TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>(ix)</td>
</tr>
<tr>
<td>List of Figures</td>
<td>(x)</td>
</tr>
<tr>
<td>List of Plates</td>
<td>(xiii)</td>
</tr>
<tr>
<td>Abstract</td>
<td>(xiv)</td>
</tr>
</tbody>
</table>

Chapter 1 INTRODUCTION

1.1 Rationale 1
1.2 Brief History of Dilband Iron Ore 2
1.3 Thesis Description 7

Chapter 2 FUNDAMENTAL WORK

2.1 Introduction 9
2.2 Characterization of Dilband Iron Ore 9
 2.2.1 Petrography 10
 2.2.2 Mineralogy 24
 2.2.3 Elemental Analysis 30
 2.2.4 Conclusions 32
2.3 Mesh of Liberation 33
 2.3.1 Elemental Analysis 34
 2.3.2 Magnetic Susceptibility 34
 2.3.3 Density 40
 2.3.4 Image Analysis 41
 2.3.5 Conclusions 42
2.4 Work Index and Grinding Energy Assessment 46
 2.4.1 Grindability Test 47
 2.4.2 Ball Mill Grinding Test 51
 2.4.3 Conclusions 53
2.5 Possible Pre-Enrichment Route 56
 2.5.1 Conclusion 63

Chapter 3 LITRATURE REVIEW

3.1 Particle-Particle Interaction 68
3.1.1 DLVO and EDLVO Theory

3.1.1.1 Van der Waals Interaction 69
3.1.1.2 Electrostatic Interaction 70
3.1.1.3 Lewis Acid/Base Interactions. 70
3.1.1.4 Steric Interaction 71
3.1.1.5 Hydrogen Bonding Forces 73
3.1.1.6 Physical Interaction 74

3.1.2 Conclusion 75

3.2 Electrical Double Layer and Particle Suspension Stabilization 76

3.3 Factors Affecting The Colloid Stability 80
3.3.1 Effect of Electrolyte on Colloidal stability 80
3.3.2 Effect of Polymer on Colloidal Stability 83
3.3.3 Effect of pH on Colloidal Stability 84
3.3.4 Effect of Particle Size on Colloidal Stability 85
3.3.5 Effect of Polyvalent Metal Ions on Colloidal Stability 85
3.3.6 Effect of Temperature on Colloidal Stability 90
3.3.7 Dispersants and their Dispersing Mechanism 90
3.3.8 Conclusion 94

3.4 Suspension De-Stabilization Methods 94
3.4.1 Coagulation 95
3.4.2 Hetrocoagulation 96
3.4.3 Floculation 99

3.5 Polymer Floculation 100
3.5.1 Floculation Process Stages 101
3.5.2 Floculation Mechanisms 103
3.5.2.1 Bridging Mechanism 103
3.5.2.2 Surface Modification Mechanism. 106
3.5.2.3 Electrostatic Patch Mechanism. 107
3.5.2.4 Depletion or Volume Restriction Floculation 108
3.5.2.5 Hybrid of Bridging and Depletion 108
3.5.3 Floculation Mechanism Governing Factor 108
3.5.4 Factors Affecting the Selective Floculation 110
3.5.4.1 pH 110
3.5.4.2 Effect of Particle Size 111
3.5.4.3 Effect of Solid Concentration 113
3.5.4.4 Effect of Temperature 114
3.5.4.5 Effect of Molecular weight 115
3.5.4.6 Effect of Dosage 117
3.5.4.7 Effect of Flocculant Mixing Speed 118
3.5.4.8 Method of Flocculant Addition 120
3.5.4.9 Effect of Water Quality 123
3.5.4.10 Effect of Iron Ore Mineralogy 123
3.5.5 Polymer Adsorption Mechanism 124
3.5.5.1 Electrostatic Mechanism 124
3.5.5.2 London-Van der waals Mechanism 125
3.5.5.3 Hydrophobic Mechanism 125
3.5.5.4 Hydrogen bonding Mechanism 126
3.5.5.5 Chemical bonding Mechanism 126

3.6 Selective Flocculant For Iron Ore 127
3.6.1 Chemistry of Starch 129
3.6.2 Starch Adsorption Mechanism 130
3.6.3 Chemistry of Polyacrylamide (PAA) 134
3.6.4 PAA adsorption Mechanism 135

3.7 Examples of Selective Flocculation Process 136
3.7.1 Selective Process for Tilden Mine 136
3.7.2 Process for Wadi Sawawin Mines 137
3.7.3 Process for Camdag Mines 138
3.7.4 Process for Goldsworthy Mine 139
3.7.5 Process for Kudremukh Mines 141

