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Abstract

This thesis is devoted to fractional calculus in nonreflexive Banach spaces and exis-

tence results for the fractional differential equations. Using fractional Pettis integral

and fractional pseudo-derivative, we discussed fractional calculus and fractional dif-

ferential equations in nonreflexive Banach spaces, equipped with weak topology. We

obtained some results on existence of solution of fractional differential equations.

Furthermore, applying fractional Pettis integral and fractional pseudo-derivative we

discussed the existence of solution of multi-term fractional differential equation, in

nonreflexive Banach spaces, equipped with weak topology. Finally, assuming the

concept of Riemann-Pettis integral, we introduced and studied the notions of frac-

tional Riemann-Pettis integral and fractional Caputo weak derivative. Using these

tool we obtained an existence result for weak solution of fractional differential equa-

tions in a nonreflexive Banach space equipped with the weak topology.

4



Chapter 1

Preliminaries and Introduction

1.1 Introduction

The mathematical field that deals with derivatives of any real order is called frac-

tional calculus. For a long time, it was only considered as a pure mathematical

branch. Nevertheless, during the last two decades, fractional calculus has attracted

the attention of many researchers and it has been successfully applied in various

areas like computational biology, computational fluid dynamics and economics etc

[80].

The study of first order ordinary differential equations in Banach spaces (reflex-

ive or not) equipped with the weak topology was initiated in the 1950’s. Let E be

Banach space and let f(·, ·) : [a, b]×E → E be continuous. It is well known that if

E is finite dimensional, then for each (t0, y0) ∈ [a, b)× E, there exists a continuous

differentiable function y(·) which is a solution of the Cauchy problem

y′(t) = f(t, y(t)), y(t0) = y0, (1.1.1)

on some open interval which contains t0. In 1950, Dieudonné [32] showed that in

the case E = c0 the Cauchy problem (1.1.1) has no solutions for every continuous

function f(·, ·).
The notion of the measure of non-compactness was introduced by Kuratowski

[51] in 1930. Ambrosetti [8] was first one who had an idea to use the Kuratowski

measure of non-compactness and Darbo fixed point theorem to prove an existence

result for (1.1.1) in infinite dimensional Banach spaces. Szep [86] was the first author

related to the existence of weak solutions for (1.1.1), where f(·, ·) : [a, b]×E → E is a
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weakly continuous and E is a reflexive Banach space. Chow and Schuur [24] treated

the case where E is separable and reflexive f(·, ·) is a weakly continuous function

with bounded range. Kato in [46] shown that if f(·, ·) : [a, b] × BE[y0, r] → E is

weakly continuous, then all we needed to assure the existence of solutions to (1.1.1)

is the relatively weak compactness of f([a, b] × BE[y0, r]). Pianigiani [69] shown

that in every nonreflexive rectractive Banach space there exists a weakly continuous

function f(·, ·) such that (1.1.1) does not have a weak solution, and Perri [66] showed

that this property is true in every nonreflexive Banach space.

The measure of weak non-compactness was introduced by De Blasi [27], and it

was used by Cramer, Lakshmikantham and Mitchell [23] to obtain an existence re-

sult for weak solutions of (1.1.1) in nonreflexive Banach spaces. Using the measure

of weak non-compactness, Cichoń [17], Cichoń and Kubiaczyk [19], Dutkiewicz and

Szufla [34], Gomaa [40], O’Regan [62], [64], have improved and generalized previous

results. For a review of this topic we refer to Cichoń [18], Deimling [28], Hashem

[43] and Teixeira [89].

The existence of weak solution of differential equations in nonreflexive Banach

spaces, equipped with weak topology was studied for the first time by Cramer et.al

[23]. The authors imposed weak compactness type conditions in terms of the mea-

sure of weak non-compactness. Moreover, for existence and uniqueness of solution,

the authors imposed weak dissipative type conditions. Using these existence and

partial ordering induced by cones, existence of extremal solutions and comparison

results to the weak topology are also proved in this article.

In recent years, fractional differential equations in Banach spaces has been stud-

ied intensively. The general literature on fractional differential equations in finite

or infinite dimensional Banach spaces is extensive and considers different topics on

the existence and qualitative properties of solutions are considered. Concerning the

literature on fractional differential equations we refer to the books [55], [80] and the

references cited therein. Only a few papers consider fractional differential equations

in reflexive Banach spaces equipped with the weak topology e.g [3], [13], [14], [43],

[74], [76].

In [74], Salem et.al defined the fractional order Pettis-integral operator in re-

flexive Banach spaces and also investigated the properties of such operator. Fur-

6



thermore, the authors used O’Regan fixed point theorem (see [64]), to establish an

existence result for nonlinear Pettis-fractional order integral equations of the type

x(t) = g(t) + λIqf(·, x(·)), t ∈ [0, 1], 0 < q < 1.

Moreover, the authors exhibit the existence of solution of Cauchy problem

dx

dt
= f(t,Dqx(t)), t ∈ [0, 1], x(0) = x0.

In [76], the author used O’Regan fixed point theorem (see [64]) to establish an

existence of solution for the fractional order integral equation

x(t) = g(t) + λIqf(·, x(·)), t ∈ [0, 1], q > 0,

where f is nonlinear weakly-weakly continuous. Moreover, the authors exhibit the

solution of Cauchy problem

dx

dt
= f(t, x(t)), t ∈ [0, 1], x(0) = x0.

Some of the recent progress in this direction are [13], [14], [73]. For a recent review

of this topic we refer to [43].

So for, we discussed those differential equations which contain only one differen-

tial operator. Nevertheless, in certain cases we need to solve fractional differential

equations containing more than one differential operators. This type of fractional

differential equation is called multi-term fractional differential equation. Multi-term

fractional differential equations also have numerous applications in physical sciences

and other branches of sciences [29]. The existence of the solutions of multi-term

fractional differential equations was studied by many authors [11, 25, 26, 75, 77, 78].

The main tool used in [11, 25, 26], is the Krasnoselskii’s fixed point theorem on a

cone while the main tool used in [77], is the technique associated with the measure of

non-compactness and fixed point theorem. In [77], the author exhibits the existence

of monotonic solution for the multi-term fractional differential equations in Banach

spaces, using Riemann-Liouville fractional derivative and no compactness condition

is assumed on the nonlinearity of the function f .

In [75], the author studied the existence of weak solution of the Cauchy problem

in reflexive Banach spaces equipped with weak topology, the author imposed weak-

weak continuity assumption on f . Similarly in [78], the author exhibits the existence
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of global monotonic solution for the Cauchy problem, the author assumed f to be

Carathéodory which has linear growth.

This dissertation is devoted to fractional calculus in nonreflexive Banach spaces

and existence results for the fractional differential equations. Using Pettis integral

and fractional pseudo derivative we present more general results for the existence of

solutions to fractional differential equations in nonreflexive Banach spaces, equipped

with weak topology. Assume the following fractional differential equation{
Dqy(t) = f(t, y(t)), t ∈ T,
y(0) = y0

(1.1.2)

where Dq is a fractional pseudo-derivative, f is given function, and T is a bounded

interval of real numbers such that 0 ∈ T and E is a nonreflexive Banach space.

Furthermore, we also establish an existence result for multi-term fractional differen-

tial equation,(
Dαm −

m−1∑
i=1

aiD
αi

)
u(t) = f(t, u(t)) for t ∈ [0, 1], u(0) = 0, (1.1.3)

where Dαm and Dαi are fractional pseudo-derivative of order αm and αi, i = 1, 2, . . . ,

m−1, respectively. The function f(t, ·) : [0, 1]×E → E is weakly-weakly sequentially

continuous for every t ∈ [0, 1] and f(·, u(·)) is Pettis integrable for every weakly

absolutely continuous function u(·) : [0, 1] → E, where E is nonreflexive Banach

space, 0 < α1 < α2 < . . . < αm < 1 and a1, a2 . . . am−1 are real numbers such that

a :=
∑m−1

i=1
|ai|

Γ(αm−αi+1)
< 1, and Γ(·) is the Euler’s gamma function.

Finally, we exhibit an existence result for weak solution of fractional differential

equation (1.1.2), where Dq is a fractional Caputo-derivative, f is a given function,

T is a bounded interval of real numbers and E is a nonreflexive Banach space.

Personal Contributions:

The results of this thesis are based on the following articles.

[3] R.P. Agarwal, V. Lupulescu, D. O’Regan, Ghaus ur Rahman, Fractional Calculus

and Fractional Differential Equation in nonreflexive Banach spaces, Communications

in Nonlinear Science and Numerical Simulation (to appear).

[4] R.P. Agarwal, V. Lupulescu, D. O’Regan, Ghaus ur Rahman, Multi-term Frac-

tional Differential Equation in nonreflexive Banach spaces, Advances in Difference

Equation, 2013, 2013:302.
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[5] R.P. Agarwal, V. Lupulescu, D. O’Regan, Ghaus ur Rahman, Weak Solution for

Fractional Differential Equations in nonreflexive Banach spaces via Riemann Pettis

integral, Mathematische Nachrichten, (to appear)

In the paper [3], using fractional Pettis integral and fractional pseudo-derivative,

we discussed fractional calculus and fractional differential equations in nonreflexive

Banach spaces, equipped with weak topology. Our contribution about properties of

fractional Pettis integral and fractional Pseudo-derivative can be found in chapter

2. We gave some results on existence of solution of fractional differential equations

and equivalence between integral equation and Cauchy equation. The results of this

paper can be found in chapter 2.

In the paper [4], using fractional Pettis integral and fractional pseudo-derivative

we discussed the existence of solution of multi-term fractional differential equation,

in nonreflexive Banach spaces, equipped with weak topology .

