<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>6</td>
</tr>
<tr>
<td>1.1</td>
<td>Data Compression</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>WAN Optimization for Enterprise Network Extension</td>
<td>8</td>
</tr>
<tr>
<td>1.3</td>
<td>Digital FIR Filters</td>
<td>9</td>
</tr>
<tr>
<td>1.4</td>
<td>Overview of the Dissertation</td>
<td>10</td>
</tr>
<tr>
<td>1.5</td>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Lossless Data Compression: An Overview</td>
<td>13</td>
</tr>
<tr>
<td>2.1</td>
<td>Requirement of Data Compression</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Lossless vs. Lossy Compression</td>
<td>14</td>
</tr>
<tr>
<td>2.3</td>
<td>Lossless Data Compression Methods</td>
<td>14</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Statistical Methods</td>
<td>15</td>
</tr>
<tr>
<td>2.3.1.1</td>
<td>Static Modeling</td>
<td>16</td>
</tr>
<tr>
<td>2.3.1.2</td>
<td>Semi-Adaptive Modeling</td>
<td>16</td>
</tr>
<tr>
<td>2.3.1.3</td>
<td>Adaptive Modeling</td>
<td>16</td>
</tr>
<tr>
<td>2.3.1.4</td>
<td>Statistical Coding Methods</td>
<td>17</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Dictionary Based Methods</td>
<td>17</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Static Methods</td>
<td>18</td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Adaptive Methods</td>
<td>18</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Types of Implementation</td>
<td>19</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>Software Solution</td>
<td>19</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Hardware Solutions</td>
<td>20</td>
</tr>
<tr>
<td>2.4</td>
<td>Conclusions</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>References</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>High Speed Architectures for Lossless Data Compression Algorithms</td>
<td>25</td>
</tr>
<tr>
<td>3.1</td>
<td>Proposed LZ77 Hardware Realization</td>
<td>26</td>
</tr>
<tr>
<td>3.1.1</td>
<td>LZ77 Compression Algorithm Processing</td>
<td>27</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Compression Example</td>
<td>29</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Architectural Blocks</td>
<td>30</td>
</tr>
<tr>
<td>3.2</td>
<td>Unfolded Parallel Architecture</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Super-unfolded Architecture</td>
<td>35</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Design Methodology</td>
<td>35</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Comparison Matrix</td>
<td>37</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.3.3</td>
<td>LZ77 High Speed Super-unfolded Architecture Details</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>Pipelined Architecture</td>
<td>40</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Parallel Pipeline Interconnect</td>
<td>40</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Pipelined Architecture Details</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Results</td>
<td>44</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusions</td>
<td>45</td>
</tr>
<tr>
<td>3.7</td>
<td>References</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td>Multi-gig Lossless Data Compression Device for Enterprise Network</td>
<td>47</td>
</tr>
<tr>
<td>4.1</td>
<td>Data Compression in Enterprise Network Architecture</td>
<td>48</td>
</tr>
<tr>
<td>4.2</td>
<td>Compression Device</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>High Throughput Compression Architecture</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Conclusions</td>
<td>57</td>
</tr>
<tr>
<td>4.5</td>
<td>Reference</td>
<td>58</td>
</tr>
<tr>
<td>5</td>
<td>Constant Coefficient Digital FIR Filters: Design and Implementation</td>
<td>59</td>
</tr>
<tr>
<td>5.1</td>
<td>Overview of Digital FIR Filter</td>
<td>60</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Types of Digital FIR Filters</td>
<td>62</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Structures of Digital FIR Filters</td>
<td>62</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Design Methods of Digital FIR Filters</td>
<td>63</td>
</tr>
<tr>
<td>5.1.3.1</td>
<td>Window Design Method</td>
<td>63</td>
</tr>
<tr>
<td>5.1.3.2</td>
<td>Frequency Sampling Techniques</td>
<td>64</td>
</tr>
<tr>
<td>5.1.3.3</td>
<td>Optimal FIR Filter Design</td>
<td>64</td>
</tr>
<tr>
<td>5.2</td>
<td>Hardware Implementation Issues</td>
<td>64</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Finite Word-length Effects</td>
<td>66</td>
</tr>
<tr>
<td>5.3</td>
<td>Digital FIR Filter Design Parameters</td>
<td>68</td>
</tr>
<tr>
<td>5.4</td>
<td>Conclusions</td>
<td>69</td>
</tr>
<tr>
<td>5.5</td>
<td>References</td>
<td>69</td>
</tr>
<tr>
<td>6</td>
<td>Hardware Efficient Filter Implementation</td>
<td>72</td>
</tr>
<tr>
<td>6.1</td>
<td>Effects of Coefficient Quantization</td>
<td>73</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Effect on Frequency Response of a FIR Filter</td>
<td>74</td>
</tr>
<tr>
<td>6.2</td>
<td>FIR Filters with varying Quantization Levels</td>
<td>75</td>
</tr>
<tr>
<td>6.3</td>
<td>Proposed Design Methodology</td>
<td>77</td>
</tr>
<tr>
<td>6.4</td>
<td>Hardware Implementation and Results</td>
<td>82</td>
</tr>
<tr>
<td>6.5</td>
<td>Conclusions</td>
<td>85</td>
</tr>
<tr>
<td>6.6</td>
<td>References</td>
<td>86</td>
</tr>
</tbody>
</table>
7 Conclusions.. 88