CONTENTS

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Page no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Figures</td>
<td>vii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xii</td>
</tr>
<tr>
<td>Abstract</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTER 1: INTRODUCTION & REVIEW OF LITERATURE

1.1 The genus *Salmonella* 1
1.2 Epidemiology 1
1.3 Pathogenesis 3
1.4 Clinical features 4
1.5 Drug resistance 5
1.6 Diagnosis 6
1.6.1 Conventional diagnostic methods 7
1.6.2 Modified diagnostic methods 8
1.6.3 Molecular techniques 9
1.6.3.1 Polymerase Chain Reaction (PCR) 10
1.6.3.2 Multiplex PCR 11
1.7 First research objective 14
1.8 Vaccines against typhoidal *Salmonella* 15
1.8.1 Parenteral inactivated whole-cell vaccine 15
1.8.2 Oral live attenuated Ty2la vaccine 15
1.8.3 Vi polysaccharide vaccine 16
1.9 Bacterial polysaccharide-protein conjugate vaccines 16
1.9.1 Bacterial polysaccharides 17
1.9.2 Immunological properties of polysaccharides 17
1.9.3 Conjugation of polysaccharides with carrier protein 18
1.9.3.1 *Haemophilus influenzae* type b (Hib) conjugate vaccines 19
1.9.3.2 *Neisseria meningitides* conjugate vaccines 20
1.9.3.3 *Streptococcus pneumoniae* conjugate vaccine 21
1.9.3.4 Vi Conjugate vaccine for *S*. Typhi 22
1.9.3.5 O-Specific polysaccharide conjugate vaccines 22
1.10 Second research objective 26

CHAPTER 2: MATERIALS AND METHODS

PART-A Materials and methods for nested multiplex PCR work 27
2.1 Bacterial isolates 27
2.2 Purification of the strains 27
2.3 Biochemical identification of the bacterial strains 27
2.3.1 Stab and streak method 28
2.4 Studies on patients 28
2.4.1 Selection of patients 28
2.4.2 Blood samples 28
2.4.3 Blood culture 28
2.4.4 Serology 29
2.5 Molecular analysis 29
2.5.1 DNA extraction from bacterial isolates 29
2.5.2 DNA extraction from blood samples 30
2.6 Polymerase chain reaction (PCR) 31
2.6.1 Primers for multiplex PCR 31
2.6.2 Regular multiplex PCR 31
2.6.3 Nested multiplex PCR 32
2.6.4 Sensitivity of regular and nested PCR 32
2.6.5 PCR for *Salmonella*
2.7 Agarose gel electrophoresis

PART B
Materials and methods for *Salmonella* O-specific polysaccharides (OSP) conjugate work with diphtheria toxoid (DT)

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8</td>
<td>Bacterial strains</td>
</tr>
<tr>
<td>2.9</td>
<td>Fermentation</td>
</tr>
<tr>
<td>2.9.1</td>
<td>Inoculum and growth</td>
</tr>
<tr>
<td>2.9.2</td>
<td>Killing and harvesting of bacteria</td>
</tr>
<tr>
<td>2.10</td>
<td>Phenol extraction of lipopolysaccharides (LPS) from S. Typhi and S. Paratyphi A</td>
</tr>
<tr>
<td>2.10.1</td>
<td>Estimation of nucleic acids contamination in polysaccharides</td>
</tr>
<tr>
<td>2.11</td>
<td>Acid hydrolisis of S. Typhi LPS to purify O-specific polysaccharides (OSP)</td>
</tr>
<tr>
<td>2.11.1</td>
<td>Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)</td>
</tr>
<tr>
<td>2.11.2</td>
<td>Silver staining for detection of lipopolysaccharides after SDS-PAGE</td>
</tr>
<tr>
<td>2.11.3</td>
<td>Zinc-imidazole staining for detection of lipopolysaccharides after SDS-PAGE</td>
</tr>
<tr>
<td>2.11.4</td>
<td>Limulus Amebocyte Lysate (LAL) assay for determination of endotoxin level</td>
</tr>
<tr>
<td>2.12</td>
<td>Acid hydrolisis of S. Paratyphi A LPS to purify O-specific polysaccharides (OSP)</td>
</tr>
<tr>
<td>2.12.1</td>
<td>Anthrone assay</td>
</tr>
<tr>
<td>2.12.2</td>
<td>Immuno-diffusion assay</td>
</tr>
<tr>
<td>2.13</td>
<td>Derivatization of S. Typhi OSP with adipic acid dihydrazide (ADH)</td>
</tr>
<tr>
<td>2.13.1</td>
<td>Trinitrobenzene sulfonic acid (TNBS) assay for determination of hydrazide group</td>
</tr>
</tbody>
</table>
2.14 Derivatization of *S*. Paratyphi A OSP with adipic acid dihydrazide (ADH)
2.14.1 Hestrin assay for measurement of O-acetyl content
2.15 Diphtheria toxoid (DT) as a carrier protein for conjugation with *Salmonella* polysaccharides
2.15.1 Coomassie assay for protein measurement
2.16 Conjugation of *S*. Typhi OSP-AH with diphtheria toxoid
2.17 Conjugation of *S*. Paratyphi OSP with diphtheria toxoid
2.18 Conjugation of derivatized *S*. Paratyphi A OSP (*S*. Paratyphi A OSP-AH) with diphtheria toxoid (DT)
2.19 High performance liquid chromatography (HPLC) analyses
2.20 Development of standard hyper immune sera against whole cell of *S*. Typhi and *S*. Paratyphi A in mice
2.21 Immunogenicity evaluation of the prepared conjugates through mice immunization
2.22 Immuno assay for determination of mice serum IgG antibody levels by enzyme linked immuno sorbant assay (ELISA)
2.22.1 Data analysis for calculation of titers and statistical analysis