In the paper [5], using the concept of Riemann-Pettis integral, we introduced and

studied the notions of fractional Riemann-Pettis integral and fractional Caputo weak

derivative. Using these tool we obtain an existence result for fractional differential

equations in a nonreflexive Banach space equipped with the weak topology.
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1.2 Preliminaries

Let E be a Banach space with the norm ∥·∥ and let E∗ be the topological dual of

E. If x∗ ∈ E∗, then its value on an element x ∈ E will be denoted by ⟨x∗, x⟩. The

space E endowed with the weak topology σ (E,E∗) will be denoted by Ew. Consider

an interval T = [0, b] of R, the set of real numbers, endowed with the Lebesgue σ-

algebra L (T ) and the Lebesgue measure λ. A function x(·) : T → E is said to be

almost separable valued if there exists a null set N ∈ L (T ) such that x (T rN)

is a separable set in E (equivalently, x (T rN) is contained in a separable closed

subspace of E.

Definition 1.2.1. A function x(·) : T → E is said to be strongly measurable on T if

there exists a sequence of simple functions xn(·) : T → E such that lim
n→∞

xn(t) = x(t)

for a.e. t ∈ T .

Definition 1.2.2. A function x(·) : T → E is said to be weakly measurable (or

scalarly measurable) on T if for every x∗ ∈ E∗ the real valued function t 7→ ⟨x∗, x(t)⟩
is Lebesgue measurable on T .

Definition 1.2.3. Let x(t) be a function from T into E. Then x(t) is weakly

continuous at t0 if for every x∗ ∈ E∗, the scalar function ⟨x∗, x(t)⟩ is continuous at
t0.

Remark 1.2.1. (Pettis theorem) It is well known that a weakly measurable and

almost separable valued function x(·) : T → E is strongly measurable ([67, Theorem

1.1]).

Further, we also assume the set of all measurable functions from T to R and

(T,Σ, µ) be a measure space. We denote by Lp(T ) the space of all real measurable

functions f : T → R, whose absolute value raised to the p − th power has finite

integral, or equivalently, that

∥f∥p ≡
(∫

T

|f |p dµ
) 1

p

<∞,

where 1 ≤ p <∞ . Moreover by L∞(T ) we denote, the space of all measurable and

essentially bounded real functions defined on T . Let C(T,E) denote the space of
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all strongly continuous functions y(·) : T → E, endowed with the supremum norm

||y(·)||c = supt∈T ∥y(t)∥. Also, we consider the space C(T,E) with its weak topology

σ(C(T,E), C(T,E)∗). It is known that (see [33, 82])

C(T,E)∗ =M(T, E∗),

where M(T, E∗) is the space of all bounded regular vector measures from B(T )
into E∗ which are of bounded variation. Here, B(T ) denotes the σ-algebra of Borel

measurable subsets of T . Therefore, a sequence {yn(·)}n≥1 converges weakly to y(·)
in C(T0, E)) if and only if

⟨m(·), yn(·)− y(·)⟩ → 0 as n→ ∞, (1.2.1)

for all m(·) ∈ M(T0, E
∗). In [59, Lemma 9] it is shown that a sequence {yn(·)}n≥1

converges weakly to y(·) in C(T0, E)) if and only if yn(t) tends weakly to y(t) for

each t ∈ T .

By Cw(T,E) we will denote the space of all weakly continuous functions from T

into Ew endowed with the topology of weak uniform convergence. A set N ∈ L (T )

is called a null set if λ (N) = 0.

Definition 1.2.4. A function x(·) : T → E is said to be absolutely continuous on

T (AC, for short) if for every ε > 0 there exists a δ > 0 such that∥∥∥∥∥
m∑
k=1

[x(bk)− x(ak)]

∥∥∥∥∥ < ε

for every finite disjoint family {(ak, bk) ; 1 ≤ k ≤ m} of subintervals of T such that
m∑
k=1

(bk − ak) < δ. If the last inequality is replaced by
m∑
k=1

||x(bk)− x(ak)|| < ε, then

we say that x(·) is a strongly absolutely continuous (sAC) function.

Definition 1.2.5. A function x(·) : T → E is said to be weakly absolutely continuous

(wAC) on T if for every x∗ ∈ E∗ the real valued function t 7→ ⟨x∗, x(t)⟩ is AC on

T .

Remark 1.2.2. Each sAC function is an AC function, and each AC function is

a wAC function. If E is a weakly sequentially complete space, then every wAC

function is an AC function ([48]).
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1.3 Differentiability in Banach Spaces

In this section we will recall some notion about differentiability in Banach spaces.

Definition 1.3.1. A function x(·) : T → E is said to be strongly differentiable at

t0 ∈ T if there exists an element x′s(t0) ∈ E such that

lim
h→0

∥∥∥∥x(t0 + h)− x(t0)

h
− x′s(t0)

∥∥∥∥ = 0.

The element x′s(t0) will be also denoted by ds
dt
x(t0) and it is called the strong deriva-

tive of x(·) at t0 ∈ T .

Definition 1.3.2. A function x(·) : T → E is said to be weakly differentiable at

t0 ∈ T if there exists an element x′w(t0) ∈ E such that

lim
h→0

⟨
x∗,

x(t0 + h)− x(t0)

h

⟩
= ⟨x∗, x′w(t0)⟩

for every x∗ ∈ E∗. The element x′w(t0) will be also denoted by dw
dt
x(t0) and it is

called the weak derivative of x(·) at t0 ∈ T .

It is easy to see that if the elements x′s(t0) and x
′
w(t0) exist, then they are uniquely

determined. If a function x(·) : T → E is strongly differentiable (weakly differen-

tiable) at each point t ∈ T , then we say that x(·) is strongly differentiable (weakly

differentiable) on T . In this case, the vector valued function t 7→ x′s(t) is called

the strong derivative (weak derivative) of x(·). Obviously, a strongly differentiable

function x(·) : T → E is also weakly differentiable, but the converse is not true ([81,

Example 7.3.6]). Also, it is obvious that if x(·) : T → E is a function weakly differ-

entiable on T , then the real function t 7→ ⟨x∗, x(t)⟩ is differentiable on T . Moreover,

in this case we have that

d

dt
⟨x∗, x(t)⟩ = ⟨x∗, x′w(t)⟩ , t ∈ T , (1.3.1)

for every x∗ ∈ E∗. For the converse the following result is known.

Proposition 1.3.1. ([81, Theorem 7.3.3]) If E is a weakly sequentially complete

space and x(·) : T → E is a function such that for every x∗ ∈ E∗ the real function

t 7→ ⟨x∗, x(t)⟩ is differentiable onT , then x(·) is weakly differentiable on T

12



Proposition 1.3.2. ([67, Theorem 1.2]) If x(·) : T → E is a.e. weakly differentiable

on T , then its weak derivative x′w(·) is strongly measurable on T .

Definition 1.3.3. A function x(·) : T → E is said to be pseudo-differentiable on T

to a function y(·) : T → E if for every x∗ ∈ E∗ there exists a null set N(x∗) ∈ L (T )

such that the real function t 7→ ⟨x∗, x(t)⟩ is differentiable on T rN(x∗) and

d

dt
⟨x∗, x(t)⟩ = ⟨x∗, y(t)⟩ , t ∈ T rN(x∗). (1.3.2)

The function y(·) is called a pseudo-derivative of x(·) and it will be denoted by x′p(·)
or by dp

dt
x(·).

We end this section with some remarks.

• Clearly, if x(·) : T → E is a function a.e. weakly differentiable on T , then x(·)
is pseudo-differentiable on T and x′p(·) = x′w(·) a.e. on T

• A pseudo-derivative x′p(·) of a pseudo-differentiable function x(·) : T → E

need not be strongly measurable [83]. However, in [84] it was shown that x′p(·)
is weakly measurable on T .

• In general, a pseudo-derivative of a pseudo-differentiable function x(·) : T → E

is not unique. Moreover, two pseudo-derivatives of x(·) need not be a.e. equal

[83]. However, if E has a countable determining set, that is, a countable set

W ∗ ⊂ E∗ such that ∥x∥ = sup
x∗∈W ∗

|⟨x∗, x⟩| for every x ∈ E, then any two

pseudo-derivative of x(·) are a.e. equal [83].

• Even if E∗ is separable and x(·) : T → E is a Lipschitz function, we cannot

guarantee that x′p(·) exists on T ; in fact, x′p(·) need not exist on any subset of

T of positive Lebesgue measure [84].

1.4 Integration in Banach Spaces

The concept of Bochner integral and Pettis integral are well known [30, 61, 81]. Nev-

ertheless, we recall the definition of Bochner integral, Pettis integral and Riemann

integral.
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Definition 1.4.1. Let (T ; Σ;µ) be a measure space and f : T → E be a function.

The function f is called Bochner-integrable if there exists a sequence of simple

functions fn : T → E such that
∫
T
∥f − fn∥dµ → 0, as n → ∞. The Bochner

integral of f is then defined as
∫
T
fdµ = limn→∞

∫
T
fndµ, where the integral for

simple functions is defined in the obvious way: if fn =
∑
xiχAi

, then
∫
T
fndµ =

limn→∞
∑n

i xiµ(Ai). It is easy to see that such a limit indeed exists and does not

depend on the choice of a sequence fn approximating the given function f.

Definition 1.4.2. A weakly measurable function x(·) : T → E is said to be Pettis

integrable on T if

(a) x(·) is scalarly integrable; that is, for every x∗ ∈ E∗ the real function t 7→
⟨x∗, x(t)⟩ is Lebesgue integrable on T ;

(b) for every set A ∈ L (T ) there exists an element xA ∈ E such that

⟨x∗, xA⟩ =
∫
A

⟨x∗, x(s)⟩ ds (1.4.1)

for every x∗ ∈ E∗. The element xA ∈ E is called the Pettis integral on A and it will

be denoted by
∫
A
x(s)ds.

It is easy to show that a Bochner integrable function x(·) : T → E is Pettis

integrable and both integrals of x(·) are equal on each Lebesgue measurable subset

A of T ([81, Proposition 2.3.1]).

