar{T}_w \bar{T}_\infty$ is the temperature parameter. Using Eq. (10.20), Eq. (10.17) takes the form

$$\frac{1}{Pr} \left(\frac{k_n f}{k_f} + R_d \right) \theta'' + \frac{R_d}{Pr} \left[(\theta_w - 1)^3 (3\theta^2 \theta'' + \theta^3 \theta'') + 3(\theta_w - 1)^2 (2\theta' + \theta^2 \theta'') \right]$$

$$\frac{1}{Pr} \left[\theta_w - 1 \right] \left(\frac{\nu_f (\rho c_p)}{c_p f} \right) \theta'' (f + g) = 0$$

(10.21)

where Prandtl number Pr and radiation parameter \bar{R}_d are defined by

$$Pr = \frac{\nu_f (\rho c_p)}{k_f}, \quad R_d = \frac{16 \sigma^* T_w^3}{3 \kappa k^*}$$

(10.22)

with the boundary conditions

$$\bar{T}(0) = 1, \quad \bar{T}(\infty) \to 0$$

(10.23)

Surface shear stresses $\tau_{x\infty}$ and $\tau_{y\infty}$ along the x and y directions are given by
\[\tau_{wx} = \mu_n f \frac{\partial u}{\partial z} \bigg|_{z=0}, \quad \tau_{wy} = \mu_n f \frac{\partial v}{\partial z} \bigg|_{z=0}, \] (10.24)

The heat transfer rate at the sheet is defined as follows:

\[q_w = -k_n f \left(\frac{\partial T}{\partial z} \right)_{z=0} + (q_r)_w = -(T_w - T_\infty) \sqrt{\frac{c}{\nu_f}} \left(1 + R_d \theta_w^3 \right) \theta'(0). \] (10.25)

Local skin friction coefficients along the \(\bar{x} \) and \(\bar{y} \) directions and Nusselt number for the problem are given by

\[(\text{Re}_x)^{\frac{1}{2}} C_{f_x} = \frac{1}{(1 - \phi)^{2.5}} f''(0), \quad (\text{Re}_y)^{\frac{1}{2}} C_{f_y} = \frac{1}{\gamma^{\frac{2}{3}} (1 - \phi)^{2.5}} g''(0) \]

\[\frac{N_u}{\sqrt{\text{Re}_x}} = - \left(1 + R_d \theta_w^3 \right) \theta'(0). \] (10.26)

in which \((\text{Re}_x)^{\frac{1}{2}} = x \sqrt{c_\eta \nu_f} \) and \((\text{Re}_y)^{\frac{1}{2}} = y \sqrt{c_\eta \nu_f} \) denote the local Reynolds number.

10.3 Analytical solutions

Employing the homotopy analysis method the initial approximations and auxiliary linear operators are given by

\[f_0(\eta) = S + \frac{1}{1 + \beta (1 - e^{-\eta})}, \quad g_0(\eta) = \frac{\gamma}{1 + \beta (1 - e^{-\eta})}, \quad \theta_0(\eta) = e^{-\eta}, \] (10.27)

\[L_f(f) = \frac{d^4 f}{d\eta^4} - \frac{d f}{d\eta}, \quad L_g(g) = \frac{d^4 g}{d\eta^4} - \frac{d g}{d\eta}, \quad L_\theta(\theta) = \frac{d^2 \theta}{d\eta^2} - \theta, \] (10.28)

with

\[L_{\bullet}[\bar{a}_1 + \bar{a}_2 \exp(\bullet) + \bar{a}_3 \exp(-\bullet)] = 0 \] (10.29)

\[L_{\bullet}[\bar{a}_4 + \bar{a}_5 \exp(\bullet) + \bar{a}_6 \exp(-\bullet)] = 0 \] (10.30)

\[L_{\bullet}[\bar{a}_7 \exp(\bullet) + \bar{a}_8 \exp(-\bullet)] = 0 \] (10.31)

in which \(\bar{a}_n (n = 1 - 8) \) are the arbitrary constants. If \(\bar{\xi} \in [0 \bar{\xi}] \) indicates the embedding parameter then the zeroth order deformation problems are constructed as follows:

\[(1 - \bar{\xi}) L_{\bullet} h(\bar{\xi}; \bullet) - \bar{h}_0(\bar{\xi}) = \bar{\xi} N_{\bullet} h(\bar{\xi}; \bullet) \] (10.32)

197
\[(1 - \bar{v})L \bar{u}[\bar{u}'(\bar{v}; \bar{u}) - \bar{u}_0(\bar{u})] = \bar{h}_n N \bar{u} \bar{u}'(\bar{v}; \bar{u}) \bar{u}'(\bar{v}; \bar{u}) i \bar{u} \]

(10.33)

\[(1 - \bar{v})L \bar{u} \bar{u}'(\bar{v}; \bar{u}) - \bar{v}_0 (\bar{v}) i = \bar{h}_n N \bar{u} \bar{u}'(\bar{v}; \bar{u}) \bar{u}'(\bar{v}; \bar{u}) \bar{u}'(\bar{v}; \bar{u}) i \bar{u} \]

\[\bar{u}'(0; \bar{v}) = 0, \bar{u}'(0; \bar{v}) = 1 + \bar{h}_n \bar{v}_0 (0; \bar{v}) \bar{u}'(\infty; \bar{v}) = 0 \bar{u} \]

(10.35)

\[\bar{u}'(0; \bar{v}) = 0, \bar{u}'(0; \bar{v}) = 1 + \bar{h}_n \bar{v}_0 (0; \bar{v}) \bar{u}'(\infty; \bar{v}) = 0 \bar{u} \]

(10.36)

\[\bar{u}'(0; \bar{v}) = 1 \bar{u}'(\infty; \bar{v}) = 0 \bar{u} \]

(10.37)

where }_m, }_n and }_m are the nonzero auxiliary parameters and the nonlinear operators }_m }_n }_n and }_m are given by

\[N_f \left[f(\eta; p), \hat{g}(\eta; p) \right] = \frac{1}{(1 - \phi)^2.5[1 - \phi + \frac{\rho_a}{\rho_f} \phi]} \frac{\partial^3 \hat{f}(\eta; p)}{\partial \eta^3} - \left(\frac{\partial \hat{f}(\eta; p)}{\partial \eta} \right)^2 + \hat{f}(\eta; p) \frac{\partial^2 \hat{f}(\eta; p)}{\partial \eta^2} + \hat{g}(\eta; p) \frac{\partial^2 \hat{f}(\eta; p)}{\partial \eta^2} \]

\[\frac{M}{1 - \phi + \frac{\rho_a}{\rho_f} \phi} \frac{\sigma_{nf}}{\sigma_f} \frac{\partial \hat{f}(\eta; p)}{\partial \eta}, \]

(10.38)

\[N_g \left[g(\eta; p), \hat{f}(\eta; p) \right] = \frac{1}{(1 - \phi)^2.5[1 - \phi + \frac{\rho_a}{\rho_f} \phi]} \frac{\partial^3 \hat{g}(\eta; p)}{\partial \eta^3} - \left(\frac{\partial \hat{g}(\eta; p)}{\partial \eta} \right)^2 + \hat{f}(\eta; p) \frac{\partial^2 \hat{g}(\eta; p)}{\partial \eta^2} + \hat{g}(\eta; p) \frac{\partial^2 \hat{g}(\eta; p)}{\partial \eta^2} \]

\[\frac{M}{1 - \phi + \frac{\rho_a}{\rho_f} \phi} \frac{\sigma_{nf}}{\sigma_f} \frac{\partial \hat{g}(\eta; p)}{\partial \eta}, \]

(10.39)
\[
\mathcal{N}_\eta \left[\hat{\theta}(\eta; p), \hat{f}(\eta; p), \hat{g}(\eta; p) \right] = \frac{1}{Pr} \left(\frac{k_{nf}}{k_f} + R_d \right) \frac{\partial^2 \hat{\theta}(\eta; p)}{\partial \eta^2} + \frac{R_d}{Pr} (\theta_w - 1)^3 \\
\left(3 \left(\hat{\theta}(\eta; p) \right)^2 \left(\frac{\partial \hat{\theta}(\eta; p)}{\partial \eta} \right)^2 + \left(\hat{\theta}(\eta; p) \right)^3 \frac{\partial^2 \hat{\theta}(\eta; p)}{\partial \eta^2} \right) \\
+ 3(\theta_w - 1)^2 \left(2\hat{\theta}(\eta; p) \left(\frac{\partial \hat{\theta}(\eta; p)}{\partial \eta} \right)^2 + \left(\hat{\theta}(\eta; p) \right)^2 \frac{\partial^2 \hat{\theta}(\eta; p)}{\partial \eta^2} \right) \\
+ 3(\theta_w - 1) \left(\left(\frac{\partial \hat{\theta}(\eta; p)}{\partial \eta} \right)^2 + \hat{\theta}(\eta; p) \frac{\partial^2 \hat{\theta}(\eta; p)}{\partial \eta^2} \right) \\
+ \left(1 - \phi + \frac{(\rho C_p)_f s}{(\rho C_p)_f} \right) \left(\hat{f}(\eta; p) + \hat{g}(\eta; p) \right) \frac{\partial \hat{\theta}(\eta; p)}{\partial \eta}.
\] (10.40)

