TABLE OF CONTENTS

ABSTRACT ... I

LIST OF PUBLICATIONS .. III

LIST OF TABLES ... IV

LIST OF FIGURES ... VII

LIST OF ABBREVIATIONS .. X

CHAPTER-1. INTRODUCTION

1. Introduction .. 1

1.1 *Brevibacterium linens* ... 1

1.1.1 Secretory proteins (Extracellular proteins) ... 1

1.1.1.1 Amylases .. 2

1.1.1.2 Proteases ... 2

1.1.1.3 Lipases ... 3

1.1.1.4 L-Lysine .. 3

1.1.1.5 Fermentation .. 4

1.1.1.5.1 Solid state fermentation (SSF) ... 4

1.1.1.6 Statistical approach for optimizing experimental variables in a bioprocess ... 4

1.1.1.6.1 Design-of-experiment (DoE), Factorial Design and Response Surface Methodology ... 5

1.1.1.6.2 Screening of factors ... 5

1.1.1.6.3 Softwares involved in experimental design .. 5

1.1.1.6.4 Evaluation of the experimental design ... 5

1.1.2 Membrane bound respiratory proteins ... 6

1.1.2.1 Respiration .. 6

1.1.2.1.1 Respiratory chain .. 7

1.1.2.1.2 Sequence of Electron Transport Chain ... 7

1.1.2.1.2.1 Complex I .. 8

1.1.2.1.2.2 Complex II ... 8
CHAPTER-2 LITERATURE REVIEW

2.1 Solid state fermentation for the production of extracellular enzymes and amino acids...15
2.2 Respiration & Electron Transport Chain...19
2.3 Proteomics...20

CHAPTER-3 MATERIALS AND METHODS

3.1 STUDY 1: EXTRA CELLULAR ENZYMES AND AMINO ACIDS....23
3.1.1 Microorganism, culture conditions and inoculum preparation............23
3.1.2 Alpha amylase...23
3.1.2.1 Cultivation medium...23
3.1.2.2 Alpha amylase assay...23
3.1.2.3 Selection of key factors for alpha amylase production by one factor optimization methodology...24
3.1.2.4 Statistical experimental design...24
3.1.2.4.1 Screening of cultivation variables by Plackett-Burman design........24
3.1.2.4.2 Optimization by Central composite design (CCD) and statistical analysis...25
3.1.2.4.3 Statistical model validation...26
3.1.2.5 Alpha amylase purification………………………………………..27
3.1.2.6 Electrophoresis and molecular mass determination……………27
3.1.2.7 Characteristics of Alpha amylase…………………………………27
3.1.3 Proteases…………………………………………………………..28
3.1.3.1 Cultivation medium………………………………………………28
3.1.3.2 Protease assay…………………………………………………..28
3.1.3.3 Selection of Key factors for protease production………………28
3.1.3.4 Statistical Modeling………………………………………………29
3.1.3.4.1 Screening of significant variables by Plackett- Burman design…29
3.1.3.4.2 Optimization by Central composite design (CCD) & statistical
analysis…………………………………………………………………30
3.1.3.4.3 Statistical model validation………………………………………..31
3.1.3.5 Characteristics of Protease………………………………………31
3.1.4 Lipases……………………………………………………………..31
3.1.4.1 Cultivation medium………………………………………………31
3.1.4.2 Lipase assay …………………………………………………….32
3.1.4.3 Addition of supplements for Lipase production……………………32
3.1.4.4 Statistical experimental design……………………………………32
3.1.4.4.1 Screening of cultivation variables by Plackett-Burman design…32
3.1.4.4.2 Optimization of lipase production by CCD & statistical analysis…33
3.1.4.4.3 Statistical model validation ………………………………………….35
3.1.4.4.4 Characteristics of Lipases………………………………………35
3.1.5 L-lysine……………………………………………………………..35
3.1.5.1 Selection of substrates for L-lysine production…………………..35
3.1.5.2 L-lysine analysis by TLC………………………………………..35
3.1.5.3 Statistical Approach……………………………………………..35
3.1.5.3.1 Statistical screening of significant variables by Plackett-Burman
design…………………………………………………………………35
3.1.5.3.2 Optimization of significant variables by Response Surface
Methodology………………………………………………………………37
3.1.5.3.3 Validation of the statistical model……………………………..38
3.2 STUDY 2: ISOLATION, PURIFICATION AND CHARACTERIZATION OF RESPIRATORY CHAIN COMPLEXES

3.2.1 Microorganism, inoculum preparation and culture conditions

3.2.2 Membrane Protein extracts

3.2.3 Purification of respiratory complexes

3.2.4 Polyacrylamide Gel Electrophoresis

3.2.5 Spectroscopy

3.2.6 Physical and chemical measurements

3.2.7 Complex II or Succinate Dehydrogenase Assay

3.2.8 Complex III or Menaquinol Cytochrome c Reductase Assay

3.2.9 Complex IV or Cytochrome c oxidase assay

3.2.10 Complex V or ATP synthase assay

3.3 STUDY 3: CHARTING THE CELLULAR AND EXTRACELLULAR PROTEOME ANALYSIS OF Brevibacterium linens DSM 20158 WITH UNSEQUENCED GENOME BY MASS SPECTROMETRY-DRIVEN SEQUENCE SIMILARITY SEARCHES