Remark 1.4.1. It is known that if x(·) : T → E is Bochner integrable on T , then

the function y(·) : T → E, given by

y(t) = (B)

∫ t

0

x(s)ds, t ∈ T ,

is AC and a.e. differentiable on T , and y′s(t) = x(t) for a.e. t ∈ T . Also, if a

function x(·) : T → E is AC and a.e. strongly differentiable on T , then x′s(·) is

Bochner integrable on T and

x(t) = x(0) + (B)

∫ t

0

x′s(s)ds, t ∈ T .

Remark 1.4.2. In the case of the Pettis integral, in [60, 67] it was shown that

if x(·) : T → E is AC and a.e. weakly differentiable on T , then x′w(·) is Pettis

integrable on T and

x(t) = x(0) +

∫ t

0

x′w(s)ds, t ∈ T .

14



In 1994 Kadets [45] prove that there exists a strongly measurable and Pettis

integrable function x(·) : T → E such that the indefinite Pettis integral

y(t) =

∫ t

0

x(s)ds, t ∈ T , (1.4.2)

is not weakly differentiable on a set of positive Lebesgue measure (see also [60, 68]).

In 1995 Dilworth and Girardi [31] showed that there always exists a strongly mea-

surable and Pettis integrable function x(·) : T → E such that the indefinite Pettis

integral (1.4.2) is nowhere weakly differentiable. The best result for a descriptive

definition of the Pettis integral is that given by Pettis in [67].

Proposition 1.4.1. [67] Let x(·) : T → E be a weakly measurable function.

(a) If x(·) is Pettis integrable on T , then the indefinite Pettis integral (1.4.2) is AC

on T and x(·) is a pseudo-derivative of y(·).
(b) If y(·) : T → E is an AC function on T and it has a pseudo-derivative x(·) on
T , then x(·) is Pettis integrable on T and

y(t) = y(0) +

∫ t

0

x(s)ds, t ∈ T.

It is known that the Pettis integrals of two strongly measurable functions x(·) :
T → E and y(·) : T → E coincide over every Lebesgue measurable set in T if

and only if x(·) = y(·) a.e. on T [67, Theorem 5.2]. Since a pseudo-derivative

of a pseudo-differentiable function x(·) : T → E is not unique and two pseudo-

derivatives of x(·) need not be a.e. equal, then the concept of weakly equivalence

plays an important role in the following.

Definition 1.4.3. Two weakly measurable functions x(·) : T → E and y(·) : T → E

are said to be weakly equivalent on T if for every x∗ ∈ E∗ we have that ⟨x∗, x(t)⟩ =
⟨x∗, y(t)⟩ for a.e. t ∈ T .

Remark 1.4.3. From an integral point of view, the weak measurable functions

with the same indefinite Pettis integral are weakly equivalent. Obviously, every two

pseudo-derivatives of a pseudo-differentiable function are weakly equivalent, if there

exist. However, the functions that are weakly equivalent to strongly measurable

functions need not themselves be strongly measurable ([37, Example 2.3]). In fact,
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to say that a weakly measurable function x(·) : T → E is weakly equivalent to a

strongly measurable function is the same as saying that the indefinite integral of

x(·) is given by a Bochner integrable function (see [85]). An example of a weakly

measurable function that is not strongly measurable but is weakly equivalent to a

strongly measurable function can be found in [61, Example 3.1].

If two weakly measurable functions x(·) : T → E and y(·) : T → E are weakly

equivalent on T , then we will write x(·) h y(·) t ∈ T .

Proposition 1.4.2. [67] A weakly measurable function x(·) : T → E is Pettis

integrable on T and ⟨x∗, x(·)⟩ ∈ L∞(T ) for every x∗ ∈ E∗, if and only if the function

t 7→ φ(t)x(t) is Pettis integrable on T for every φ(·) ∈ L1(T ).

We will now define the fractional integral of a vector-valued function using the

Riemann-Pettis integral. Also, we will establish some properties of them. First, we

recall the notion of Riemann integral for vector-valued functions.

The notion of Riemann integral for vector-valued functions was introduced by

Graves [42].

Definition 1.4.4. A vector-valued function x(·) : T → E is said to be Riemann

integrable (or R-integrable, for short) on T if for any partition {t0, ..., tn} of T and

any choice of points ξi ∈ [ti−1, ti], i = 1, ..., n, the sum given by

n∑
i=1

(ti − ti−1)x(ξi) (1.4.3)

converge strongly to some xT ∈ E provided max
1≤i≤n

|ti − ti−1| → 0 as n→ ∞.

The element xT is called the Riemann-Graves integral of x(·) and it will be

denoted by (R)
∫ b

0
x(t)dt.

Let us recall that a function x(·) : T → E is said to be scalarly Riemann integrable

if for every x∗ ∈ E∗ the real function t 7→ ⟨x∗, x(t)⟩ is Riemann integrable on T . In

the following, let us recall some properties of Riemann integral. First, let us denote

by P∞(T,E) the space of all weakly measurable and Pettis integrable functions

x(·) : T → E with the property that ⟨x∗, x(·)⟩ ∈ L∞(T ) for every x∗ ∈ E∗.

An R-integrable function x(·) : T → E is also scalarly Riemann integrable and∫ b

a

⟨x∗, x(t)⟩ dt =
⟨
x∗, (R)

∫ b

a

x(t)dt

⟩
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for every x∗ ∈ E∗ (see [41, Theorem 7]). Using the Uniform Boundedness Principle it

is easy to see that every scalarly Riemann integrable function is bounded. Therefore,

if x(·) : T → E is R-integrable on T , then for every x∗ ∈ E∗ the real function

t 7→ ⟨x∗, x(t)⟩ is bounded and a.e. continuous on T . It follows that every R-

integrable function x(·) is Pettis integrable (in fact, x(·) ∈ P∞(T,E)) and every

strongly measurable and R-integrable function x(·) is Bochner integrable (see [41,

Theorem 15]).

Graves ([42, Theorem 1]) shows that any function which is discontinuous on a set

of Lebesgue measure zero is R-integrable. Also, Graves [42] gives an example of a

discontinuous everywhere function which is R-integrable. We also remark that there

exist strongly measurable and R-integrable functions which are not a.e. continuous

[70], and R-integrable functions x(·) : T → E such that ∥x(·)∥ is not measurable

and, hence neither Riemann integrable nor Lebesgue integrable [67]. Therefore, a

R-integrable function is not necessarily Bochner integrable. More details on the

properties of R-integral can be found in the works [9], [41], [42] and [71].

1.5 WeakMeasure of Non-Compactness andWeak

variant of Arcoli-Arzela Theorem

Let us denote by Pwk(E) the set of all weakly compact subset of E. The weak

measure of non-compactness [27] is the set function β : Pwk(E) → [0,∞) defined by

β(A) = inf{r > 0; there exist K ∈ Pwk(E) such A ⊂ K + rB1},

where B1 is the closed unit ball in E. The properties of weak non-compactness

measure are analogous to the properties of measure of non-compactness:

(i) A ⊆ B implies that β(A) ≤ β(B);

(ii) β(A) = β(clwA), where clwA denotes the weak closure of A;

(iii) β(A) = 0 if and only if clwA is weakly compact;

(iv) β(A ∪B) = max{β(A), β(B)};
(v) β(A) = β(conv(A));

(vi) β(A+B) ≤ β(A) + β(B);

(vii) β(x+ A) = β(A), for all x ∈ E;
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(viii) β(λA) = |λ|β(A), for all λ ∈ R;
(ix) β(∪0≤r≤r0rA) = r0β(A);

(x) β(A) ≤ 2diam(A).

Lemma 1.5.1. ([8, 23]) Let H ⊂ C(T,E) be bounded and equicontinuous. Then

(i) the function t→ β(H(t)) is continuous on T,

(ii) βc(H) = supt∈T β(H(t)) = β(H(t)),

where βc(·) denote the weak non-compactness measure on C(T,E) and H(t) = {u(t),
u ∈ H}, t ∈ T.

Definition 1.5.1. • Let {xn(t)} be a sequence of functions from T into E, then{
xn(t)

}
converges weakly uniformly to x(t), where x : T → E, if for ε > 0,

x∗ ∈ E∗ there exists N = N(x∗, ε) such that n > N implies∣∣∣⟨x∗, xn(t)− x(t)⟩
∣∣∣ < ε for all t ∈ T.

• The family
{
xn(t)

}
is said to be weakly equicontinuous if given ε > 0, x∗ ∈ E∗,

there exists a δ = δ(x∗, ε) such that∣∣∣⟨x∗, xn(t)− xn(s)⟩
∣∣∣ < ε

whenever |t− s| < δ and for any n ∈ N.

• if {xn} is a sequence in E, then {xn} is weakly Cauchy if given ε > 0, x∗ ∈ E∗,

there exists N = N(x∗, ε) such that n,m ≥ N implies that∣∣∣⟨x∗, (xn − xm)⟩
∣∣∣ < ε;

• The Banach space E is weakly sequentially complete if every weakly Cauchy

sequence is weakly convergent in E.

Theorem 1.5.2. [54] Let E be a metrizable locally convex topological vector space

and let K be a closed convex subset of E, and let Q be a weakly sequentially contin-

uous map of K into itself. If for some y ∈ K the implication

V = conv(Q(V ) ∪ {y}) ⇒ V is relatively weakly compact,

holds for every subset V of K, then Q has a fixed point.
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Chapter 2

Pseudo Solution for Fractional
Differential Equations

In chapter 1 we recalled some basic definitions and results about differentiation and

integration in Banach spaces. In the present chapter we establish an existence result

for the fractional differential equations in nonreflexive Banach spaces.{
Dα

p y(t) = f(t, y(t))
y(0) = y0

where Dα
p y(·) is a fractional pseudo-derivative of a weakly absolutely continuous

and pseudo-differentiable function y(·) : T → E, the function f(t, ·) : T × E → E

is weakly-weakly sequentially continuous for every t ∈ T and f(·, y(·)) is Pettis

integrable for every weakly absolutely continuous function y(·) : T → E, T is a

bounded interval of real numbers containing zero and E is a nonreflexive Banach

space.