The mth order deformation problems are

\[
L_\eta [\hat{E}_\eta (\eta) - \hat{E}_\eta (\eta - 1) (\eta)] \equiv \eta R_{\eta \eta \eta \eta} (\eta) \hat{E}
\] (10.41)

\[
L_\eta [\hat{E}_\eta (\eta) - \hat{E}_\eta (\eta - 1) (\eta)] \equiv \eta R_{\eta \eta \eta \eta} (\eta) \hat{E}
\] (10.42)

\[
L_\eta [\hat{E}_\eta (\eta) - \hat{E}_\eta (\eta - 1) (\eta)] \equiv \eta R_{\eta \eta \eta \eta} (\eta) \hat{E}
\] (10.43)

\[
f_m (0) = f'_m (0) - \beta f''_m (0) = f'_m (\infty) = 0, \tag{10.44}
\]

\[
g_m (0) = g'_m (0) - \beta g''_m (0) = g'_m (\infty) = 0, \tag{10.45}
\]

\[
\hat{E}_\eta (0) = \hat{E}_\eta (\infty) = 0 \hat{E}
\] (10.46)

\[
R_{f,m} (\eta) = \frac{1}{(1 - \phi)^2.5 \left(1 - \phi + \frac{\rho C_p s}{\rho C_p} \right)} \sum_{k=0}^{m-1} \left(f_{m-1-k} f''_k + g_{m-1-k} f''_k - f'_{m-1-k} f'_k \right) \\
- \frac{\sigma_{nf}}{\sigma_f} \frac{M}{1 - \phi + \frac{\rho C_p}{\rho C_p} \phi} f'_{m-1}, \tag{10.47}
\]

\[
R_{g,m} (\eta) = \frac{1}{(1 - \phi)^2.5 \left(1 - \phi + \frac{\rho C_p s}{\rho C_p} \right)} \sum_{k=0}^{m-1} \left(f_{m-1-k} g''_k + g_{m-1-k} g''_k - g'_{m-1-k} g'_k \right) \\
- \frac{\sigma_{nf}}{\sigma_f} \frac{M}{1 - \phi + \frac{\rho C_p}{\rho C_p} \phi} g'_{m-1}, \tag{10.48}
\]
The general solutions in terms of particular solutions f^*_m, g^*_m and θ^*_m are

\begin{align*}
 f_m (\eta) &= f^*_m (\eta) + c_1 + c_2 e^\eta + c_3 e^{-\eta}, \\
 g_m (\eta) &= g^*_m (\eta) + c_4 + c_5 e^\eta + c_6 e^{-\eta}, \\
 \theta_m (\eta) &= \theta^*_m (\eta) + c_7 e^\eta + c_8 e^{-\eta},
\end{align*}

(10.51) (10.52) (10.53)

10.4 Convergence of the developed solutions

The convergence of the series solutions is highly dependent upon auxiliary parameters λ and γ.

For valid ranges of these parameters, we have sketched the λ–curves at 10th-order of approximations (see Fig. 10.1). This Fig. shows that the admissible values of λ and γ are $-2 \leq \lambda \leq 0$ and $-2 \leq \gamma \leq -0.2$ and $-1.6 \leq \lambda \leq -1.3$. Further Table 10.1 ensures that when $\lambda = -1.1$ and $\gamma = -1.3$, the series solutions are convergent up to six decimal places.
Fig. 10.1: Combined $f''(0)$, $g''(0)$, and $\theta'(0)$ curves for $h_0(0)$ and $h_0(0)$ when $Pr = 6.2, \beta = 0.5, \alpha = 0.03$.

\begin{tabular}{|c|c|c|c|}
\hline
Order of approximation & $h_0(0)$ & $h_0(0)$ & $\beta(0)$ \\
\hline
5 & 0.0501136 & 0.238561 & 2.18655 \\
9 & 0.0501129 & 0.238543 & 2.34913 \\
15 & 0.0501129 & 0.238543 & 2.41402 \\
20 & 0.0501129 & 0.238543 & 2.40545 \\
25 & 0.0501129 & 0.238543 & 2.39321 \\
30 & 0.0501129 & 0.238543 & 2.39321 \\
35 & 0.0501129 & 0.238543 & 2.39321 \\
\hline
\end{tabular}

Table 10.1: Convergence of HAM solutions for different order of approximations when

$Pr = 6.2, \beta = 0.5, \alpha = 0.03, \beta = 1, \gamma = 0, \beta = 1$ and $\varepsilon = 0.3$.

$\varepsilon = -1$.1
10.5

Discussion

This section presents the effects of various parameters on the velocity, temperature, skin friction coefficient and Nusselt number in the form of graphical and tabulated results.

10.5.1 Dimensionless velocity profiles

Figs. (10.2 – 10.6) display the dimensionless velocity profiles for different values of Hartman number \tilde{H}, velocity slip parameter \tilde{v}, nanoparticle volume fraction $\tilde{\phi}$, suction/injection velocity parameter \tilde{a} and stretching parameter \tilde{b}. Fig. 10.2 plots the velocity profiles \tilde{u}_0 and \tilde{u}_0 for various values of Hartman number \tilde{H}. It is observed that velocity fields \tilde{u}_0 and \tilde{u}_0 decrease when \tilde{H} increases. The application of an applied magnetic field has the tendency to slow down the movement of the fluid, which leads to a decrease in the velocity and momentum boundary layer thickness. Fig. 10.3 shows the effects of velocity slip parameter \tilde{v}. This Fig. shows that by increasing the values of velocity slip parameter \tilde{v}, there is a gradual decrease in the velocity profiles. The effects of nanoparticle volume fraction $\tilde{\phi}$ on velocity profile are presented in the Fig. 10.4. It is noted that an increase in the values of $\tilde{\phi}$ decreases the velocity profiles \tilde{u}_0 and \tilde{u}_0. Effect of suction/injection velocity parameter \tilde{a} on \tilde{u}_0 and \tilde{u}_0 can be visualized in the Fig. 10.5. It is obvious that an increase in \tilde{a} reduces the velocity fields \tilde{u}_0 and \tilde{u}_0. Because applying suction leads to draw the amount of fluid particles into the wall and consequently the velocity boundary layer decreases. Also suction is an agent which causes a reduction in the fluid velocity. Influence of stretching parameter \tilde{b} on the velocity profiles is displayed in the Fig. 10.6. It is observed that velocity field \tilde{u}_0 decreases with an increase in \tilde{b} while \tilde{u}_0 increases when \tilde{b} is enhanced.

10.5.2 Dimensionless temperature profiles

Effects of Hartman number \tilde{H}, nanoparticle volume fraction $\tilde{\phi}$, temperature parameter \tilde{a}, and radiation parameter \tilde{r} on the temperature profile $\tilde{\theta}$ are shown in the Figs. (10.7 – 10.10). To
capture the effects of Hartman number \tilde{H} on the temperature \tilde{T} Fig. 10.7 is displayed. It is depicted that temperature is an increasing function of \tilde{H}. As the Lorentz force is a resistive force which opposes the fluid motion so heat is produced and as a result the thermal boundary layer thickness increases. Fig. 10.8 portrays the influence of \tilde{N} on \tilde{T} It is found that temperature increases when values of nanoparticle volume fraction \tilde{F} are increased. It is because of the fact that by increasing the volume fraction of nanoparticles, the thermal conductivity and thermal boundary layer are increased. Figs. 10.9 and 10.10 indicate that temperature increases by increasing values of temperature parameter \tilde{X} and radiation parameter \tilde{R}. Physically this is due to the fact that with the increase in radiation parameter, the mean absorption coefficient decreases. Hence the rate of radiative heat transfer to the fluid increases.

10.5.3 Skin friction coefficient and Nusselt number

In Table 10.2 the thermophysical properties of water and nanoparticles are given. Tables 10.3 and 10.4 show the effects of nanoparticle volume fraction \tilde{F} on skin friction coefficient for different types of nanofluids in the \tilde{X} and \tilde{R}-directions. Effects of the nanoparticle volume fraction \tilde{F} on Nusselt number are presented in Table 10.5. These values of skin friction coefficient and Nusselt number change for different nanofluids. It means that by using different types of nanofluid, the shear stress and rate of heat transfer alter. Numerical values of local Nusselt number for different emerging parameters are presented in Table 10.6. It is noticed that local Nusselt number $\tilde{Nu}(\tilde{Rc})^{-\frac{1}{2}}$ increases for larger values of \tilde{R} and \tilde{R}. However it decreases by increasing \tilde{R}.
Fig. 10.2: Effect of β on f' and g'.

Al_2O_3 – water

$\beta = 1, \phi = 0.03, \gamma = 0.5, S = 0.3$

$M = 0.1, 0.2, 0.3, 0.4$

Fig. 10.3: Effect of β on f' and g'.

