Table of Contents

Abstract v

Acknowledgements vii

Appendix ix

Table of Contents xi

1 Introduction & Preliminaries 1

1.1 Introduction ... 1

1.1.1 Brief history of differential equations 1

1.1.2 Different approaches for the conservation laws 5

1.2 Preliminaries ... 6

1.2.1 Conserved quantities by using partial Lagrangian 6

1.2.2 Geometry .. 8

1.2.3 \((1 + n)\)-dimensional Laplacian on curved surfaces 10

1.3 Outline of the thesis 12

2 Conservation Laws for Heat Equation on Curved Surfaces 13

2.1 Introduction ... 13

2.2 Partial Noether operators of \((1 + n)\)-dimensional heat equation 14

2.2.1 \((1 + 2)\)-dimensional heat equation 14

2.2.2 \((1 + 3)\)-dimensional heat equation 17

2.2.3 \((1 + n)\)-dimensional heat equation 19

2.3 Conservation laws for heat equation on different curved surfaces 20

2.3.1 Conservation laws for heat equation on cone 21

2.3.2 Conservation laws for heat equation on a sphere 23

2.3.3 Conservation laws for heat equation on a torus 25

2.3.4 Conservation laws for heat equation on 2-dimensional flat surface 28

2.3.5 Conservation laws for heat equation on 3-dimensional sphere 31

2.3.6 Conservation laws for heat equation on 3-dimensional flat surface 33

2.4 Concluding Remarks 35
3 Conserved Quantities for a Class of \((1+n)\)-Dimensional Heat Equation

3.1 Introduction .. 37
3.2 Conserved vectors for \((1+n)\)-dimensional linear evolution equation 41
 3.2.1 The \((1+1)\)-dimensional linear diffusion equation 41
 3.2.2 For the \((1+2)\)-dimensional linear evolution equation 43
 3.2.3 Extension to the \((1+n)\)-dimensional linear evolution equation 45
3.3 Application .. 45
3.4 Concluding Remarks .. 54

4 Derivation of Conservation Laws for \((1+2)\)-dimensional Wave Equation on Curved Surfaces

4.1 Introduction .. 55
4.2 Determining equations for the \((1+2)\)-dimensional wave equation on curved surfaces ... 56
 4.2.1 Partial Noether operators and conservation laws for Eq. (4.1.1) on different curved surfaces 58
 4.2.2 Conservation laws for wave equation on sphere 58
 4.2.3 Conservation laws for the wave equation on a cone 64
 4.2.4 The wave equation on a flat surface 71
4.3 Concluding Remarks .. 77

5 Effect of Background Geometry on Symmetries of the Nonlinear \((1+2)\)-dimensional Heat Equation and Reductions of the TDGL Model

5.1 Introduction .. 79
5.2 Group classification of Eq. (5.1.1) 82
 5.2.1 The nonlinear \((1+2)\)-dimensional heat equation on plane 82
 5.2.2 The nonlinear \((1+2)\)-dimensional heat equation on sphere 84
 5.2.3 The nonlinear \((1+2)\)-dimensional heat equation on torus 86
5.3 “\(f(u)\)” vs “underlying geometry” 87
 5.3.1 For sphere ... 87
 5.3.2 For torus .. 87
5.4 The TDGL model on curved surfaces 88
 5.4.1 The TDGL model on sphere .. 88
 5.4.2 The TDGL model on torus .. 92
5.5 Conclusion .. 94

6 Group Classification of \((1+n)\)-dimensional Klein-Gordon Equation and the Nonlinear Wave Equation on Curved Surfaces

6.1 Introduction .. 98
6.2 Group classification of the \((1+n)\)-dimensional Klein-Gordon equation 101
 6.2.1 Case 1: \(n = 1\) .. 101
 6.2.2 Case 2: \(n = 2\) .. 102
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.3</td>
<td>Case 3: $n = 3$</td>
<td>105</td>
</tr>
<tr>
<td>6.2.4</td>
<td>General Case</td>
<td>108</td>
</tr>
<tr>
<td>6.3</td>
<td>Lie point symmetry generators</td>
<td>109</td>
</tr>
<tr>
<td>6.3.1</td>
<td>$f(u) \neq ae^{bu} + c$</td>
<td>109</td>
</tr>
<tr>
<td>6.3.2</td>
<td>$f(u) = ae^{bu} + c$</td>
<td>111</td>
</tr>
<tr>
<td>6.3.3</td>
<td>$\tau_t = 0$</td>
<td>113</td>
</tr>
<tr>
<td>6.4</td>
<td>Group classification of the $(1 + 2)$-dimensional Klein-Gordon equation on curved surfaces</td>
<td>113</td>
</tr>
<tr>
<td>6.4.1</td>
<td>The $(1 + 2)$-dimensional Klein-Gordon equation on a sphere</td>
<td>114</td>
</tr>
<tr>
<td>6.4.2</td>
<td>The $(1 + 2)$-dimensional Klein-Gordon equation on torus</td>
<td>119</td>
</tr>
<tr>
<td>6.5</td>
<td>Remarks</td>
<td>123</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Conclusion</td>
<td>123</td>
</tr>
<tr>
<td>7</td>
<td>Conclusions</td>
<td>125</td>
</tr>
<tr>
<td>7.1</td>
<td>Future Directions</td>
<td>126</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>128</td>
</tr>
</tbody>
</table>