2.1 Fractional Pettis integral and Abel integral

equation

Let us denote by P∞(T,E) the space of all weakly measurable and Pettis integrable

functions x(·) : T → E with the property that ⟨x∗, x(·)⟩ ∈ L∞(T ) for every x∗ ∈ E∗.

Since for each t ∈ T the real valued function s 7→ (t− s)α−1 is Lebesgue integrable

on [0, t] for every α > 0 then, by Proposition 1.4.2, the fractional Pettis integral

Iαx(t) :=

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, t ∈ T ,
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exists for every function x(·) ∈ P∞(T,E) as a function from T into E. Moreover,

we have that

⟨x∗, Iαx(t)⟩ =
∫ t

0

(t− s)α−1

Γ(α)
⟨x∗, x(s)⟩ ds, t ∈ T ,

for every x∗ ∈ E∗, and the real function t 7→ ⟨x∗, Iαx(t)⟩ is continuous (in fact,

bounded and uniformly continuous on T if T = R) on T for every x∗ ∈ E∗ ([9,

Proposition 1.3.2]).

Example 2.1. Let T be the interval [0, 1] and define f : T → L∞(T ) by f(t) = χ[0,t].

Then this function is weakly measurable and Pettis integrable, but not strongly mea-

surable (see [37], [85]). To compute the fractional Pettis integral of f , we consider

ψ ∈ L1(T ), and let x∗ be the element of L∞(T )∗ corresponding to ψ. Since∫ t

0

(t− s)α−1

Γ(α)
⟨x∗, f(s)⟩ ds =

∫ t

0

(t− s)α−1

Γ(α)

⟨
x∗, χ[0,s]

⟩
ds =

=

∫ t

0

(t− s)α−1

Γ(α)

∫ 1

0

ψ(τ)χ[0,s](τ)dτds =

∫ t

0

(t− s)α−1

Γ(α)

∫ s

0

ψ(τ)dτds

=

∫ t

0

∫ t

τ

(t− s)α−1

Γ(α)
ψ(τ)dsdτ =

∫ t

0

(t− τ)α

Γ(1 + α)
ψ(τ)dτ

=

∫ 1

0

(t− τ)α

Γ(1 + α)
χ[0,t](τ)ψ(τ)dτ =

⟨
x∗,

(t− τ)α

Γ(1 + α)
χ[0,t]

⟩
,

we infer that(∫ t

0

(t− s)α−1

Γ(α)
f(s)ds

)
(τ) =

(t− τ)α

Γ(1 + α)
χ[0,t] ∈ L∞(T ), t ∈ [0, 1].

Lemma 2.1.1. If x(·), y(·) ∈ P∞(T,E) are weakly equivalent on T , then Iαx(t) =

Iαy(t) on T .

Proof. If x(·), y(·) ∈ P∞(T,E) are weakly equivalent on T , then for every

x∗ ∈ E∗ there exists a null set N(x∗) ∈ L (T ) such that for every t ∈ T we have

that ⟨x∗, x(s)⟩ = ⟨x∗, y(s)⟩ for s ∈ [0, t]rN(x∗). It follows that (t−s)α−1

Γ(α)
⟨x∗, x(s)⟩ =

(t−s)α−1

Γ(α)
⟨x∗, y(s)⟩ for s ∈ [0, t] r N(x∗) and t ∈ T , and so

∫ t

0
(t−s)α−1

Γ(α)
⟨x∗, x(s)⟩ ds =∫ t

0
(t−s)α−1

Γ(α)
⟨x∗, y(s)⟩ ds for t ∈ T . Therefore, we have that ⟨x∗, Iαx(t)⟩ = ⟨x∗, Iαy(t)⟩

for every x∗ ∈ E∗ and every t ∈ T , and thus Iαx(t) = Iαy(t) on T . �

Lemma 2.1.2. The fractional Pettis integral is a linear operator from P∞(T,E)

into P∞(T,E). Moreover, if x(·) ∈ P∞(T,E), then for α, β ∈ (0, 1) we have
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(a) IαIβx(t) = Iα+βx(t), t ∈ T,

(b) lim
α→1

Iαx(t) = I1x(t) weakly uniformly on T if only these integrals exist on T .

Proof. Let x(·) ∈ P∞(T,E) and α > 0. Since for each t ∈ T the real valued

function s 7→ (t − s)α−1 is Lebesgue integrable on [0, t] and for every x∗ ∈ E∗ the

real function t 7→ ⟨x∗, x(t)⟩ is essentially bounded on T , then for every x∗ ∈ E∗ the

real function t 7→
∫ t

0
(t−s)α−1

Γ(α)
⟨x∗, x(s)⟩ ds is continuous on T . Moreover, for every

x∗ ∈ E∗ we have∫
T

⟨x∗, Iαx(t)⟩ dt =
∫ b

0

⟨
x∗,

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds

⟩
dt =

∫ b

0

∫ t

0

(t− s)α−1

Γ(α)
⟨x∗, x(s)ds⟩ dt =

∫ b

0

∫ b

s

(t− s)α−1

Γ(α)
⟨x∗, x(s)dt⟩ ds =∫ b

0

(b− s)α

Γ(α + 1)
⟨x∗, x(s)⟩ ds =

⟨
x∗,

∫ b

0

(b− s)α

Γ(α + 1)
x(s)ds

⟩
= ⟨x∗, xT ⟩ ,

where xT =
∫ b

0
(b−s)α

Γ(α+1)
x(s)ds. It follows that the function t 7→ Iαx(t) is weakly

measurable, ⟨x∗, x(·)⟩ ∈ L∞(T ) for every x∗ ∈ E∗ and there exists a xT ∈ E such

that ⟨x∗, xT ⟩ =
∫
T
⟨x∗, Iαx(t)⟩ dt; that is, Iαx(·) ∈ P∞(T,E). Obviously, Iα is a

linear operator. Next, since for every x∗ ∈ E∗ the real function t 7→ ⟨x∗, x(t)⟩ is

essentially bounded on T , then from the semigroup property of fractional integration

(see [38, Theorem 2.2]) it follows that for every x∗ ∈ E∗ we have

IαIβ ⟨x∗, x(t)⟩ = Iα+β ⟨x∗, x(t)⟩

for t ∈ T . Therefore, for every x∗ ∈ E∗ we have⟨
x∗, IαIβx(t)

⟩
=
⟨
x∗, Iα+βx(t)

⟩
for t ∈ T and so IαIβx(t) = Iα+βx(t) for t ∈ T . For (b) see [74]. �

In the following, consider α ∈ (0, 1) and for a given function x(·) ∈ P∞(T,E) we

also denote by x1−α(t) the fractional Pettis integral

I1−αx(t) =

∫ t

0

(t− s)−α

Γ(1− α)
x(s)ds, t ∈ T .

Consider the following Abel integral equation∫ t

0

(t− s)α−1

Γ(α)
x(s)ds = y(t), t ∈ T , (2.1.1)
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where y(·) ∈ P∞(T,E) is a given function. Our aim is to find the conditions under

which the integral equation (2.1.1) has a solution x(·) ∈ P∞(T,E). For this, suppose

that x(·) ∈ P∞(T,E) is a solution of (2.1.1). Then from (2.1.1) it follows that∫ t

0

(t− s)α−1

Γ(α)
⟨x∗, x(s)⟩ ds = ⟨x∗, y(t)⟩ , t ∈ T , (2.1.2)

for every x∗ ∈ E∗. Since ⟨x∗, x(·)⟩ ∈ L1(T ) and ⟨x∗, y(·)⟩ ∈ L1(T ) for every x∗ ∈ E∗,

then using the same reasoning as in [80, Section 1.2] it follows that∫ t

0

⟨x∗, x(s)⟩ ds = ⟨x∗, y1−α(t)⟩ , t ∈ T ,

for every x∗ ∈ E∗. Therefore, for every x∗ ∈ E∗ the real function t 7→ ⟨x∗, y1−α(t)⟩
is an AC function on T , and so y1−α(·) : T → E is wAC on T . Moreover, for

every x∗ ∈ E∗ the real function t 7→ ⟨x∗, y1−α(t)⟩ is a.e. differentiable on T and
d
dt
⟨x∗, y1−α(·)⟩ ∈ L1(T ). Then for every x∗ ∈ E∗ there exists a null setN(x∗) ∈ L (T )

such that the real function t 7→ ⟨x∗, y1−α(t)⟩ is differentiable on T rN(x∗) and

d

dt
⟨x∗, y1−α(t)⟩ = ⟨x∗, x(t)⟩ for t ∈ T rN(x∗), (2.1.3)

and thus x(·) is a pseudo-derivative of y1−α(·). Consequently, if x(·) ∈ P∞(T,E) is a

solution of (2.1.1), then y1−α(·) is wAC on T , x(·) ∈ P∞(T,E) is a pseudo-derivative

of y1−α(·), and y1−α(0) = 0.

Moreover, if x̃(·) ∈ P∞(T,E) is another solution of (2.1.1), then it is not difficult to

see that x(·) and x̃(·) are weakly equivalent.

Conversely, suppose that the function y1−α(·) is wAC on T , has a pseudo-derivative

z(·) ∈ P∞(T,E) and y1−α(0) = 0. Since y1−α(·) is wAC on T , then for every x∗ ∈ E∗

the real function t 7→ ⟨x∗, y1−α(t)⟩ is a.e. differentiable on T , and so for every x∗ ∈ E∗

there exists a null set N(x∗) ∈ L (T ) such that the real function t 7→ ⟨x∗, y1−α(t)⟩ is
differentiable on TrN(x∗) and ⟨x∗, y1−α(·)⟩ ∈ L1(T ). For every x∗ ∈ E∗, we consider

a function g(x∗)(·) ∈ L1(T ) such that g(x∗)(t) = d
dt
⟨x∗, y1−α(t)⟩, t ∈ T r N(x∗).