Al_2O_3 – water

$\gamma = 0.5, \phi = 0.03, M = 0.1, S = 0.3$

$\beta = 0.5, 1, 1.5, 2$
Fig. 10.4: Effect of ϕ on $f(\eta)$ and $g(\eta)$

Al_2O_3 – water

$\beta = 1$, $\gamma = 0.5$, $M = 0.1$, $S = 0.3$

$\phi = 0.1, 0.2, 0.3, 0.4$

Fig. 10.5: Effect of S on $f(\eta)$ and $g(\eta)$

Al_2O_3 – water

$\beta = 1$, $\phi = 0.03$, $M = 0.1$, $\gamma = 0.3$

$S = 0.1, 0.3, 0.5, 0.7$
Fig. 10.6: Effect of \(\beta\) on \(f(\eta)\) and \(g(\eta)\)

\[Al_2O_3 - \text{water} \]
\[\beta = 1, \phi = 0.03, M = 0.1, S = 0.3, \gamma = 0.3, 0.4, 0.6, 0.8 \]

Fig. 10.7: Effect of \(M\) on \(\theta(\eta)\)

\[Al_2O_3 - \text{water} \]
\[\beta = 1, \phi = 0.03, R_d = 0.1, S = 0.3, \quad \Pr = 6.2, \theta_v = 1.01, \gamma = 0.5 \]
\[M = 0.1, 0.5, 1, 2 \]
\[\text{Al}_2O_3 - \text{water} \]
\[\beta = 1, R_d = M = 0.1, S = 0.3, \]
\[Pr = 6.2, \theta_w = 1.01, \gamma = 0.5 \]
\[\phi = 0.01, 0.03, 0.05, 0.07 \]

Fig. 10: Effect of \(\phi \) on \(\theta(\eta) \)

\[\text{Al}_2O_3 - \text{water} \]
\[\beta = 1, \phi = 0.03, M = 0.1, S = 0.3, \]
\[Pr = 6.2, R_d = 0.1, \gamma = 0.5 \]
\[\theta_w = 1.1, 1.3, 1.5, 1.7 \]

Fig. 10: Effect of \(\theta_w \) on \(\theta(\eta) \)
Fig. 10: Effect of β on $\theta(\eta)$

Table 10.2: Thermophysical properties of water and nanoparticles [21].

<table>
<thead>
<tr>
<th></th>
<th>$\theta(\theta^{12})$</th>
<th>$\beta_0(\theta^{12})$</th>
<th>$\beta_1(\theta^{12})$</th>
<th>$\beta \times 10^5(\Omega^{-1})$</th>
<th>$\beta(\Omega^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure water</td>
<td>997.1</td>
<td>4179</td>
<td>0.613</td>
<td>21</td>
<td>0.005</td>
</tr>
<tr>
<td>Copper</td>
<td>8933</td>
<td>385</td>
<td>401</td>
<td>1.67 $\times 10^7$</td>
<td>3.6 $\times 10^7$</td>
</tr>
<tr>
<td>Silver</td>
<td>10500</td>
<td>235</td>
<td>429</td>
<td>1.89 $\times 10^7$</td>
<td>1 $\times 10^{-10}$</td>
</tr>
<tr>
<td>Alumina</td>
<td>3970</td>
<td>765</td>
<td>40</td>
<td>0.85 $\times 10^{-10}$</td>
<td>1 $\times 10^{-10}$</td>
</tr>
<tr>
<td>Titanium Oxide</td>
<td>4250</td>
<td>686.2</td>
<td>8.9538</td>
<td>0.9 $\times 10^{-12}$</td>
<td></td>
</tr>
</tbody>
</table>

Table 10.3: Effects of the nanoparticle volume fraction for different types of nanofluids on skin friction coefficient along η–direction when $\beta = 0.1\bar{6}, \beta = 1\bar{6}, \text{Pr} = 6\bar{2}\bar{0}, \beta = 0\bar{3}\bar{3}$ and $\beta = 0\bar{5}\bar{5}$

x = 0\bar{1}$ and $\beta = 1\bar{1}$.

208
Table 10.4: Effects of the nanoparticle volume fraction for different types of nanofluids on skin friction coefficient along ξ-direction when $\phi = 0\$, $\Theta = 1\$, $Pr = 6\$, $\beta = 0\$, $\delta = 0\$, $\gamma = 0\$, $\beta_n = 0\$, and $\delta_n = 1\$.

<table>
<thead>
<tr>
<th>ϕ</th>
<th>Θ</th>
<th>Pr</th>
<th>β</th>
<th>δ</th>
<th>γ</th>
<th>β_n</th>
<th>δ_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.519583</td>
<td>0.521081</td>
<td>0.513864</td>
<td>0.514181</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>0.556763</td>
<td>0.564686</td>
<td>0.540779</td>
<td>0.541729</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>0.595136</td>
<td>0.602496</td>
<td>0.569204</td>
<td>0.570789</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10.5: Effects of the nanoparticle volume fraction for different types of nanofluids on Nusselt number when $\phi = 0\$, $\Theta = 1\$, $Pr = 6\$, $\beta = 0\$, $\delta = 0\$, $\gamma = 0\$, $\beta_n = 0\$, and $\delta_n = 1\$.

<table>
<thead>
<tr>
<th>ϕ</th>
<th>Θ</th>
<th>Pr</th>
<th>β</th>
<th>δ</th>
<th>γ</th>
<th>β_n</th>
<th>δ_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.999999</td>
<td>0.702450</td>
<td>0.92049</td>
<td>0.92506</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td>0.751194</td>
<td>0.758029</td>
<td>0.728085</td>
<td>0.729453</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td>0.3691</td>
<td>0.14440</td>
<td>0.66089</td>
<td>0.68375</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 10.6: Values of $\sqrt[3]{u(Re_x)^{-1}}$ when $\phi = 0\$, $\Theta = 1\$, $Pr = 0\$, $\beta = 0\$, and $\delta = 0\$.

<table>
<thead>
<tr>
<th>ϕ</th>
<th>Θ</th>
<th>Pr</th>
<th>β</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.726911</td>
<td>0.723181</td>
<td>0.73826</td>
<td>0.732487</td>
</tr>
<tr>
<td>0.03</td>
<td>0.720997</td>
<td>0.710335</td>
<td>0.740837</td>
<td>0.736838</td>
</tr>
<tr>
<td>0.05</td>
<td>0.716675</td>
<td>0.699623</td>
<td>0.748444</td>
<td>0.741798</td>
</tr>
</tbody>
</table>
10.6 Concluding remarks

Three-dimensional flow of Al₂O₃ nanofluid over a permeable stretching surface with partial slip and nonlinear thermal radiation is studied. The outcomes are mentioned below.

- Increasing values of Hartman number, velocity slip parameter and suction/injection velocity parameter decrease the velocity profiles.

- The velocity profiles \(\theta_0 \) and \(\phi_0 \) decrease by increasing nanoparticle volume fraction.

- Effects of stretching parameter on the velocity profiles and momentum boundary layers are opposite. The temperature and thermal boundary layer thickness increase via larger nanoparticle volume fraction.

- Increasing values of temperature and radiation parameters show enhancement in the temperature and thermal boundary layer thickness.

- Temperature gradient at the surface increases for higher temperature and radiation parameters.
• The governing equations for viscous fluid are obtained when $\bar{u} = 0$.
Chapter 11

Magnetohydrodynamic three-dimensional flow of nanofluid over a porous shrinking surface

This chapter investigates the steady three-dimensional flow of viscous nanofluid past a permeable shrinking surface with velocity slip and temperature jump. An incompressible fluid fills the porous space. The fluid is electrically conducting in the presence of an applied magnetic field. The governing nonlinear partial differential equations are reduced to ordinary differential equations by similarity transformations. The series solutions are presented by the homotopy analysis method. Convergence of the obtained series solutions is explicitly discussed. The velocity and temperature profiles are shown and analyzed for different emerging parameters of interest. It is observed that by increasing the volume of copper nanoparticles, the thermal conductivity increases and the boundary layer thickness decreases. The velocity profile increases and temperature profile decreases for the larger velocity slip parameter. Temperature is a decreasing function of the thermal slip parameter. Hence less heat is transferred to the fluid from the sheet.

11.1 Problem formulation

Let us consider steady three-dimensional flow of viscous nanofluid over a shrinking surface. A Cartesian coordinate system is used with \((\hat{x}, \hat{y}, \hat{z})\) as the velocity components in the \((\hat{x}, \hat{y}, \hat{z})\) directions. An incompressible nanofluid occupies \(\hat{z} < 0\), where \(\hat{z}\) is the coordinate measured normal to the shrinking surface (see Fig. 11.1). The fluid is water based nanofluid consisting of nanoparticles like copper \((\hat{z})\), sliver \((\hat{z})\), alumina \((\hat{z})\), titanium oxide \((\hat{z})\) and copper oxide \((\hat{z})\).
Further the fluid is subjected to a uniform magnetic field with strength B_0 in the transverse direction to flow. Here induced magnetic field is taken small in comparison to the applied magnetic field and thus neglected. Under the aforementioned assumptions the equations of continuity, momentum and thermal energy can be expressed in the forms

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0, \quad (11.1)$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} = \nu_{nf} \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) - \frac{1}{\rho_{nf}} \frac{\partial P}{\partial x} - \frac{\sigma_{nf} B_0^2 u}{\rho_{nf}} - \frac{\nu_{nf} u}{K}, \quad (11.2)$$

$$u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} = \nu_{nf} \left(\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) - \frac{1}{\rho_{nf}} \frac{\partial P}{\partial y} - \frac{\sigma_{nf} B_0^2 v}{\rho_{nf}} - \frac{\nu_{nf} v}{K}, \quad (11.3)$$

$$u \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = \nu_{nf} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} \right) - \frac{1}{\rho_{nf}} \frac{\partial P}{\partial z}, \quad (11.4)$$

$$u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \alpha_{nf} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right), \quad (11.5)$$
with

\[u = dx + \frac{2 - \sigma_v}{\sigma_v} \lambda_0 \frac{\partial u}{\partial z}, \quad v = d(n - 1)y + \frac{2 - \sigma_v}{\sigma_v} \lambda_0 \frac{\partial v}{\partial z}, \quad w = -W, \]

\[T = T_w + \frac{2 - \sigma_T}{\sigma_T} \left(\frac{T - 0}{\lambda_0} \frac{\partial T}{\partial z} \right) \text{ at } z = 0, \]

\[\Phi \rightarrow 0 \quad \Phi \rightarrow 0 \quad \Phi \rightarrow \Phi_\infty \quad \text{ as } \Phi \rightarrow \infty \] \hspace{1cm} (11.6)

In the above equations \(\Phi_\infty \) denotes the effective density of the nanofluid, \(\Phi_{ef} \) the effective kinematic viscosity of the nanofluid, \(\Phi_{ef} \) the effective dynamic viscosity, \(\Phi_{ef} \) the effective electrical conductivity, \(\Phi \) the pressure, \(\Phi \) the permeability of porous medium, \(\Phi_0 \) the suction velocity, \(\Phi_0 \) the shrinking rate, \(\Phi \) the temperature of nanofluid, \(\Phi \) the tangential momentum accommodation coefficient, \(\Phi \) the thermal accommodation coefficient, \(\Phi_0 \) the molecular mean free path, \(\Phi^- \) the specific heat ratio and sheet shrinks only in the \(\Phi^- \)-direction when \(\Phi \) = 1. The sheet shrinks asymmetrically for \(\Phi = 2 \).