CHAPTER 3: RESULTS

PART A Results of multiplex PCR work
3.1 *Salmonella* strains
3.1.1 Isolation of *Salmonella* strains
3.1.2 Biochemical identification of isolated *Salmonella* strains
3.2 Studies on patients
3.2.1 Blood culture of suspected typhoid patients
3.2.2 Serology
3.3 Polymerase chain reaction (PCR)
3.3.1 Regular multiplex PCR
3.3.2 Nested multiplex PCR
3.3.3 Sensitivity of regular and nested PCR
3.3.4 PCR of suspected typhoid patients
3.3.5 PCR for *Salmonella*

PART B

Results of *Salmonella* O-specific polysaccharides (OSP) conjugate work with diphtheria toxoid (DT)

3.4 Preparation of O-specific polysaccharides (OSP) from *Salmonella* 64

3.4.1 *Salmonella enterica* serovar Typhi (S. Typhi) OSP preparation 64

3.4.2 *Salmonella enterica* serovar Paratyphi A (S. Paratyphi A) OSP preparation 64

3.4.3 Quality control assays on extracted LPS and OSP samples from both of S. Typhi and S. Paratyphi A 65

3.5 Derivatization of *Salmonella* OSP with ADH 65

3.5.1 Derivatization of S. Typhi OSP with ADH 65

3.5.2 Derivatization of S. Paratyphi A OSP with ADH 66

3.5.3 Immuno diffusion assay of derivatized OSP samples 66

3.6 Conjugation of S. Typhi OSP-AH with DT 66

3.7 Conjugation of S. Paratyphi A OSP with DT 67

3.7.1 Conjugation of S. Paratyphi A OSP directly with DT without linker 67

3.7.2 Conjugation of derivatized S. Paratyphi A OSP-AH with DT 67

3.8 High performance liquid chromatography (HPLC) analyses 68

3.9 Development of high titer mice antisera (hyper immune sera) against S. Typhi and S. Paratyphi A LPS 68

3.10 Immunogenicity evaluation of the conjugates in mice 68

CHAPTER 4: DISCUSSION

4.1 Diagnosis 123

4.2 Vaccines 126
CHAPTER 5: REFERENCES

APPENDICES

1 Trypticase soy broth (TSB) i
2 MacConkey agar i
3 Nutrient agar ii
4 Triple sugar iron (TSI) agar ii
5 Salt-saturated phenol (SS phenol) iii
6 Tris-borate-EDTA (TBE) buffer (5X) iii
7 Phenol 90% iv
8 Phosphate buffer saline (10X) iv
9 Coating buffer for ELISA (1X PBS) iv
10 Blocking buffer for ELISA iv
11 Dilution buffer for ELISA v
12 Washing buffer for ELISA v
13 Substrate buffer for ELISA v

PUBLICATIONS AND PRESENTATIONS