Further, since y1−α(·) has the pseudo-derivative z(·) ∈ P∞(T,E), then for every

x∗ ∈ E∗ there exists a null set M(x∗) ∈ L (T ) such that the real function t 7→
⟨x∗, y1−α(t)⟩ is differentiable on T rM(x∗) and

d

dt
⟨x∗, y1−α(t)⟩ = ⟨x∗, z(t)⟩ , t ∈ T rM(x∗).
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It follows that for every x∗ ∈ E∗ we can choose the null set A(x∗) := N(x∗)∪M(x∗)

such that t 7→ ⟨x∗, y1−α(t)⟩ is differentiable on T r A(x∗) and

g(x∗)(t) =
d

dt
⟨x∗, y1−α(t)⟩ = ⟨x∗, z(t)⟩ , t ∈ T r A(x∗). (2.1.4)

Moreover, we observe that g(x∗)(·) ∈ L∞(T ). We will now show that for every

x∗ ∈ E∗ the real function g(x∗)(·) is a solution of (2.1.2). For this purpose we

replace ⟨x∗, x(·)⟩ by g(x∗)(·) in the left-hand side of (2.1.2) and denote the result by

f(x∗)(·), that is, ∫ t

0

(t− s)α−1

Γ(α)
g(x∗)(s)ds = f(x∗)(t), t ∈ T . (2.1.5)

If we show that for every x∗ ∈ E∗ the functions f(x∗)(·) and ⟨x∗, y(·)⟩ are equal on

T , then our assertion is proved. Note using (2.1.5), the equality f(x∗)(·) = ⟨x∗, y(·)⟩
on T is shown in the proof of Theorem 2.1 from [80]. Consequently, since for every

x∗ ∈ E∗ the real function g(x∗)(·) is a solution of (2.1.2), it follows that the pseudo-

derivative z(·) of y1−α(·) is weakly equivalent with a solution of (2.1.1). Finally,

we remark that if α ∈ (0, 1) is replaced by β := 1 − α ∈ (0, 1), then the previous

reasoning remain valid.

Summarizing the above we obtain.

Theorem 2.1.3. If y(·) ∈ P∞(T,E), then the Abel integral equation (2.1.1) has a

solution in P∞(T,E) if and only if the function y1−α(·) has the following properties:

(a) y1−α(·) is wAC on T ,

(b) y1−α(·) has a pseudo-derivative belonging to P∞(T,E) ;

(c) y1−α(0) = 0.

If these conditions are satisfied, then any solution x(·) ∈ P∞(T,E) of (2.1.1) is

weakly equivalent to a pseudo-derivative of y1−α(·); that is, x(t) h dp
dt

∫ t

0
(t−s)−α

Γ(1−α)
y(s)ds

on T . If E is a weakly sequentially complete space, then condition (a) is replaced

by

(a ′) y1−α(·) is AC on T .

Corollary 2.1.4. If y(·) ∈ P∞(T,E), then the Abel integral equation∫ t

0

(t− s)−α

Γ(1− α)
x(s)ds = y(t), t ∈ T , (2.1.6)
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has a solution in P∞(T,E) if and only if the function yα(·) has the following prop-

erties:

(a) yα(·) is wAC on T ,

(b) yα(·) has a pseudo-derivative belonging to P∞(T,E);

(c) yα(0) = 0.

If these conditions are satisfied, then any solution x(·) ∈ P∞(T,E) of (2.1.6) is

weakly equivalent to a pseudo-derivative of yα(·); that is, x(t) h dp
dt

∫ t

0
(t−s)α−1

Γ(α)
y(s)ds

on T . If E is a weakly sequentially complete space, then condition (a) is replaced

by

(a ′) yα(·) is AC on T .

Corollary 2.1.5. If f(·, ·) : T×E → E is a function such that f(·, y(·)) ∈ P∞(T,E)

for every wAC function y(·) : T → E, then the function fα(·) given by

fα(t) =

∫ t

0

(t− s)1−α

Γ(α)
f(s, y(s))ds, t ∈ T , (2.1.7)

has the following properties:

(a) fα(·) is wAC on T ,

(b) f(·, y(·)) is a pseudo-derivative of fα(·);
(c) fα(0) = 0.

If E is a weakly sequentially complete space, then wAC is replaced by AC.

2.2 Fractional Pseudo-Derivative

In the following, consider α ∈ (0, 1). If y(·) : T → E is a pseudo-differentiable func-

tion with a pseudo-derivative x(·) ∈ P∞(T,E) on T , then the following fractional

Pettis integral

I1−αx(t) =

∫ t

0

(t− s)−α

Γ(1− α)
x(s)ds

exists on T . The fractional Pettis integral I1−αx(·) is called a fractional pseudo-

derivative of y(·) on T and it will be denoted by Dα
p y(·); that is,

Dα
p y(t) = I1−αx(t), t ∈ T. (2.2.1)
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If y(·) : T → E is an a.e. weakly differentiable function with the weak derivative

y′w(·) ∈ P∞(T,E) on T , then

Dα
wy(t) := I1−αy′w(t), t ∈ T, (2.2.2)

is called the fractional weak derivative of y(·) on T .

Example 2.2. Let c0 be the space of all real sequences converging to zero and

T = [0, 1]. Then c0 is a Banach space with respect to the norm ∥x∥c0 := max
n≥1

|xn|,
where x = {xn}n≥1. Also, we recall that c0 is not weakly sequentially complete. Let

x(·) : T → c0 be defined by

x(t)(n) = xn(t) =


n, if 0 ≤ t ≤ 1

2n

−n, if 1
2n
< t ≤ 1

n

0, if 1
n
< t ≤ 1.

Also, consider the function y(·) : T → c0 be defined by

y(t)(n) = yn(t) =


nt, if 0 ≤ t ≤ 1

2n

1− nt, if 1
2n
< t ≤ 1

n

0, if 1
n
< t ≤ 1.

Then it is easy to see that yn(t) =
∫ t

0
xn(s)ds, 0 ≤ t ≤ 1. Let x∗ ∈ c∗0. Then there

exists a sequence of real numbers {λn(x∗)}n≥1 such that the series
∑∞

n=1 λn(x
∗) is

absolutely convergent and

⟨x∗, y(t)⟩ =
∞∑
n=1

λn(x
∗)yn(t) =

∑
n≥1

λn(x
∗)

∫ t

0

xn(s)ds.

Since

|⟨x∗, x(t)⟩| =

∣∣∣∣∣
∞∑
n=1

λn(x
∗)xn(t)

∣∣∣∣∣ ≤
∞∑
n=1

|λn(x∗)| <∞

by the Fubini theorem we have

⟨x∗, y(t)⟩ =
∫ t

0

[
∞∑
n=1

λn(x
∗)xn(s)

]
ds,

and so the function t 7→ ⟨x∗, y(t)⟩ is absolutely continuous for every x∗ ∈ c∗0 (see also

[48]). Thus, for every x∗ ∈ E∗ there exists a null set N(x∗) ∈ L (T ) such that the real

function t 7→ ⟨x∗, x(t)⟩ is differentiable on T r N(x∗) and d
dt
⟨x∗, y(t)⟩ = ⟨x∗, x(t)⟩,

t ∈ T r N(x∗). It follows that the function x(·) is a pseudo-derivative of y(·) such
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that x(·) ∈ P∞(T ). To compute the fraction pseudo-derivative of x(·), let x∗ ∈ c∗0

be given and let
∑∞

n=1 λn(x
∗) be its corresponding absolutely convergent series. We

have ∫ t

0

(t− s)−α

Γ(1− α)
⟨x∗, x(s)⟩ ds =

∫ t

0

(t− s)−α

Γ(1− α)

[
∞∑
n=1

λn(x
∗)xn(s)

]
ds

=
∞∑
n=1

nλn(x
∗)

∫ t

0

(t− s)−α

Γ(1− α)
ds =

∞∑
n=1

λn(x
∗)

nt1−α

Γ(2− α)

if 0 ≤ t ≤ 1
2n
,∫ t

0

(t− s)−α

Γ(1− α)
⟨x∗, x(s)⟩ ds =

∞∑
n=1

nλn(x
∗)

[∫ 1/2n

0

(t− s)−α

Γ(1− α)
ds−

∫ t

1/2n

(t− s)−α

Γ(1− α)
ds

]

=
∞∑
n=1

λn(x
∗)

n

Γ(2− α)

[
t1−α − 2

(
t− 1

2n

)1−α
]

if 1
2n
< t ≤ 1

n
, and∫ t

0

(t− s)−α

Γ(1− α)
⟨x∗, x(s)⟩ ds =

∞∑
n=1

nλn(x
∗)

[∫ 1/2n

0

(t− s)−α

Γ(1− α)
ds−

∫ 1/n

1/2n

(t− s)−α

Γ(1− α)
ds

]

=
∞∑
n=1

λn(x
∗)

n

Γ(2− α)

[
t1−α − 2

(
t− 1

2n

)1−α

+

(
t− 1

n

)1−α
]

if 1
n
< t ≤ 1. It follows that

Dα
p x(t) =

∫ t

0

(t− s)−α

Γ(1− α)
x(s)ds = z(t), 0 ≤ t ≤ 1,

where z(·) ∈ c0 is defined by

z(t)(n) =


nt1−α

Γ(2−α)
, if 0 ≤ t ≤ 1

2n

n
Γ(2−α)

[
t1−α − 2

(
t− 1

2n

)1−α
]
, if 1

2n
< t ≤ 1

n

n
Γ(2−α)

[
t1−α − 2

(
t− 1

2n

)1−α
+
(
t− 1

n

)1−α
]
, if 1

n
< t ≤ 1.