The effective dynamic viscosity of the nanofluid is

\[\mu_{ef} = \frac{\mu_f}{(1 - \phi)^{2.5}}, \] \hspace{1cm} (11.7)

where \(\Phi \) is the solid volume fraction of nanoparticles and the effective density of nanofluids is given by

\[\Phi_{ef} = (1 - \Phi)\Phi_{\infty} + \Phi \Phi_{\infty} \] \hspace{1cm} (11.8)

The thermal diffusivity of the nanofluid is

\[\alpha_{nf} = \frac{k_{nf}}{(\rho C_p)_{nf}} \] \hspace{1cm} (11.9)

where the heat capacitance of nanofluid is given by

\[((\Phi \Phi_{\infty})_{nf} = (1 - \Phi)(\Phi \Phi_{\infty}) + \Phi (\Phi \Phi_{\infty}) \] \hspace{1cm} (11.10)

For spherical nanoparticles, the thermal conductivity of the nanofluid is

\[\frac{k_{nf}}{k_f} = \frac{k_s + 2k_f - 2\phi(k_f - k_s)}{k_s + 2k_f + 2\phi(k_f - k_s)}. \] \hspace{1cm} (11.11) The effective electrical conductivity is
Here the subscripts $\overline{\circ}, \overline{\ast}$ represents the thermophysical properties of the nanofluid, \(\overline{\ast} \) explains base fluid and $\overline{\circ}$ is defined as nano solid particles.

In order to attain similarity solution, the following transformations can be posited:

$$u = cx f'(\eta), \quad v = c(n-1)y f'(\eta), \quad w = -\sqrt{\alpha f} n f'(\eta), \quad \eta = \frac{c}{v_f} z, \quad \theta(\eta) = \frac{T - T_\infty}{T_w - T_\infty}. \quad (11.13)$$

Continuity

$$\varepsilon_1 f'' - \varepsilon_1 \left[M^2 (1 - \phi)^2.5 \frac{\sigma_{nf}}{\sigma_f} + \lambda \right] f' - f'^2 + nf'' f = 0, \quad \text{equation (11.14)}$$

and conditions give

$$\frac{k_{nf}}{k_f} \frac{1}{\Pr} \theta'' + \left(1 - \phi + \phi \frac{(\rho c)_s}{(\rho c)_f} \right) nf \theta' = 0, \quad (11.15)$$

$$\theta_0(0) = \overline{\circ} + \overline{\ast} \theta_0(0) \overline{\circ} = \overline{\circ} \overline{\circ} \overline{\circ} = 1 + \overline{\ast} \theta_0(0) \overline{\circ}$$

$$\theta_0(\infty) \rightarrow 0 \overline{\circ} \theta(\infty) \rightarrow 0 \overline{\circ} \quad (11.16)$$

where $\overline{\circ}$ is the Hartman number, \Pr the Prandtl number, $\overline{\circ}$ the mass suction parameter, $\overline{\circ} \overline{\circ} \overline{\circ}$ the shrinking parameter, $\overline{\circ}$ the velocity slip parameter, $\overline{\circ}$ the porosity parameter and $\overline{\circ} \overline{\circ}$ the temperature jump parameter. These parameters are defined by

$$M^2 = \frac{B_0^2 \sigma_f}{\rho_f c}, \quad \Pr = \frac{\nu_f}{\sqrt{\alpha f} n}, \quad \gamma = \frac{d}{c}, \quad \beta = \frac{2 - \sigma_v}{\sigma_v} \lambda_0 \sqrt{\frac{c}{v_f}},$$

$$\lambda = \frac{\nu_f}{c K}, \quad \tilde{\beta} = \frac{2 - \sigma_T}{\sigma_T} \left(\frac{2\tilde{r}}{\tilde{r} + 1} \right) \frac{\lambda_0}{\Pr} \sqrt{\frac{c}{v_f}}, \quad (11.17)$$

where ε_1 is defined by

$$\varepsilon_1 = \frac{1}{(1 - \phi)^{2.5} \left[1 - \phi + \phi \left(\frac{\rho_s}{\rho_f} \right) \right]}, \quad (11.18)$$

with $\overline{\rho_s}$ as nano-solid particle density and $\overline{\rho_f}$ as base fluid density.
The important physical quantities of interest are local skin friction coefficient and Nusselt number which are given by

\[
C_{sf} = \frac{\tau_w|_{z=0}}{\frac{1}{2} \rho u_w^2}, \quad Nu = \frac{x q_w}{k_f (T_f - T_\infty)},
\]

(11.19)

where the surface shear stress and surface heat flux satisfy

\[
\tau_w = -\mu_{nf} \frac{\partial u}{\partial z}|_{z=0}, \quad q_w = -k_{nf} \frac{\partial T}{\partial z}|_{z=0}.
\]

(11.20)

Dimensionless forms of local skin friction coefficient and Nusselt number are

\[
C_{sf} \sqrt{\frac{Re_x}{2}} = \frac{1}{(1 - \phi)^2.5} f''(0), \quad Nu Re_x^{-\frac{1}{3}} = -\frac{k_{nf}}{k_f} \theta'(0),
\]

(11.21)

in which \(Re_x = \frac{u_l}{v} \frac{d}{d} \) denotes the local Reynolds number.

11.2 Homotopy analysis solutions

The initial guesses and the linear operators \(L_0\) and \(L_1\) are selected in the following forms

\[
f_0(\xi) = S + \frac{\gamma}{1 + \beta} - \frac{\gamma}{1 + \beta} \exp(-\eta), \quad \theta_0(\eta) = \frac{1}{1 + \beta} \exp(-\eta),
\]

(11.22)

\[
L_f(f) = \frac{\partial^3 f}{\partial \eta^3} - \frac{\partial f}{\partial \eta}, \quad L_\theta(\theta) = \frac{\partial^2 \theta}{\partial \eta^2} - \theta,
\]

(11.23)

with the properties mentioned below

\[
L_0 \phi_1 + \phi_2 \phi + \phi_3 e^{-\eta} = 0 \phi
\]

\[
L_0 \phi_4 + \phi_5 e^{-\eta} = 0 \phi
\]

(11.24)

\[
L \phi
\]

and \(\phi_1 - \phi_5\) are the constants. With Eqs. (11.14) and (11.15), the definitions of operators \(N_0\)
and \(N \) can be introduced as follows:

\[
N_f \left[\hat{f}(\eta; p) \right] = \varepsilon_1 \frac{\partial^3 \hat{f}(\eta; p)}{\partial \eta^3} - \varepsilon_1 \left[M^2 (1 - \phi) \frac{\sigma_n \Gamma}{\sigma_f} + \lambda \right] \frac{\partial \hat{f}(\eta; p)}{\partial \eta} \\
- \left(\frac{\partial \hat{f}(\eta; p)}{\partial \eta} \right)^2 + n \frac{\partial \hat{f}(\eta; p)}{\partial \eta} \frac{\partial^2 \hat{f}(\eta; p)}{\partial \eta^2}, \quad (11.25)
\]

\[
N_\theta \left[\hat{\theta}(\eta; p), \hat{f}(\eta; p) \right] = \frac{k_{nf}}{k_f} \frac{1}{Pr} \frac{\partial^2 \hat{\theta}(\eta; p)}{\partial \eta^2} + + \left(1 - \phi + \frac{\Gamma}{(pc)_s} - \phi \frac{(pc)_s}{(pc)_f} \right) n \hat{f}(\eta; p) \frac{\partial \hat{\theta}(\eta; p)}{\partial \eta}. \quad (11.26)
\]

The problems subjected to zeroth order deformation can be written as follows:

\[
(1 - \xi) \left\{ L \left[h^{-}\left(\bar{\eta}, \bar{\xi} \right) - \bar{h}_0(\xi)i = \bar{h} \right] \right\} N \left[h^{-}\left(\bar{\eta}, \bar{\xi} \right) \right] \quad (11.27)
\]

\[
(1 - \xi) \left\{ L \left[h^{-}\left(\bar{\eta}, \bar{\xi} \right) - \bar{h}_0(\xi)i = \bar{h} \right] \right\} N \left[h^{-}\left(\bar{\eta}, \bar{\xi} \right) \right] \quad (11.28)
\]

\[
\hat{f}(0; p) = S, \quad \frac{\partial \hat{f}(0; p)}{\partial \eta} = \gamma + \beta \frac{\partial \hat{f}(0; p)}{\partial \eta^2}, \quad \frac{\partial \hat{f}(\infty; p)}{\partial \eta} = 0, \quad (11.29)
\]

\[
\hat{\theta}(0; p) = 1 + \beta \frac{\partial \hat{\theta}(0; p)}{\partial \eta}, \quad \hat{\theta}(\infty; p) = 0,
\]

in which \(\bar{\eta} \) and \(\bar{\xi} \) are the nonzero auxiliary parameters.

