Chapter 1 Introduction

1.1 Preamble
1.2 Motivation
1.3 Research objectives
1.4 Outline of the Dissertation

References

Chapter 2 Literature survey

2.1 Introduction
2.2 High Velocity Oxyfuel coating process
2.3 Tungsten carbide cobalt coatings
2.4 HVOF Sprayed WC-Co coatings
2.5 Nanocrystalline WC-Co coatings
2.6 Synthesis and processing of duplex Co-coated WC-17Co powder
2.7 Applications
2.8 Abrasive wear behaviour of WC-cobalt coatings
2.8.1 Effect of hardness and fracture toughness
2.8.2 Effect of grain size and mean free path
2.8.3 Effect of applied load and sliding distance
2.9 Effect of carbide size and cobalt content on the microcrystalline and
Mechanical properties of HVOF sprayed WC-Co coatings
2.10 WC phase stability
2.11 Effect of Feedstock Powder Particle Size
2.12 Evolution of HVOF sprayed nanocrystalline WC-Co coatings for better
Chapter 3 Experimental Procedure

3.1 Introduction

3.2 Materials

3.3 Substrate preparation

3.4 Testing and characterization equipments

3.5 HVOF spray deposition

3.6 Characterization of powders and coatings

3.7 Hardness and toughness measurement

3.8 Wear test procedure

3.9 Fracture toughness

Chapter 4 Results and Discussion

4.1 Introduction

4.2 Feedstock powder

4.3 Powder characterization

4.4 Characterization of coatings

4.4.1 SEM and optical microscopic study of the coatings

4.4.2 XRD of coatings

4.5 Study of tribological behaviour

4.6 Effect of process parameters