Remark 2.2.1. If x(·), x̃(·) ∈ P∞(T,E) are two pseudo-derivatives of y(·) : T → E,

then x(·) h x̃(·) on T . Thus, Lemma 2.1.1 implies that I1−αx(t) = I1−αx̃(t) on T ,

and so Dα
p y(·) does not depend on the pseudo-derivatives of y(·). If y(·) : T → E is

a.e. weakly differentiable on T , then its weak derivative y′w(·) is a pseudo-derivative

of y(·), and thus Dα
p y(t) = Dα

wy(t) for t ∈ T .
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Lemma 2.2.1. If y(·) : T → E is a pseudo-differentiable function with a pseudo-

derivative x(·) ∈ P∞(T,E), then the function

y1−α(t) :=

∫ t

0

(t− s)−α

Γ(1− α)
y(s)ds, t ∈ T,

is wAC and it has a pseudo-derivative dp
dt
y1−α(·) ∈ P∞(T,E) such that

dp
dt
y1−α(t) h

t−α

Γ(1− α)
y(0) + I1−αx(t) on T. (2.2.3)

Proof. Since x(·) ∈ P∞(T,E) is a pseudo-derivative of y(·), then for every x∗ ∈ E∗

there exists a null set N(x∗) ∈ L (T ) such that the real function t 7→ ⟨x∗, y(t)⟩ is

differentiable on T r N(x∗) and d
dt
⟨x∗, y(t)⟩ = ⟨x∗, x(t)⟩ for t ∈ T r N(x∗). From

the last equality we infer that∫ s

0

⟨x∗, x(τ)⟩ dτ = ⟨x∗, y(s)⟩ − ⟨x∗, y(0)⟩ , s ∈ T, (2.2.4)

for every x∗ ∈ E∗. From (2.2.4) we obtain that∫ t

0

(t− s)−α

Γ(1− α)

∫ s

0

⟨x∗, x(τ)⟩ dτds =∫ t

0

(t− s)−α

Γ(1− α)
⟨x∗, y(s)⟩ ds−

∫ t

0

(t− s)−α

Γ(1− α)
⟨x∗, y(0)⟩ ds, t ∈ T,

for every x∗ ∈ E∗. It follows that∫ t

0

∫ s

0

(s− τ)−α

Γ(1− α)
⟨x∗, x(τ)⟩ dτds

=

∫ t

0

(t− s)−α

Γ(1− α)
⟨x∗, y(s)⟩ ds− t1−α

Γ(2− α)
⟨x∗, y(0)⟩ ,

and so

⟨x∗, y1−α(t)⟩ =
t1−α

Γ(2− α)
⟨x∗, y(0)⟩+

∫ t

0

z(s)ds, t ∈ T, (2.2.5)

for every x∗ ∈ E∗, where z(s) =
∫ s

0
(s−τ)−α

Γ(1−α)
⟨x∗, x(τ)⟩ dτ , s ∈ [0, t]. Since x(·) ∈

P∞(T,E), then from (2.2.5) we infer that the function t 7→ ⟨x∗, y1−α(t)⟩ is AC on

T for every x∗ ∈ E∗. Thus, from (2.2.5) it follows that for every x∗ ∈ E∗ we have

d

dt
⟨x∗, y1−α(t)⟩ =

t−α

Γ(1− α)
⟨x∗, y(0)⟩+

∫ t

0

(t− τ)−α

Γ(1− α)
⟨x∗, x(τ)⟩ dτ, t ∈ T,

for a.e. t ∈ T . Therefore, the function y1−α(·) is wAC and has a pseudo-derivative

weakly equivalent to t−α

Γ(1−α)
y(0) + I1−αx(t) on T . �
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Remark 2.2.2. Relation (2.2.3) can be written as

Dα
p x(t) h

t−α

Γ(1− α)
y(0)− dp

dt
y1−α(t) on T. (2.2.6)

In this case dp
dt
y1−α(t) will be denoted by RLDα

p x(t) and it is called a Riemann-

Liouville pseudo-derivative of x(·). The formula (2.2.6) suggests us that we can ex-

tend the definition of the fractional pseudo-derivative for functions x(·) ∈ P∞(T,E).

Therefore, if x(·) ∈ P∞(T,E), then a fractional pseudo-derivative of x(·) is defined
by (2.2.6). It follows that a fractional pseudo-derivative Dα

p x(t) are also defined for

functions x(·) for which a Riemann-Liouville fractional pseudo-derivative RLDα
p x(t)

exists.

Corollary 2.2.2. Let E be a weakly sequentially complete space. If y(·) : T → E is

a.e. weakly differentiable, then the function y1−α(·) is AC on T .

Remark 2.2.3. Let y(·) : T → E be a pseudo-differentiable function with a pseudo-

derivative x(·) ∈ P∞(T,E). Then as in the proof of Lemma 2.2.1 we can show that

the function

yα(t) :=

∫ t

0

(t− s)α−1

Γ(α)
y(s)ds, t ∈ T,

is wAC and has a pseudo-derivative dp
dt
yα(t) such that

dp
dt
yα(t) h

tα−1

Γ(α)
y(0) + Iαx(t) on T.

Also, if E is a weakly sequentially complete space and y(·) : T → E is a.e. weakly

differentiable, then the function yα(·) is AC on T .

Lemma 2.2.3. If y(·) : T → E is a pseudo-differentiable function with a pseudo-

derivative x(·) ∈ P∞(T,E) and α, β ∈ (0, 1), then

(a) IαDα
p y(t) = y(t)− y(0) on T ;

(b) Dα
p I

αy(t) = y(t) on T .

Proof. Indeed, using (2.2.1), Lemma 2.1.2 and Proposition 1.4.1, we have

IαDα
p y(t) = IαI1−αx(t) = I1x(t) =

∫ t

0

x(s)ds

= y(t)− y(0), t ∈ T.
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Also, using Lemma 2.1.1, Remark 2.2.3 and Proposition 1.4.1 we have

Dα
p I

αy(t) = I1−αdp
dt
Iαy(t) = I1−α

[
tα−1

Γ(α)
y(0) + Iαx(t)

]
= y(0) +

∫ t

0

x(s)ds = y(0) + y(t)− y(0) = y(t)

on T . �

2.3 Differential Equations With Fractional Pseudo-

Derivatives

In this section we establish an existence result for the following fractional differential

equation {
Dα

p y(t) = f(t, y(t))
y(0) = y0

(2.3.1)

where Dα
p y(·) is a fractional pseudo-derivative of the function y(·) : T → E and

f(·, ·) : T × E → E is a given function. Along with the Cauchy problem (2.3.1)

consider the following integral equation

y(t) = y0 +

∫ t

0

(t− s)α−1

Γ(α)
f(s, y(s))ds, t ∈ T, (2.3.2)

where the integral is in the sense of Pettis.

A continuous function y(·) : T → E is said to be a solution of (2.3.1) if y(·)
is pseudo-differentiable, has a pseudo-derivative belonging to P∞(T,E), Dα

p y(t) h
f(t, y(t)) for t ∈ T and y(0) = y0.

To prove a result of the existence of solutions for (2.3.1) we need some preliminary

results.

Lemma 2.3.1. Let f(·, ·) : T×E → E be a function such that f(·, y(·)) ∈ P∞(T,E)

for every continuous function y(·) : T → E. Then a continuous function y(·) : T →
E is a solution of (2.3.1) if and only if it satisfies the integral equation (2.3.2).

Proof. Indeed, if a continuous function y(·) : T → E is a solution of (2.3.1),

then from Lemma 2.2.3(a) it follows that y(t) − y(0) = Iαf(t, y(t)) on T ; that is,

y(·) satisfies the integral equation (2.3.2). Conversely, suppose that a continuous
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function y(·) : T → E satisfies the integral equation (2.3.2). Then the function

z(·) := f(·, y(·)) ∈ P∞(T,E) satisfies the Abel equation∫ t

0

(t− s)α−1

Γ(α)
z(s)ds = v(s), t ∈ T,

where v(t) := y(t) − y0, t ∈ T . From Theorem 2.1.3 and Remark 2.2.2 it follows

that v1−α(·) has a pseudo-derivative on T and

z(t) h
dp
dt
v1−α(t) =

t−α

Γ(1− α)
y0 −

dp
dt
y1−α(t) for t ∈ T .

Then by (2.2.6) we have that z(t) h Dα
p y(t) for t ∈ T ; that is, Dα

p y(t) h f(t, y(t))

on T .

2.4 An Existence Results of Fractional Differential

Equation

In this section we shell discuss the existence of solutions of fractionl differential

equations in nonreflexive Banach spaces. We recall that a function f(·) : E → E is

said to be sequentially continuous from Ew into Ew (or weakly-weakly sequentially

continuous) if for every weakly convergent sequence {xn}n≥1 ⊂ E, the sequence

{f(xn)}n≥1 is weakly convergent in E.

By a Gripenberg function we mean a function g : R+ → R+ such that g(·) is

continuous, nondecreasing with g(0) = 0 and u ≡ 0 is the only continous solution of

u(t) ≤ 1

Γ(α)

∫ t

0

(t− s)α−1g(u(s))ds, u(0) = 0. (2.4.1)

The problem of uniqueness of the null solution of (2.4.1) was studied by Gripenberg

in [39].

Theorem 2.4.1. Assume f(·, ·) : T × E → E be a function such that:

(h1) f(t, ·) is weakly-weakly sequentially continuous for every t ∈ T ;

(h2) f(·, y(·)) ∈ P∞(T,E) for every continuous function y(·) : T → E;

(h3) ||f(t, y)|| ≤M for all (t, y) ∈ T × E;

(h4) for every bounded set A ⊆ E we have

β(f(T × A)) ≤ g(β(A)),
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where g(·) is a Gripenberg function. Then (2.3.1) admits a solution y(·) on an

interval T0 = T with a = min

{
b,
(

rΓ(α+1)
M

)1/α}
.

Proof. In our proof we shall use some ideas from the papers of Cichoń [22] and

Salem & El–Sayed [74] (see also Cichoń & all. [22], Salem & Cichoń [79]). We define

the nonlinear operator Q (·) : C(T0, E) → C(T0, E) by

(Qy)(t) = y0 +

∫ t

0

(t− s)α−1

Γ(α)
f(s, y(s))ds, t ∈ T0.

If y(·) ∈ C(T0, E), then by (h2) we have that f(·, y(·)) ∈ P∞(T,E) and so the

operator Q makes sense. To show that Q is well defined, let t1, t2 ∈ T0 with t2 > t1.