The corresponding problems at \(m \)th order satisfy the following expressions

\[
L \left[h^{-}\left(\bar{\eta}, \bar{\xi} \right) - \bar{h}_m(\xi)i = \bar{h} \right] \left\{ R \left[h^{-}\left(\bar{\eta}, \bar{\xi} \right) \right] \right\} \quad (11.30)
\]

\[
L \left[h^{-}\left(\bar{\eta}, \bar{\xi} \right) - \bar{h}_m(\xi)i = \bar{h} \right] \left\{ R \left[h^{-}\left(\bar{\eta}, \bar{\xi} \right) \right] \right\} \quad (11.31)
\]

\[
f_m(0) = f'_m(0) - \beta f''_m(0) = f'_m(\infty) = \theta_m(0) - \beta \theta'_m(0) = \theta_m(\infty) = 0, \quad (11.32)
\]

\[
R_{f,m}(\eta) = \varepsilon_1 f''_{m-1}(\eta) - \varepsilon_1 \left[M^2 (1 - \phi) \frac{\sigma_n \Gamma}{\sigma_f} + \lambda \right] f'_{m-1}(\eta) + \sum_{k=0}^{m-1} \left[n f_{m-1-k} f''_k - f'_{m-1-k} f'_k \right], \quad (11.33)
\]

\[
R_{\theta,m}(\eta) = \frac{k_{nf}}{k_f} \frac{1}{Pr} \theta''_{m-1}(\eta) + + \left(1 - \phi + \frac{\Gamma}{(pc)_s} - \phi \frac{(pc)_s}{(pc)_f} \right) n \sum_{k=0}^{m-1} f_{m-1-k} \theta'_k, \quad (11.34)
\]

and

217
\[x_m = \begin{cases}
0, & m \leq 1 \\
1, & m > 1
\end{cases} \]

(11.35) \text{If} f_m^* \text{and} \theta_m^* \text{denote the special solutions then the general solutions are}

\[f_m(\eta) = f_m^*(\eta) + c_1 + c_2\eta + c_3e^{-\eta}, \]

\[\theta_m(\eta) = \theta_m^*(\eta) + c_4 + c_5e^{-\eta}. \]

(11.36)

11.3 Convergence analysis

We note that the computed series solutions depend upon the auxiliary parameters. The convergence region and rate of approximations for the functions \(\overline{f} \) and \(\overline{\theta} \) can be controlled and adjusted through the auxiliary parameters \(\overline{m} \) and \(\overline{\theta} \). For admissible values of \(\overline{m} \) and \(\overline{\theta} \), the \(\overline{1} \)-curves of \(\overline{f}_{00}(0) \) and \(\overline{\theta}_{0}(0) \) for 17th-order of approximations are displayed. Figs. 11.1 and 11.2 depict that the range of admissible values of \(\overline{m} \) and \(\overline{\theta} \) are \(-1.5 \leq \overline{m} \leq -0.1 \) and \(-1.4 \leq \overline{\theta} \leq -0.6 \). It is found that the series solutions converge in the whole region of \(\overline{f}(0, \overline{m}, \overline{\theta}) \) when \(\overline{m} = -0.7 \) and \(\overline{\theta} = -0.9 \).

![Graph](image-url)

Fig. 11.2: \(\sim \)-curves of \(\overline{f}_{00}(0) \) and \(\overline{\theta}_{0}(0) \)
Table 11.1: Convergence of HAM solutions for different order of approximations when

\[\bar{\varepsilon} = -0.1 \bar{\varepsilon} = \bar{\varepsilon} = 1 \bar{\varepsilon} = 2 \bar{\varepsilon} = 0.3 \quad \text{and} \quad \bar{\varepsilon} = 0.5 \frac{\varphi}{\varepsilon} \]

<table>
<thead>
<tr>
<th>Order of approximations</th>
<th>(\bar{\varepsilon})</th>
<th>(-\bar{\varepsilon})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0661678</td>
<td>0.532809</td>
</tr>
<tr>
<td>5</td>
<td>0.0700218</td>
<td>0.589974</td>
</tr>
<tr>
<td>10</td>
<td>0.0700198</td>
<td>0.594100</td>
</tr>
<tr>
<td>15</td>
<td>0.0700198</td>
<td>0.593038</td>
</tr>
<tr>
<td>20</td>
<td>0.0700198</td>
<td>0.593149</td>
</tr>
<tr>
<td>25</td>
<td>0.0700198</td>
<td>0.593162</td>
</tr>
<tr>
<td>28</td>
<td>0.0700198</td>
<td>0.593155</td>
</tr>
<tr>
<td>35</td>
<td>0.0700198</td>
<td>0.593155</td>
</tr>
<tr>
<td>40</td>
<td>0.0700198</td>
<td>0.593155</td>
</tr>
<tr>
<td>45</td>
<td>0.0700198</td>
<td>0.593155</td>
</tr>
</tbody>
</table>

11.4 Results and discussion

This section is prepared to examine the impact of pertinent parameters on the velocity and temperature. This objective has been achieved by plots of Figs. (11.3 - 11.14). Here Figs (11.3 - 11.8) have been plotted for the effects of \(\bar{\varepsilon} \) (Hartman number), \(\bar{\varepsilon} \) (porosity parameter), \(\bar{\varepsilon} \) (mass suction parameter), \(\bar{\varepsilon} \) (velocity slip parameter), \(\bar{\varepsilon} \) (nanoparticles volume fraction) on the velocity \(\bar{\varepsilon} \) and \(\bar{\varepsilon} \) (shrinking parameter). The behavior of Hartman number \(\bar{\varepsilon} \) for the boundary layer is shown in Fig. 11.3. There is decrease in thickness of boundary layer due to an increase in \(\bar{\varepsilon} \). This is because of the reason that Lorentz force acts as a retarding force. Such retarding force enhances the frictional resistance opposing the fluid motion in the momentum boundary layer. Fig. 11.4 depicts that the velocity is increased when porosity parameter \(\bar{\varepsilon} \) increases. As noted in Fig. 11.5 the associated boundary layer thickness decays when mass suction parameter \(\bar{\varepsilon} \) increases. Because applying suction leads to draw the amount of fluid particles into the wall and consequently the velocity boundary layer decreases. Also suction is an agent which causes a reduction in the fluid velocity. Fig. 11.6 shows that velocity rises when values of velocity slip parameter \(\bar{\varepsilon} \) are enhanced.
However velocity is a decreasing function of $\frac{V}{V_0}$ (see Fig. 11.7). This is because of the fact that by increasing the volume of copper nanoparticles, the thermal conductivity increases and the boundary layer thickness decreases. Fig. 11.8 portrays the influence of $\frac{V}{V_0}$ on $\frac{V}{V_0}$ It is found that velocity increases when values of $\frac{V}{V_0}$ are increased. Figs. 11.9 – 11.14 depict the effects of Hartman number H, porosity parameter ϵ, mass suction parameter α, velocity slip parameter β, temperature jump parameter θ, and shrinking parameter ξ on temperature profile $\frac{V}{V_0}$. Effect of ϵ on the temperature is analyzed in Fig. 11.9. As Lorentz force is a resistive force which opposes the fluid motion. So heat is produced and as a result thermal boundary layer thickness increases. It is observed that increasing the porosity parameter ϵ decreases the thermal boundary layer thickness. Variations of ϵ and α on temperature profile $\frac{V}{V_0}$ can be seen in the Figs. (11.11–11.12). There is a decrease in temperature when mass suction parameter α and velocity slip parameter β are increased. Fig. 11.13 indicates that the surface temperature and thermal boundary layer decrease by increasing value of temperature jump θ. With the increase of thermal slip parameter, less heat is transferred to the fluid from the sheet and so temperature is found to decrease. Fig. 11.14 represents the effect of shrinking parameter ξ on temperature profile. It is observed that temperature profile decreases for an increase in ξ.

Table 11.1 is prepared for the convergence of series solutions. It is observed that convergence for velocity is achieved at 10^{th} order of approximation and for temperature convergence is achieved at 28^{th} order of approximation. The values of shear stress at the surface are compared with previous published results in Table 11.2. Here it is seen that the obtained solutions agree well with results of Zheng et al. [36]. Numerical values of the local Nusselt number for different emerging parameters are presented in Table 11.3. It is noted that the local Nusselt number increases for larger values of β, α, and ϵ. However it decreases for larger values of θ.

220
Fig. 11.3: Influence of \bar{c} on $\bar{u}(\bar{c})$.

Cu-water

$M = 0, 0.3, 0.6, 1$

$\lambda = S = 1, \beta = 0.3, \phi = 0.1, n = 2, \gamma = -1$
Fig. 11.4: Influence of λ on $f'(\eta)$.

$\lambda = 0, 0.5, 1, 1.5$

$M = 2, S = 1, \beta = 0.3, \phi = 0.1, n = 2, \gamma = -1$

Fig. 11.5: Influence of S on $f'(\eta)$.

$S = 0, 0.1, 0.2, 0.3$

$M = 2, \lambda = 0.7, \beta = 0.3, \phi = 0.1, n = 2, \gamma = -1$
Fig. 11.6: Influence of Cu-water on $f(\eta)$.

Fig. 11.7: Influence of Cu-water on $f(\eta)$.