3.3.1 Microorganism, inoculum preparation, culture conditions and analytical methods

3.3.2 Extract Preparation for Proteome analysis

3.3.2.1 Extra cellular Protein extract

3.3.2.2 Intracellular Protein extracts

3.3.3 1D SDS PAGE

3.3.4 Sample analysis by nLC-ESI MSMS

3.3.5 Protein functional annotation

CHAPTER 4- RESULTS AND DISCUSSION

4.1 STUDY 1: EXTRA CELLULAR ENZYMES AND AMINO ACIDS

4.1.1 Alpha amylase
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1.1</td>
<td>Selection of key factors for alpha amylase production</td>
<td>45</td>
</tr>
<tr>
<td>4.1.1.2</td>
<td>Screening of cultivation variables by Plackett-Burman design</td>
<td>45</td>
</tr>
<tr>
<td>4.1.1.3</td>
<td>Optimization by Central composite design (CCD) & statistical analysis</td>
<td>48</td>
</tr>
<tr>
<td>4.1.1.4</td>
<td>Statistical model validation</td>
<td>54</td>
</tr>
<tr>
<td>4.1.1.5</td>
<td>Alpha amylase purification</td>
<td>55</td>
</tr>
<tr>
<td>4.1.1.6</td>
<td>Electrophoresis and molecular mass determination</td>
<td>56</td>
</tr>
<tr>
<td>4.1.1.7</td>
<td>Characteristics of Alpha amylase</td>
<td>56</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Protease</td>
<td>57</td>
</tr>
<tr>
<td>4.1.2.1</td>
<td>Selection of key factors for Protease production</td>
<td>57</td>
</tr>
<tr>
<td>4.1.2.2</td>
<td>Screening of significant variables by Plackett-Burman design</td>
<td>58</td>
</tr>
<tr>
<td>4.1.2.3</td>
<td>Optimization by Central composite design (CCD) & statistical analysis</td>
<td>60</td>
</tr>
<tr>
<td>4.1.2.4</td>
<td>Statistical model validation</td>
<td>65</td>
</tr>
<tr>
<td>4.1.2.5</td>
<td>Characteristics of Protease</td>
<td>66</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Lipases</td>
<td>67</td>
</tr>
<tr>
<td>4.1.3.1</td>
<td>Plackett-Burman Design for screening variables</td>
<td>67</td>
</tr>
<tr>
<td>4.1.3.2</td>
<td>Optimization by Central composite design (CCD) & statistical analysis</td>
<td>68</td>
</tr>
<tr>
<td>4.1.3.3</td>
<td>Statistical model validation</td>
<td>73</td>
</tr>
<tr>
<td>4.1.3.4</td>
<td>Characteristics of Lipases</td>
<td>74</td>
</tr>
<tr>
<td>4.1.4</td>
<td>L-Lysine</td>
<td>75</td>
</tr>
<tr>
<td>4.1.4.1</td>
<td>Selection of substrates for L-lysine production</td>
<td>75</td>
</tr>
<tr>
<td>4.1.4.2</td>
<td>Screening of significant variables by Plackett-Burman design</td>
<td>75</td>
</tr>
<tr>
<td>4.1.4.3</td>
<td>Optimization of significant variables by Response Surface Methodology</td>
<td>77</td>
</tr>
<tr>
<td>4.1.4.4</td>
<td>Statistical model validation</td>
<td>81</td>
</tr>
</tbody>
</table>
4.2 STUDY 2: ISOLATION, PURIFICATION AND CHARACTERIZATION OF RESPIRATORY CHAIN COMPLEXES

4.2.1 Purification of Respiratory complexes from Brevibacterium linens DSM 20158

4.2.2 Polyacrylamide Gel Electrophoresis

4.2.3 Spectral properties of Complex-II

4.2.4.1 Spectral properties of Menaquinone

4.2.4.2 Spectral characterization of membrane bound cytochrome c 551

4.2.5 Spectral properties of cytochrome c oxidase

4.2.6 Redox activity of complex II

4.2.7 Assay showing presence of Complex III

4.2.8 Redox activity of cytochrome c oxidase

4.2.9 Activity of ATP synthase

4.2.9.1 Dependence of Velocity on ADP and P_i

4.3 STUDY 3 CHARTING THE CELLULAR AND EXTRACELLULAR PROTEOME ANALYSIS OF BREVIBACTERIUM LINENS DSM 20158 WITH UNSEQUENCED GENOME BY MASS SPECTROMETRY- DRIVEN SEQUENCE SIMILARITY SEARCHES

4.3.1 Cell growth and cultivation profile

4.3.2 Analysis of extra cellular and cellular proteome identified by MASCOT

4.3.3 Analysis of extra cellular and cellular proteome identified by de novo sequencing and MS BLAST

CONCLUSIONS

REFERENCES