TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>iii</td>
</tr>
<tr>
<td>Approval Certificate</td>
<td>vii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>viii</td>
</tr>
<tr>
<td>List of Notations</td>
<td>xi</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiv</td>
</tr>
<tr>
<td>Appendices</td>
<td>xvi</td>
</tr>
</tbody>
</table>

Chapter 1 INTRODUCTION

1.1 Need of Irrigation Water Management 1
1.2 Historical Background 2
1.3 Problem and Scope of Irrigation Management in Pakistan 3
1.4 Irrigation Scheduling 7
1.5 Research Impact on Irrigation Scheduling 8
1.6 Irrigation Planning and Management Models 11
1.7 Research Purpose 12
1.8 Research Objectives 13

Chapter 2 MEHRAN MODEL DEVELOPMENT

2.1 Need of an Advanced Decision Support System 14
2.2 Mehran Model Description 19
 2.2.1 Main module 20
 2.2.2 New crop file module 21
 2.2.3 Daily entry module 22
 2.2.4 Water balance module 23
 2.2.5 Irrigation planning module 23
2.3 Mehran Model Presentation 26
 2.3.1 Crop summary form 26
 2.3.2 Crop coefficient graph 26
 2.3.3 Soil-moisture depletion graph 27
 2.3.4 Irrigation and rainfall graph 28
2.4 Irrigation Delivery Systems 28
 2.4.1 On-demand irrigation trial for wheat 28
 2.4.2 Rotational irrigation trial for wheat 30
 2.4.2.1 Weekly rotational irrigation schedule 30
 2.4.2.2 Fortnightly rotational irrigation schedule 31
 2.4.2.3 Tri-weekly rotational irrigation schedule 33
 2.4.2.4 On-demand and rotational synchronized irrigation schedule 33
2.5 Mehran Model-Computation Equations 35
 2.5.1 Water balance approach 35
 2.5.2 Crop evapotranspiration by dual crop coefficients approach 36
 2.5.3 Modeling for reference evapotranspiration (ET_o) 38
 2.5.3.1 Atmospheric pressure (P) 38
2.5.3.2 Psychrometric Constant (γ) 38
2.5.3.3 Air temperature 39
2.5.3.4 Saturation vapour pressure, e°(T) 39
2.5.3.5 Mean saturation vapour pressure (e_s) 40
2.5.3.6 Actual vapour pressure (e_a) derived from dew point temperature 40
2.5.3.7 Slope of saturation vapour pressure curve (Δ) 40

2.5.4 Radiation 41
2.5.4.1 Concepts of extraterrestrial radiation (R_a) 41

2.5.5 Radiation calculation procedure 41
2.5.5.1 Extraterrestrial radiation for daily periods (R_a) 41
2.5.5.2 Solar radiation (R_s) 42
2.5.5.3 Clear-sky solar radiation (R_so) 43
2.5.5.4 Net solar or net short wave radiation (R_ns) 43
2.5.5.5 Net long wave radiation (R_nl) 43
2.5.5.6 Net radiation (R_n) 45

2.5.6 Comparison between CROPWAT and Mehran Models on same Data for ET_o 45

2.5.7 Modeling for crop evapotranspiration (ET_c) 46
2.5.7.1 Basal crop coefficient K_{cb} 46
2.5.7.2 Evaporation component K_e 47
2.5.7.3 Calculation procedure 48
2.5.7.4 Soil evaporation reduction coefficient (K_r) 49
2.5.7.5 Maximum amount of water that can be evaporated 50
2.5.7.6 Energy limiting stage 1 50
2.5.7.7 Falling rate stage 2 51

2.5.8 Daily calculation of K_e 52
2.5.9 Depletion calculated by measured soil moisture content 52
2.5.10 Exposed and wetted soil fraction (f_{ew}) calculation procedure 52

Chapter 3 MATERIALS AND METHODS 54
3.1 Irrigation Scheduling Importance in Crop Growth 54
3.2 Experimental Site 55
3.2.1 Physical and chemical properties of the soil 56
3.2.2 Field layout and the crops sowing pattern 56
3.3 Meteorological Data 57
3.4 Soil-Moisture Measurements 58
3.4.1 Actual crop evapotranspiration 59
3.5 Crop Root Study 60
3.5.1 Cotton root modeling 62
3.5.2 Wheat root modeling 62
3.5.3 Soil and crop management practices 63
3.5.4 Importance of water use efficiency (WUE) 63
3.6 Irrigation Scheduling Method 64
3.6.1 Daily data collection and processing 64
3.7 Methods of the Model Evaluation and Validation 66
3.7.1 Statistical analysis criteria 66
3.7.2 The model sensitivity analysis 67
Chapter 4 RESULTS AND DISCUSSIONS
4.1 Purpose of Field Experiments 69
4.2 Experiments on Cotton Crop 70
 4.2.1 Computed and actual crop evapotranspirations 70
 4.2.1.1 Crop ET at MAD 55% level 70
 4.2.1.2 Crop ET at MAD 65% level 71
 4.2.1.3 Crop ET at MAD 75% level 71
 4.2.2 Soil-moisture depletion (SMD) and irrigation scheduling (IS) 72
 4.2.2.1 SMD and IS of crop at MAD 55% level 72
 4.2.2.2 SMD and IS of crop at MAD 65% level 74
 4.2.2.3 SMD and IS of crop at MAD 75% level 75
 4.2.4 Crop coefficients of cotton at MAD 55, 65 and 75% levels 77
 4.2.5 Cotton crop-root depth 79
 4.2.6 Cotton water use efficiency (WUE) 80
4.3 The Wheat Crop Experiments 81
 4.3.1 Crop evapotranspiration and irrigation scheduling 81
 4.3.2 Crop coefficients 85
 4.3.3 Wheat crop-root depth 87
4.4 The Mehran Model Evaluation and Validation 89
 4.4.1 Statistical analysis 89
 4.4.1.1 Statistical analysis on the cotton actual and computed ETs 89
 4.4.1.2 Statistical analysis of wheat actual and computed ETs 91
 4.4.2 Mehran Model sensitivity analysis 93
 4.4.2.1 The model sensitivity on wheat irrigation simulation 94
 4.4.2.2 The model sensitivity on cotton irrigation simulation 100

Chapter 5 CONCLUSIONS AND RECOMMENDATIONS 106
5.1 General Appraisal 106
5.2 Conclusions 106
5.3 Recommendations 108
 5.3.1 Recommendations for future research and developments 109
REFERENCES 110