Without loss of generality, assume that (Qy)(t2)− (Qy)(t1) ̸= 0. Then by the Hahn-

Banach theorem, there exists a y∗ ∈ E∗ with ∥y∗∥ = 1 and ∥(Qy)(t2)− (Qy)(t1)∥ =

|⟨y∗, (Qy)(t2)− (Qy)(t1)⟩|. Then

∥(Qy)(t2)− (Qy)(t1)∥ = |⟨y∗, (Qy)(t2)− (Qy)(t1)⟩|

=

∣∣∣∣∫ t2

0

(t2 − s)α−1

Γ(α)
⟨y∗, f(s, y(s))⟩ ds−

∫ t1

0

(t1 − s)α−1

Γ(α)
⟨y∗, f(s, y(s))⟩ ds

∣∣∣∣
≤

∫ t1

0

(
(t1 − s)α−1

Γ(α)
− (t2 − s)α−1

Γ(α)

)
|⟨y∗, f(s, y(s))⟩| ds+ (2.4.2)∫ t2

t1

(t2 − s)α−1

Γ(α)
|⟨y∗, f(s, y(s))⟩| ds

≤ M

Γ(1 + α)
[tα1 − tα2 + 2 (t2 − t1)

α] ≤ 2M

Γ(1 + α)
(t2 − t1)

α ,

so Q maps C(T0, E) into itself. Let r > 0 and let B̃ be the convex, closed and

equicontinous set defined by

B̃ = {y(·) ∈ C(T0, E); ∥y(·)∥c ≤ ∥y0∥+ r, ∥y(t2)− y(t1)∥

≤ 2M

Γ(1 + α)
(t2 − t1)

α for all t1, t2 ∈ T0}.

We will show that Q maps B̃ into itself and Q restricted to the set B̃ is weakly-

weakly sequentially continuous. To show that Q : B̃ → B̃, let y(·) ∈ B̃ and t ∈ T0.

Again, without loss of generality, assume that (Qy)(t) ̸= 0. By the Hahn-Banach

theorem, there exists a y∗ ∈ E∗ with ∥y∗∥ = 1 and ∥(Qy)(t)∥ = |⟨y∗, (Qy)(t)⟩|.
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Then by (h3), we have

∥(Qy)(t)∥ ≤ ∥y0∥+
∫ t

0

(t− s)α−1

Γ(α)
|⟨y∗, f(s, y(s))⟩| ds

≤ ∥y0∥+
Maα

Γ(α + 1)
≤ ∥y0∥+ r,

and using (2.4.2) it follows that Q maps B̃ into B̃. Next, we show that Q is weakly-

weakly sequentially continuous. First, we recall that the weak convergence in B̃ ⊂
C(T0, E) is exactly the weak pointwise convergence. Let {yn(·)}n≥1 be a sequence

in B̃ such that yn(·) converges weakly to y(·) in B̃. Then yn(t) converges weakly to

y(t) in E for each t ∈ T0. Since B̃ is a closed convex set, by Mazur’s lemma we have

y(·) ∈B̃. Further, by (h1) it follows that f(t, yn(t)) converges weakly to f(t, y(t))

for each t ∈ T0. Then the Lebesgue dominated convergence theorem for the Pettis

integral (see [88]) yields Iαyn(t) converging weakly to Iαy(t) in E for each t ∈ T0.

Since B̃ is equicontinuous subset of C(T0, E) it follows that Q(·) is weakly-weakly

sequentially continuous.

Suppose that V ⊂ B̃ such that V = co(Q(V ) ∪ {y(·)}) for some y(·) ∈ B̃. We

will show that V is relatively weakly compact in C(T0, E). Let∫ t

0

(t− s)α−1

Γ(α)
f(s, V (s))ds =

{∫ t

0

(t− s)α−1

Γ(α)
f(s, y(s))ds; y(·) ∈ V

}
and (QV )(t) = y0 +

∫ t

0
(t−s)α−1

Γ(α)
f(s, V (s))ds. Let t ∈ T0 and ε > 0. If we choose

η > 0 such that η <
(

εΓ(α+1)
M

)1/α
and

∫ t

t−η
(t−s)α−1

Γ(α)
f(s, y(s))ds ̸= 0 then, by the

Hahn-Banach theorem, there exists a y∗ ∈ E∗ with ∥y∗∥ = 1 and∥∥∥∥∫ t

t−η

(t− s)α−1

Γ(α)
f(s, y(s))ds

∥∥∥∥ =

∣∣∣∣⟨y∗,∫ t

t−η

(t− s)α−1

Γ(α)
f(s, y(s))ds

⟩∣∣∣∣ .
It follows that∥∥∥∥∫ t

t−η

(t− s)α−1

Γ(α)
f(s, y(s))ds

∥∥∥∥ ≤
∫ t

t−η

(t− s)α−1

Γ(α)
|⟨y∗, f(s, y(s))⟩| ds ≤ ε,

and thus using property (x) measure of the non-compactness we infer

β

(∫ t

t−η

(t− s)α−1

Γ(α)
f(s, V (s))ds

)
≤ 2ε. (2.4.3)
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Since by Lemma 1.5.1 the function s → v(s) := β(V (s)) is continuous on [0, t − η]

it follows that s → (t− s)α−1g(v(s)) is continuous on [0, t− η]. Hence, there exists

δ > 0 such that ∥∥(t− τ)α−1g(v(τ))− (t− s)α−1g(v(s))
∥∥ < ε

2

and

∥g(v(ξ))− g(v(τ))∥ < ε

2ηα−1
.

If |τ − s| < δ and |τ − ξ| < δ with τ, s, ξ ∈ [0, t− η], then it follows that

|(t− τ)α−1g(v(ξ))− (t− s)α−1g(v(s))| ≤

|(t− τ)α−1g(v(τ))− (t− s)α−1g(v(s))|+ (t− τ)α−1|g(v(ξ))− g(v(τ))| < ε,

that is

|(t− τ)α−1g(v(ξ))− (t− s)α−1g(v(s))| < ε, (2.4.4)

for all τ, s, ξ ∈ [0, t − η] with |τ − s| < δ and |τ − ξ| < δ. Consider the following

partition of the interval [0, t− η] into n parts 0 = t0 < t1 . . . < tn = t− η such that

ti − ti−1 < δ (i = 1, 2, . . . , n). By Lemma 1.5.1 for each i there exists si ∈ [ti−1, ti]

such that β(V ([ti−1, ti])) = v(si), i = 1, 2, . . . , n. Then we have (see [37, Theorem

2.2]) ∫ t−n

0

(t− s)α−1

Γ(α)
f(s, V (s))ds ⊂

⊂ 1

Γ(α)

n∑
i=1

∫ ti

ti−1

(t− s)α−1f(s, V (s))ds

⊂ 1

Γ(α)

n∑
i=1

(ti − ti−1)conv{(t− s)α−1f(s, y(s)); s ∈ [ti−1, ti], y ∈ V },

and so

β

(∫ t−η

0

(t− s)α−1

Γ(α)
f(s, V (s))ds

)
≤

≤ 1

Γ(α)

n∑
i=1

(ti − ti−1)β
(
conv{(t− s)α−1f(s, y(s)); s ∈ [ti−1, ti], y ∈ V }

)
=

1

Γ(α)

n∑
i=1

(ti − ti−1)β
(
{(t− s)α−1f(s, y(s)); s ∈ [ti−1, ti], y ∈ V }

)
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≤ 1

Γ(α)

n∑
i=1

(ti − ti−1)(t− ti)
α−1β (f(T0 × V [ti−1, ti]))

≤ 1

Γ(α)

n∑
i=1

(ti − ti−1)(t− ti)
α−1g(β(V [ti−1, ti])) ≤

≤ 1

Γ(α)

n∑
i=1

(ti − ti−1)(t− ti)
α−1g(v(si)).

Using (2.4.4) we have that

|(t− ti)
α−1g(v(si))− (t− s)α−1g(v(s))| < ε.

This implies that

1

Γ(α)

n∑
i=1

(ti − ti−1)(t− ti)
α−1g(v(si)) ≤

∫ t−η

0

(t− s)α−1

Γ(α)
g(v(s))ds+ ε(t− η).

Thus we obtain

β

(∫ t−η

0

(t− s)α−1

Γ(α)
f(s, V (s))ds

)
≤
∫ t−η

0

(t− s)α−1

Γ(α)
g(v(s))ds+ ε(t− η). (2.4.5)

Because

(QV )(t) ⊂ 1

Γ(α)

∫ t−η

0

(t− s)α−1f(s, V (s))ds+
1

Γ(α)

∫ t

t−η

(t− s)α−1f(s, V (s))ds,

then by virtue of (2.4.3) and (2.4.5) we have

β((QV )(t)) ≤
∫ t−η

0

(t− s)α−1

Γ(α)
g(v(s))ds+ ε(t− η) + 2ε

≤
∫ t

0

(t− s)α−1

Γ(α)
g(v(s))ds+ ε(t+ τ).

As the last inequality is true for every ε > 0, we infer

β((QV )(t)) ≤
∫ t

0

(t− s)α−1

Γ(α)
g(v(s))ds.

Because V = co(Q(V ) ∪ {y(·)}) then

β(V (t)) = β (co(Q(V (t)) ∪ {y(t)})) ≤ β((QV (t)))

and thus

v(t) ≤
∫ t

0

(t− s)α−1

Γ(α)
g(v(s))ds for t ∈ T0.
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Since g(·) is a Gripenberg function, it follows that v(t) = 0 for t ∈ T0. Since V as a

subset of B̃ is equicontinuous, by Lemma 1.5.1 we infer

βc(V (T0)) = sup
t∈T0

β(V (t)) = 0.