$\beta = 0.4, 0.5, 0.6, 0.7$

$\phi = 0.1, 0.3, 0.4, 0.5$

$M = 2, \lambda = S = 1, \phi = 0.1, n = 2, \gamma = -1$

$M = 2, \lambda = S = 1, \beta = 0.3, n = 2, \gamma = -1$
Fig. 11.8: Influence of γ on $f(\eta)$.

Cu-water

$\gamma = -1, -0.9, -0.8, -0.7$

$M = 2, \lambda = S = 1, \beta = 0.1, n = 2, \phi = 0.1$

Fig. 11.9: Influence of Cu-water on $\theta(\eta)$.

$\lambda = S = \beta = 1, \beta = \phi = 0.1, n = 2, \gamma = -1$

$M = 1, 1.4, 2, 2.4$
Fig. 11.10: Influence of $\bar{\alpha}$ on $\theta(\eta)$

Cu-water

$S = \bar{\beta} = 1, M = 2, \beta = \phi = 0.1, n = 2, \gamma = -1$

$\lambda = 0.1, 0.7, 2, 4$

Cu-water

$S = \bar{\beta} = 1, M = 2, \beta = \phi = 0.1, n = 2, \gamma = -1$

$\lambda = \bar{\beta} = 1, M = 2, \beta = \phi = 0.1, n = 2, \gamma = -1$

$S = 0.1, 0.2, 0.3, 0.4$
Cu-water

\[S = \lambda = \bar{\beta} = 1, M = 2, \phi = 0.1, n = 2, \gamma = -1 \]

\[\beta = 0.3, 0.7, 1.1, 2.3 \]

Fig. 11.11: Influence of \(\bar{\beta} \)

Cu-water

\[S = \lambda = 0.1, M = 2, \beta = \phi = 0.1, n = 2, \gamma = -1 \]

\[\bar{\beta} = 0.2, 0.5, 0.9, 1.3 \]

Fig. 11.12: Influence of \(\bar{\beta} \) on (\(\theta(\eta) \))
Fig. 11.13: Influence of β on $\theta(\eta)$.

Fig. 11.14: Influence of γ on $\theta(\eta)$.

Table 11.2: Comparison of values of $\theta_00(0)$ when $\lambda = 0$, $\beta = 0$, $\gamma = -1$ and $\gamma = 0$

<table>
<thead>
<tr>
<th>S</th>
<th>λ</th>
<th>β</th>
<th>Zheng et al. [36]</th>
<th>Present results</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>1.8</td>
<td>4.21671330</td>
<td>4.20406130</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2.89187352</td>
<td>2.89160464</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0.2</td>
<td>1.84296593</td>
<td>1.84287335</td>
</tr>
<tr>
<td>2</td>
<td>$\sqrt{5}$</td>
<td>2</td>
<td>4.75696326</td>
<td>4.74614023</td>
</tr>
<tr>
<td>2</td>
<td>$\sqrt{5}$</td>
<td>3</td>
<td>6.54909693</td>
<td>6.53871573</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1.8</td>
<td>2.85192213</td>
<td>2.85192199</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2.30277564</td>
<td>2.30277376</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>0.2</td>
<td>1.83493516</td>
<td>1.83493413</td>
</tr>
</tbody>
</table>
Table 11.3: Numerical values of Nusselt number \bar{N} for different values of $\bar{\lambda}, \bar{\varepsilon}, \bar{\eta}$ and $\bar{\phi}$

<table>
<thead>
<tr>
<th>$- \frac{k_r \theta'(0)}{k_t}$</th>
<th>$\bar{\lambda}$</th>
<th>$\bar{\varepsilon}$</th>
<th>$\bar{\eta}$</th>
<th>$\bar{\phi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>.97478</td>
<td>.35243</td>
<td>.43831</td>
<td>.30085</td>
<td>.31914</td>
</tr>
<tr>
<td>.36236</td>
<td>.8586</td>
<td>.12684</td>
<td>.6689</td>
<td>.34389</td>
</tr>
<tr>
<td>.34821</td>
<td>.35123</td>
<td>.02267</td>
<td>.34427</td>
<td>.86169</td>
</tr>
<tr>
<td>.033 2 0 3 3</td>
<td>0 2 0 4 3</td>
<td>2</td>
<td>-0 3 2 -0 2 2</td>
<td></td>
</tr>
<tr>
<td>-0 3 2 0 3 3</td>
<td>1</td>
<td>1</td>
<td>0 4 2 0 7 2</td>
<td></td>
</tr>
<tr>
<td>-0 5 0 5 2</td>
<td>2</td>
<td>2</td>
<td>0 7 2</td>
<td></td>
</tr>
<tr>
<td>-0 9 2</td>
<td>2</td>
<td>2</td>
<td>1 0 3 4</td>
<td></td>
</tr>
<tr>
<td>-0 5 3</td>
<td>3</td>
<td>3</td>
<td>0 5 3 4</td>
<td></td>
</tr>
</tbody>
</table>

228
11.5 Concluding remarks

Three-dimensional flow of viscous nanofluid due to porous shrinking surface is discussed. Attention is focused to the development of series solutions. The following observations are important.

• The velocity has similar pattern with respect to Hartman number, porosity parameter, mass suction parameter and velocity slip parameter.

• The shrinking parameter has reverse effect on the velocity and temperature profiles.

• Role of velocity slip, temperature jump and suction parameters on the temperature are similar in a qualitative sense.

• There is an increase in the temperature and thermal boundary layer when Hartman number increases.
Chapter 12

MHD three-dimensional flow of nanofluid in presence of convective conditions

This chapter deals with the boundary layer magnetohydrodynamic (MHD) flow of viscous nanofluid saturating porous medium. The flow is induced by a convectively heated permeable shrinking surface. Appropriate transformations reduce the nonlinear partial differential system to ordinary differential system. Flow and heat transfer characteristics are computed by homotopic procedure. The results of velocity, temperature and Nusselt number are analyzed for various parameters of interest. It is noted that higher nanoparticle volume fraction decreases the velocity field. Also temperature and heat transfer rate are enhanced for larger values of Biot number.

12.1 Model development

Let us consider the steady three-dimensional flow of an incompressible nanofluid over a shrinking surface. The fluid fills the porous medium. A uniform transverse magnetic field of strength B_0 is applied parallel to the z-axis. It is assumed that the induced magnetic and electric field effects are negligible. The convective boundary conditions are employed in the heat transfer process. The governing equations are given by

$$\frac{\partial u}{\partial x} \mid \frac{\partial w}{\partial y} \mid \frac{\partial w}{\partial z} = 0.$$ \hspace{1cm} (12.1)
\[
\begin{align*}
\frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} &= \nu_{nf} \frac{\partial^2 u}{\partial z^2} - \frac{\sigma_{nf} B_0^2 u}{\rho_{nf}} - \nu_{nf} u, \\
\frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} &= \nu_{nf} \frac{\partial^2 v}{\partial z^2} - \frac{\sigma_{nf} B_0^2 v}{\rho_{nf}} - \nu_{nf} v, \\
\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} &= \alpha_{nf} \frac{\partial^2 T}{\partial y^2},
\end{align*}
\]

(12.2) (12.3) (12.4)

where \((\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}) \) are the velocity components along the \((\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z}) \) directions respectively and \(\overrightarrow{K} \) the permeability of porous medium. The effective density \(\rho_{nf} \), the effective dynamic viscosity \(\mu_{nf} \), the effective thermal diffusivity \(\alpha_{nf} \), the heat capacitance \((\rho c_p)_{nf} \), the thermal conductivity \(\sigma_f \) and the electrical conductivity \(\sigma_{nf} \) of the nanofluid are given by

\[
\begin{align*}
\rho_{nf} &= \rho_f (1 - \phi) + \rho_s \phi, \\
\mu_{nf} &= \frac{\mu_f}{(1 - \phi)^{2.5}}, \\
\alpha_{nf} &= \frac{k_{nf}}{(\rho c_p)_{nf}}, \\
(\rho c_p)_{nf} &= (\rho c_p)_f (1 - \phi) + (\rho c_p)_s \phi, \\
k_{nf} &= k_s + 2k_f - 2\phi (k_f - k_s), \\
\sigma_{nf} &= 1 + \frac{3 \left(\frac{\sigma_s}{\sigma_f} - 1 \right)}{\left(\frac{\sigma_s}{\sigma_f} + 2 \right) - \left(\frac{\sigma_s}{\sigma_f} - 1 \right)} \phi.
\end{align*}
\]

(12.5) (12.6) (12.7) (12.8) (12.9) (12.10)

Here \(\phi \) is the solid volume fraction, \(\phi \) in subscript is for nano-solid-particles and \(\phi \) in subscript is for base fluid. The boundary conditions are

\[
\begin{align*}
u &= dx, \quad v = d(n - 1)y, \quad w = -W, \quad -k_f \frac{\partial T}{\partial z} = h(T_f - T) \quad \text{at} \quad \overrightarrow{z} = 0
\end{align*}
\]

(12.11)

where \(h \) is the shrinking constant, \(\overrightarrow{v} \) is the suction velocity and \(\overrightarrow{v} \) is the convective heat transfer coefficient. We observe that when \(n = 1 \) the sheet shrinks in \(\overrightarrow{x} \)-direction only and the sheet shrinks axisymmetrically for \(n = 2 \). Employing

231
\[u = c x f' (\eta), \quad v = c (n - 1) y f' (\eta), \quad w = -\sqrt{c x} n f (\eta), \quad \eta = \frac{c}{\nu_f} z, \quad \theta (\eta) = \frac{T - T_\infty}{T_f - T_\infty}, \quad (12.12) \]