Chapter 4 DISPERSION OF DILBAND IRON ORE 142
4.1 Introduction 142
4.2 Feed Sample Preparation 142
4.3 Zeta Potential Measurement 145
4.4 Determination Of Polyvalent Metal Ions 146
4.5 Dispersion Tests 147
4.6 First Part Of Study 147
4.6.1 Dispersion Test on <63 µm 148
4.6.2 Dispersion Test on <38 µm 157
4.6.2.1 Effect of Solid Concentration and pH 157
4.6.2.2 Effect of Stirring Speed 159
4.6.2.3 Effect of Stirring Time 159
4.6.2.4 Effect of Dispersants 159
4.6.2.5 Effect of Water Quality 165
4.6.2.6 Conclusion 166
4.7 Second Part Of Study 166
4.7.1 Effect of Dispersants 167
4.7.2 Effect of Water Quality 168
4.8 Discussion 168
4.8.1 Effect of Solid Concentration and pH 168
4.8.2 Effect of Stirring Speed 173
4.8.3 Effect of Dispersants 174
4.8.3.1 Effect of Ethylenediaminetetraacetateacid (EDTA) 174
4.8.3.2 Effect of Sodium Silicate (SS) 175
4.8.3.3 Effect of Sodium Polyphosphate (SPP) and 177
4.8.3.4 Effect of Sodium Hexametaphosphate (SHMP) 177
4.8.4 Effect of Water Quality 178
Chapter 5 SELECTIVE FLOCCULATION OF DILBAND IRON ORE

5.1 Introduction 179
5.2 Preparation of Feed Sample 179
5.3 Preparation of Starch Solution 180
5.4 Preparation of Polyacrylamide (Paa) Flocculant Solution 180
5.5 Selective Flocculation Test 180
 5.5.1 Dispersion 181
 5.5.2 Flocculant Addition 181
 5.5.3 Floc Washing 181
 5.5.4 Performance Assessment 182
5.6 Results 183
 5.6.1 Survey of Effective Dispersant and Its Dose 183
 5.6.2 Survey of Optimal Corn Starch Dose 188
 5.6.3 Survey of Optimal Flocculant 192
 5.6.4 Effect of pH 196
 5.6.5 Effect of Solid Concentration 198
 5.6.6 Effect of Method of Flocculant Addition 199
 5.6.7 Effect of Sample Preparation Method 199
5.7 Discussion 200
 5.7.1 Effect of Dispersants 200
 5.7.2 Effect of Corn Starch Dose 202
 5.7.3 Effect of Slurry pH 202
 5.7.4 Effect of Method of Flocculant Addition 204
 5.7.5 Effect of Solid Concentration 204
 5.7.6 Sample Preparation Method 205
 5.7.7 Effect of PAA 205
 5.7.8 Conclusion 206
5.8 Evidence Of Poor Liberation Of Dilband Iron Ore 207
 5.8.1 Selective Flocculation Tests 207
 5.8.2 Sub Sieve Size Classes 208
 5.8.3 Acid Treatments 212
 5.8.4 Effect of Potato Starch 217
 5.8.5 Flotation Test 218
5.9 Selective Flocculation Of Synthetic Hematite-Quartz System 220
 5.9.1 Rational 220
 5.9.2 Material and Methods 220
 5.9.3 Results and Discussion 222
 5.9.3.1 First Part 223
 5.9.3.2 Second Part 230
 5.9.4 Conclusion 235

Chapter 6 TESTED PROCESS FLOW SHEETS 236
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>236</td>
</tr>
<tr>
<td>6.2 Conclusions</td>
<td>241</td>
</tr>
<tr>
<td>Chapter 7</td>
<td></td>
</tr>
<tr>
<td>7.1 Conclusions</td>
<td>243</td>
</tr>
<tr>
<td>7.1.1 Characterization</td>
<td>243</td>
</tr>
<tr>
<td>7.1.2 Mesh of Liberation</td>
<td>244</td>
</tr>
<tr>
<td>7.1.3 Comminution</td>
<td>244</td>
</tr>
<tr>
<td>7.1.4 Pre-Enrichment</td>
<td>245</td>
</tr>
<tr>
<td>7.1.5 Dispersion</td>
<td>245</td>
</tr>
<tr>
<td>7.1.6 Selective Flocculation</td>
<td>246</td>
</tr>
<tr>
<td>7.2 Recommendations</td>
<td>247</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>248</td>
</tr>
</tbody>
</table>