Equation (12.1) is satisfied automatically and Eqs. (12.2 - 12.4) are reduced as follows:

\[\varepsilon_1 f''' - f'' + n f'' - M \varepsilon_1 (1 - \phi) 2.5 \frac{\sigma_n f}{\sigma_f} f' - \lambda \varepsilon_1 f' = 0, \quad (12.13) \]

\[\frac{\varepsilon_2 (1 - \phi) 2.5 k_n f}{\Pr} \theta'' + n f \theta' = 0, \quad (12.14) \]

\[\tilde{\varphi} (0) = - \tilde{\varphi} \varphi_0 (0) = - \tilde{\varphi} \varphi_0 (0) = - \tilde{\varphi}_1 [1 - \varphi (0)] \tilde{\varphi} \]

\[\varphi (\infty) \rightarrow 0 \tilde{\varphi} \varphi (\infty) \rightarrow 0 \tilde{\varphi} \quad (12.15) \]

Here \(\varphi \equiv 0 \) and the porosity parameter \(\tilde{\varphi} \) the Hartman number \(\tilde{\varphi} \), the Prandtl number \(\Pr \) the mass transfer parameter \(\tilde{\varphi} \tilde{\varphi} 0 \) holds for suction and \(\tilde{\varphi} \tilde{\varphi} 0 \) for injection, the shrinking parameter \(\tilde{\varphi} \) and the thermal Biot number \(\tilde{\varphi}_1 \) are defined as follows:

\[\lambda = \frac{\nu_f}{c K}, \quad M = \frac{\sigma B^2_0}{\rho f c}, \quad \Pr = \frac{\nu_f (\rho c)_f}{k_f}, \quad S = \frac{W}{\sqrt{c x} n}, \quad \gamma = \frac{d}{c}, \quad \gamma_1 = \frac{h}{k_f} \sqrt{\frac{\nu_f}{c}}, \quad (12.16) \]

in which \(\tilde{\varphi}_1 \) and \(\tilde{\varphi}_2 \) are constants relating to the properties of nanofluid defined by

\[\varepsilon_1 = \frac{1}{(1 - \phi) 2.5 [1 - \phi + \phi \frac{\rho_L}{\rho_f}]} \quad (12.17) \]

\[\varepsilon_2 = \frac{1}{(1 - \phi) 2.5 [1 - \phi + \phi \frac{(\rho c)_L}{(\rho c)_f}]} \quad (12.18) \]

Local Nusselt number \(\tilde{\varphi} \tilde{\varphi} \) is

\[Nu = \frac{x q_w}{k_f (T_f - T_\infty)}, \quad (12.19) \]

where the surface heat flux \(q_w \) satisfies

\[q_w = -k_{nf} \frac{\partial T}{\partial z} \bigg|_{z=0}. \quad (12.20) \]

Using Eqs. (12.12) and (12.20), we obtain
in which $Re_x = \frac{\bar{u_0}}{\nu} Re_{\infty}$ denotes the local Reynolds number.

12.2 Homotopy analysis solutions

We choose initial guesses $\bar{u}_0(\bar{y})$ and $\bar{v}_0(\bar{y})$ and auxiliary linear operators L_0 and L_1 of the forms

\[
\begin{align*}
L_0(\bar{y}) &= \bar{y}^{(00)} - \bar{y}^{(0)} L_0(\bar{y}) = \bar{y}^{(00)} - \bar{y}^{(0)}
\end{align*}
\]

with

\[
\begin{align*}
L_0[\bar{y}_0 + \bar{y}_2 \exp(\bar{y}) + \bar{y}_3 \exp(-\bar{y})] &= 0 \\
L_0[\bar{y}_4 \exp(\bar{y}) + \bar{y}_5 \exp(-\bar{y})] &= 0 \\
\end{align*}
\]

in which $\bar{y}_1 - \bar{y}_5$ are the constants.

The zeroth and m^{th} order problems are

\[
\begin{align*}
(1 - \bar{y}) L_0 h^0(\bar{y}; \bar{y}) - \bar{y}_0(\bar{y}) i = \bar{y}_5 N_0 h^0(\bar{y}; \bar{y})
(1 - \bar{y}) L_0 h^m(\bar{y}; \bar{y}) - \bar{y}_0(\bar{y}) i = \bar{y}_5 N_0 h^m(\bar{y}; \bar{y})
\end{align*}
\]

\[
\begin{align*}
\bar{y}^0(0; \bar{y}) &= \bar{y} \bar{y} \bar{y} \bar{y} \bar{y}^0(0; \bar{y}) = \bar{y} \bar{y} \bar{y} \bar{y} \bar{y}^0(0; \bar{y}) = 0 \\
\bar{y}^m(0; \bar{y}) &= -\bar{y}_1 [1 - \bar{y}^m(0; \bar{y})] \bar{y}^m(0; \bar{y}) = 0 \\
\end{align*}
\]
The general solutions (12.28) in terms of the special solutions (12.29) are

$$ N_f \left[\tilde{f}(\eta; p) \right] = \epsilon_1 \frac{\partial^3 \tilde{f}(\eta; p)}{\partial \eta^3} - \left(\frac{\partial \tilde{f}(\eta; p)}{\partial \eta} \right)^2 + n \tilde{f}(\eta; p) \frac{\partial^2 \tilde{f}(\eta; p)}{\partial \eta^2} - M \epsilon_1 (1 - \phi)^{2.5} \frac{\sigma_{nf}}{\sigma_f} \frac{\partial \tilde{f}(\eta; p)}{\partial \eta} - \lambda \epsilon_1 \frac{\partial \tilde{f}(\eta; p)}{\partial \eta}, $$

(12.28)

$$ N_\theta[\tilde{\theta}(\eta; p), \tilde{f}(\eta; p)] = \frac{\epsilon_2}{Pr} \frac{k_{nf}}{k_f} (1 - \phi)^{2.5} \frac{\partial^2 \tilde{\theta}(\eta; p)}{\partial \eta^2} + n \tilde{f}(\eta; p) \frac{\partial \tilde{\theta}(\eta; p)}{\partial \eta}. $$

(12.29)

$$ L_n \left[\tilde{\theta}_n(\eta) - \tilde{\theta}_n \eta \tilde{f}_n(\eta) \right] = \lambda \tilde{\theta}_n \eta \tilde{f}_n(\eta). $$

(12.30)

$$ L_n \left[\tilde{\theta}_n(\eta) - \tilde{\theta}_n \eta \tilde{f}_n(\eta) \right] = \lambda \tilde{\theta}_n \eta \tilde{f}_n(\eta). $$

(12.31)

$$ f_n(0) = f_n'(0) = f_n' (\infty) = \theta_n'(0) = - \gamma_1 \theta_n(0) = \theta_n(\infty) = 0. $$

(12.32)

$$ R_{f,m} (\eta) = \epsilon_1 f''_{m-1} \sum_{k=0}^{m-1} \left[f'_{m-1-k} f_k - n f'_{m-1-k} f''_k \right] - M \epsilon_1 (1 - \phi)^{2.5} \frac{\sigma_{nf}}{\sigma_f} f'_{m-1} - \lambda \epsilon_1 f'_{m-1}, $$

(12.33)

$$ R_{\theta,m} (\eta) = \frac{\epsilon_2}{Pr} \frac{k_{nf}}{k_f} (1 - \phi)^{2.5} \theta''_{m-1} + n \sum_{k=0}^{m-1} \theta'_{m-1-k} f_k. $$

(12.34)

$$ R_{f,m} (\eta) = \epsilon_1 f''_{m-1} \sum_{k=0}^{m-1} \left[f'_{m-1-k} f_k - n f'_{m-1-k} f''_k \right] - M \epsilon_1 (1 - \phi)^{2.5} \frac{\sigma_{nf}}{\sigma_f} f'_{m-1} - \lambda \epsilon_1 f'_{m-1}, $$

(12.35)

The general solutions (12.36) in terms of the special solutions (12.37) are

$$ f_m(\eta) = f_m^* (\eta) + c_1 + c_2 e^{\eta} + c_3 e^{-\eta}, $$

$$ \theta_m(\eta) = \theta_m^* (\eta) + c_4 e^{\eta} + c_5 e^{-\eta}, $$

(12.36)

where the constants (12.37) through the boundary conditions (12.32) have the values

$$ c_1 = - c_3 - f_m^* (0), \quad c_2 = c_4 = 0, \quad c_3 = \left. \frac{\partial f_m^*(\eta)}{\partial \eta} \right|_{\eta=0}, $$

$$ c_5 = \frac{1}{1 + \gamma_1} \left[\left. \frac{\partial \theta_m^*(\eta)}{\partial \eta} \right|_{\eta=0} - \gamma_1 \theta_m^*(0) \right]. $$

(12.37)
12.3 Convergence of the series solutions

The series solutions of Eqs. (12.30) and (12.31) contain the non-zero auxiliary parameters \(\eta \) and \(\mu \) which can adjust and control the convergence of the series solutions. In order to see the range of admissible values of \(\eta \) and \(\mu \) of the functions \(f_{00}(0) \) and \(f_{00}(0) \) the \(\eta \)-curves for 14th-order of approximations are displayed. Figs. (12.1) and (12.2) show that the range for the admissible values of \(\eta \) and \(\mu \) are \(-1 \leq \eta \leq -0.5 \) and \(-1 \leq \mu \leq -0.1 \) Further, the series solutions converge in the whole region of \(\phi \) when \(\eta = -0.6 \) and \(\mu = -0.5 \)

\[\phi = \gamma = 0.1, n = 2, S = 0.8, Pr = 6.2, M = 0.2, \lambda = 0.5, \gamma = -0.1 \]

Fig. 12.1: \(\eta \)-curve for the velocity field.
Table 12.1: Convergence of HAM solutions for different order of approximations when
\[\phi = \gamma_1 = 0.1, n = 2, S = 0.8, Pr = 6.2, \\
M = 0.2, \lambda = 0.5, \gamma = -0.1 \]

<table>
<thead>
<tr>
<th>Order of approximations</th>
<th>(\theta_0(0))</th>
<th>(-\theta_0(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_{00}(0))</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.4 Discussion

In this section, Figs. (12-3 to 12-13) are plotted to analyze the effects of mass transfer parameter \(\phi \), Hartman number \(\phi \), shrinking parameter \(\phi \), porosity parameter \(\phi \) and nanoparticles volume...
fraction \(\beta \) on the velocity \(\phi_0 \) and temperature \(\theta \) profiles. Effects of mass transfer parameter \(\beta \) on the velocity profile \(\phi_0 \) can be seen from Fig. 12.3. Here the magnitude of velocity profile \(\phi_0 \) decreases when mass transfer parameter \(\beta \) increases. Because applying suction leads to draw the amount of fluid particles into the wall and consequently the velocity boundary layer decreases. Fig. 12.4 displays the effect of Hartman number \(\alpha \) on \(\phi_0 \). The magnitude of velocity field \(\phi_0 \) is found to decrease when \(\alpha \) increases. The application of an applied magnetic field has the tendency to slow down the movement of the fluid. It leads to a decrease in the velocity and momentum boundary layer thickness. Influence of shrinking parameter \(\delta \) and porosity parameter \(\epsilon \) on the velocity field \(\phi_0 \) is similar to that of \(\beta \) (see Figs. 12.5 and 12.6). The behavior of nanoparticle volume fraction \(\gamma \) on \(\phi_0 \) is shown in Fig. 12.7. This graph shows that magnitude of \(\phi_0 \) increases when nanoparticle volume fraction \(\gamma \) increases.

Fig. 12.8 illustrates the effects of mass transfer parameter \(\beta \) on temperature profile \(\theta \). Temperature \(\theta \) decreases by increasing the mass transfer parameter \(\beta \). Fig. 12.9 illustrates the effects of Hartman number \(\alpha \) on temperature profile \(\theta \). The Lorentz force is a resistive force which opposes the fluid motion. As a sequence the heat is produced and thus thermal boundary layer thickness increases. Influence of shrinking parameter \(\delta \) and porosity parameter \(\epsilon \) on temperature profile \(\theta \) can be seen in the Figs. (12.10–12.11). It is observed that the temperature profile \(\theta \) decreases when the shrinking parameter \(\delta \) and porosity parameter \(\epsilon \) are increased. Fig. 12.12 represents the effect of nanoparticle volume fraction \(\gamma \) on temperature field \(\theta \). It is noted that the temperature profile \(\theta \)
increases for increasing values of nanoparticle volume fraction ϕ. It is because of the fact that by increasing the volume fraction of nanoparticles, the thermal conductivity increases. The behavior of thermal Biot number B_i on temperature profile θ is similar to that of nanoparticle volume fraction ϕ.

Table 12.1 shows the convergence of the series solutions. Some thermophysical properties of water and nanoparticles are given in Table 12.2. Numerical values of local Nusselt number for different emerging parameters are presented in Table 12.3. It is noticed that local Nusselt number $N_u \left(R_e u \right)^{-\frac{1}{2}}$ increases for larger values of Hartman number H and nanoparticle volume fraction ϕ and thermal Biot number B_i.
Fig. 12.3: Influence of S on $f(\eta)$

$S = 0.1, 0.3, 0.5, 0.7$

$M = 0.2, \gamma = 0.1, n = 2, \phi = 0.1, \text{Pr} = 6.2, \lambda = 0.5$

Fig. 12.4: Influence of M on $f(\eta)$

$M = 0.1, 0.3, 0.5, 1$

$S = 0.8, \gamma = 0.1, n = 2, \phi = 0.1, \text{Pr} = 6.2, \lambda = 0.5$
Fig. 12.5: Influence of γ on $f'(\eta)$

$S = 0.8, M = 0.2, n = 2, \phi = 0.1, \Pr = 6.2, \lambda = 0.5$

$\gamma = -1, -0.8, -0.5, -0.1$

Fig. 12.6: Influence of λ on $f'(\eta)$

$S = 0.8, M = 0.2, \gamma = -0.1, n = 2, \phi = 0.1, \Pr = 6.2$

$\lambda = 0.1, 0.5, 1, 1.5$
Fig. 12.7: Influence of ϕ on $f'(\eta)$

- $\phi = 0.01, 0.05, 0.1, 0.2$
- $S = 0.8, M = 0.2, \gamma = -0.1, n = 2, Pr = 6.2, \lambda = 0.5$

Fig. 12.8: Influence of θ on $\theta(\eta)$

- $M = 0.2, \gamma = -0.1, n = 2, \gamma_1 = \phi = 0.1, Pr = 6.2, \lambda = 0.5$
- $S = 0.1, 0.3, 0.5, 1$

241
Fig. 12.9: Influence of γ on $\theta(\eta)$

- $S = 0.8$, $\gamma = -0.1$, $n = 2$, $\gamma_1 = \phi = 0.1$, $Pr = 6.2$, $\lambda = 0.5$
- $M = 0.2, 0.4, 0.5, 0.7$
- $\gamma = -0.8, -0.6, -0.4, -0.1$
Fig. 12.10: Influence of M, γ, n, γ_1, ϕ, Pr, and S on $\theta(\eta)$

$M = 0.2, \gamma = -0.1, n = 2, \gamma_1 = 0.1, \phi = 0.1, Pr = 6.2, S = 0.8$

$\lambda = 0.1, 0.5, 1, 2$

Fig. 12.11: Influence of ϕ on $\theta(\eta)$

$M = 0.2, \gamma = -0.1, n = 2, \gamma_1 = 0.1, S = 0.8, Pr = 6.2, \lambda = 0.5$

$\phi = 0.05, 0.1, 0.15, 2$
Table 12.2: Thermo physical properties of water and nanoparticles[21].
<table>
<thead>
<tr>
<th>Material</th>
<th>ρ (Ω·m)</th>
<th>ρ (Ω·m²·cm⁻¹)</th>
<th>ρ (Ω·m²·cm⁻²)</th>
<th>ρ x 10⁵ (Ω⁻¹)</th>
<th>ρ (Ω⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure water</td>
<td>997.1</td>
<td>4179</td>
<td>0.613</td>
<td>21</td>
<td>0.05</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>8933</td>
<td>385</td>
<td>401</td>
<td>1267</td>
<td>5.96 x 10⁷</td>
</tr>
<tr>
<td>Silver (Ag)</td>
<td>10500</td>
<td>235</td>
<td>429</td>
<td>1389</td>
<td>3.6 x 10⁷</td>
</tr>
<tr>
<td>Alumina (Al₂O₃)</td>
<td>3970</td>
<td>765</td>
<td>40</td>
<td>0.85</td>
<td>1 x 10⁻¹⁰</td>
</tr>
<tr>
<td>Titanium Oxide (TiO₂)</td>
<td>4250</td>
<td>6862</td>
<td>89538</td>
<td>0.9</td>
<td>1 x 10⁻¹²</td>
</tr>
</tbody>
</table>

fluence of on ρ (Ω·m)
Table 12.3: Values of $\sqrt[3]{u(Re_x)^{-1}}$ when $\phi = 2$, $Pr = 6$, $\theta = 0.5$, $\gamma = 8$ and $\alpha = -0.1$

<table>
<thead>
<tr>
<th>M</th>
<th>ϕ</th>
<th>γ</th>
<th>$\frac{k_w}{k_f} \theta'(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.05</td>
<td>0.3</td>
<td>0.336178</td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td></td>
<td>0.336187</td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td>0.336201</td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
<td>0.336996</td>
</tr>
<tr>
<td>0.2</td>
<td>0.01</td>
<td></td>
<td>0.301109</td>
</tr>
<tr>
<td>0.05</td>
<td></td>
<td></td>
<td>0.334288</td>
</tr>
<tr>
<td>0.07</td>
<td></td>
<td></td>
<td>0.355500</td>
</tr>
<tr>
<td>0.1</td>
<td></td>
<td></td>
<td>0.379977</td>
</tr>
<tr>
<td>0.05</td>
<td>0.1</td>
<td></td>
<td>0.113946</td>
</tr>
<tr>
<td>0.3</td>
<td></td>
<td></td>
<td>0.332611</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
<td>0.537019</td>
</tr>
<tr>
<td>0.7</td>
<td></td>
<td></td>
<td>0.767305</td>
</tr>
</tbody>
</table>

12.5 Final remarks

MHD flow of nanofluid over a permeable shrinking sheet with convective condition is studied. The main results can be mentioned as follows:

- Effects of mass transfer parameter ϕ, Hartman number α, shrinking parameter γ and porosity parameter β are similar on the velocity profile θ_0.

- An increase in nanoparticle volume fraction ϕ reduces the velocity profile θ_0.

- There is a decrease in temperature profile θ for larger values of mass transfer parameter ϕ, shrinking parameter γ and porosity parameter β.

- An increase in nanoparticle volume fraction ϕ and thermal Biot number β_1 enhances the temperature profile θ^\prime.
Bibliography