Thus, by Arzelá-Ascoli’s theorem we obtain that V is weakly relatively compact in

C(T0, E). Using Theorem 1.5.2 there exists a fixed point of the operator Q which is

a solution of (2.3.1). �

If E is reflexive and f(·, ·) : T × E → E is bounded, then (h4) is automatically

satisfied since a subset of a reflexive Banach space is weakly compact iff it is closed

in the weak topology and bounded in the norm topology.

We end this section with some remarks. If for α = 1 we put D1
py(·) = y′p(·), then

from Theorem 2.4.1 we obtain the following result (see [17], [49]).

Corollary 2.4.2. If f(·, ·) : T × E → E is a function that satisfies the conditions

(h1)-(h4) in Theorem 2.4.1, then the differential equation{
y′p(t) = f(t, y(t))
y(0) = y0

(2.4.6)

has a solution on [0, a] with a = min{b, r/M}.

2.5 Conclusions

In this chapter, we developed the fractional calculus for functions with values in a

nonreflexive Banach space equipped with the weak topology. Involving the concept

of Pettis integral, we introduced and studied the notions of fractional Pettis integral

and pseudo-fractional derivative. Using these tools we obtain an existence result for

fractional differential equations in a nonreflexive Banach space equipped with the

weak topology.
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Chapter 3

Multi-term Fractional Differential
Equation

3.1 Multi-term Fractional Differential Equations

In chapter 2, we introduced pseudo solution of fractional differential equations in

nonreflexive Banach spaces. We also exhibited the existence of solution of fractional

differential equations in nonreflexive Banach spaces. Furthermore, in last chapter

we considered those differential equations which has one differential operator but

in certain cases we deal with differential equations which contain more than one

differential operator. This type of differential equations are known as multi-term

differential equations. In this chapter we will establish an existence result for the

multi-term fractional differential equations in nonreflexive Banach spaces. Consider

the following multi-term fractional differential equation,(
Dαm −

m−1∑
i=1

aiD
αi

)
u(t) = f(t, u(t)) for t ∈ [0, 1], u(0) = 0. (3.1.1)

where Dαmu(·) and Dαiu(·) are fractional pseudo-derivative of a weakly absolutely

continuous and pseudo-differentiable function u(·) : [0, 1] → E of order αm and αi,

i = 1, 2, . . . ,m−1, respectively, the function f(t, ·) : [0, 1]×E → E is weakly-weakly

sequentially continuous for every t ∈ [0, 1] and f(·, y(·)) is Pettis integrable for every
weakly absolutely continuous function y(·) : [0, 1] → E, E is nonreflexive Banach

space, 0 < α1 < α2 < . . . < αm < 1 and a1, a2 . . . am−1 are real numbers such that

a :=
∑m−1

i=1
|ai|

Γ(αm−αi+1)
< 1.
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Along with the Cauchy problem (3.1.1) consider the following integral equation,

u(t) =
m−1∑
i=1

∫ t

0

ai(t− s)(αm−αi−1)

Γ(αm − αi)
u(s)ds+

∫ t

0

(t− s)αm−1

Γ(αm)
f(s, u(s))ds, (3.1.2)

t ∈ T = [0, 1], where the integral is in the sense of Pettis.

Definition 3.1.1. A continuous function u(·) : T → E is said to be a solution of

(3.1.1) if,

(i) u(·) has pseudo derivative of order αi, i = 1, 2, . . .m,

(ii) the pseudo derivative of u(·) of order αi, i = 1, 2, . . .m, belong to P∞(T,E),

(iii)

(
Dαm −

m−1∑
i=1

aiD
αi

)
u(t) h f(t, u(t)) for all t ∈ T ,

(iv) u(0) = 0.

Reasoning as in the proof of the Lemma 2.3.1 we can easily prove the following

result.

Lemma 3.1.1. Let f(·, ·) : T×E → E be a function such that f(·, u(·)) ∈ P∞(T,E)

for every continuous function u(·) : T → E. Then a continuous function u(·) : T →
E is a solution of (3.1.1) if and only if it satisfies the integral equation (3.1.2).

We recall that a function f(·) : E → E is said to be sequentially continuous from

Ew into Ew (or weakly-weakly sequentially continuous) if for every weakly convergent

sequence {xn}n≥1 ⊂ E, the sequence {f(xn)}n≥1 is weakly convergent in E.

3.2 Existence of Solution

In this section we establish an existence result for the multi-term fractional differ-

ential equation (3.1.1) in nonreflexive Banach spaces.

Theorem 3.2.1. Let r > 0. Assume f(·, ·) : T × E → E be a function such that:

(h1) f(t, ·) is weakly-weakly sequentially continuous for every t ∈ T ;

(h2) f(·, u(·)) is Pettis integrable for every continuous function u(·) : T → E;

(h3) ||f(t, y)|| ≤M for all (t, y) ∈ T × E;

(h4) for every bounded set A ⊆ E we have

β(f(T × A)) ≤ g(β(A)),
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where g(·) is a Gripenberg function. Then (3.1.1) admits a solution u(·) on an in-

terval T0 = [0, a0] with

a0 = min

{
1,

[
r(1− a)Γ(αm + 1)

M

]1/αm
}
.

Proof: We define the nonlinear operator Q (·) : C(T0, E) → C(T0, E) by

(Qu)(t) =
m−1∑
i=1

∫ t

0

ai(t− s)αm−αi−1

Γ(αm − αi)
u(s)ds+

∫ t

0

(t− s)αm−1

Γ(αm)
f(s, u(s))ds, ,

for all t ∈ [0, a0]. If y(·) ∈ C(T0, E), then by (h2) we have that f(·, y(·)) ∈ P∞(T0, E)

and so the operator Q makes sense. To show that Q is well defined, let t, s ∈
T0 with t > s. Without loss of generality, assume that (Qy)(t) − (Qy)(s) ̸= 0.

Then by the Hahn-Banach theorem, there exists a y∗ ∈ E∗ with ∥y∗∥ = 1 and

∥(Qy)(t)− (Qy)(s)∥ = |⟨y∗, (Qy)(t)− (Qy)(s)⟩|. Then

∥(Qy)(t)− (Qy)(s)∥ = |⟨y∗, (Qy)(t)− (Qy)(s)⟩| ≤

≤
m−1∑
i=1

|ai|
Γ(αm − αi)

∫ s

0

[
(s− τ)αm−αi−1 − (t− τ)αm−αi−1

]
|⟨y∗, u(τ)⟩| dτ

+

∫ t

s

(t− τ)αm−αi−1 |⟨y∗, f(τ, u(τ))⟩| dτ +

+
1

Γ(αm)

∫ s

0

[
(s− τ)αm−1 − (t− τ)αm−1

]
|⟨y∗, u(τ)⟩| dτ (3.2.1)

+

∫ t

s

(t− τ)αm−1 |⟨y∗, f(τ, u(τ))⟩| dτ

≤ 2

[
m−1∑
i=1

r|ai|
Γ(αm − αi + 1)

+
M

Γ(αm + 1)

]
(t− s)αm .

so Q maps C(T0, E) into itself. Let r > 0 and let B̃ be the convex, closed and

equicontinous set defined by

B̃ = {y(·) ∈ C(T0, E); ∥y(·)∥c ≤ r, ∥y(t)− y(s)∥ ≤

≤ 2

[
m−1∑
i=1

r|ai|
Γ(αm − αi + 1)

+
M

Γ(αm + 1)

]
(t− s)αm for all t, s ∈ T0}.

We will show that Q maps B̃ into itself and Q restricted to the set B̃ is weakly-

weakly sequentially continuous. To show that Q : B̃ → B̃, let y(·) ∈ B̃ and t ∈ T0.
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Again, without loss of generality, assume that (Qy)(t) ̸= 0. By the Hahn-Banach

theorem, there exists a y∗ ∈ E∗ with ∥y∗∥ = 1 and ∥(Qy)(t)∥ = |⟨y∗, (Qy)(t)⟩|.
Then by (h3), we have

∥(Qu)(t)∥ = |⟨y∗, (Qy)(t)⟩| ≤

≤
m−1∑
i=1

|ai|
Γ(αm − αi)

∫ t

0

(t− s)αm−αi−1 |⟨y∗, u(τ)⟩| ds+

1

Γ(αm)

∫ t

0

(t− s)αm−1 |⟨y∗, f(τ, u(τ))⟩| ds ≤

≤
m−1∑
i=1

r|ai|
Γ(αm − αi + 1)

+
Mtαm

Γ(αm + 1)
≤ ra+ (1− a)r = r

and using (3.2.1) it follows that Q maps B̃ into B̃. Next, we show that Q is weakly-

weakly sequentially continuous. First, we recall that the weak convergence in B̃ ⊂
C(T0, E) is exactly the weak pointwise convergence. Let {un(·)}n≥1 be a sequence

in B̃ such that un(·) converges weakly to u(·) in B̃. Then un(t) converges weakly to

u(t) in E for each t ∈ T0. Since B̃ is a closed convex set, by Mazur’s lemma we have

u(·) ∈B̃. Further, by (h1) it follows that f(t, un(t)) converges weakly to f(t, u(t))

for each t ∈ T0. Then the Lebesgue dominated convergence theorem for the Pettis

integral (see [88]) yields Iαun(t) converging weakly to Iαu(t) in E for each t ∈ T0.

Since B̃ is equicontinuous subset of C(T0, E) it follows that Q(·) is weakly-weakly

sequentially continuous.

Suppose that V ⊂ B̃ such that V = co(Q(V ) ∪ {y(·)}) for some y(·) ∈ B̃. We

will show that V is relatively weakly compact in C(T0, E). Let t ∈ T0 and ε > 0. If

we choose η > 0 such that η <
(

εΓ(αm+1)
M+rΓ(αm+1)

)1/αm

and

m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η

(t− s)αm−αi−1u(s)ds+
1

Γ(αm)

∫ t

t−η

(t− s)αm−1f(s, u(s))ds ̸= 0
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then, by the Hahn-Banach theorem, there exists a y∗ ∈ E∗ with ∥y∗∥ = 1 and∥∥∥∥∥
m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η

(t− s)αm−αi−1u(s)ds+
1

Γ(αm)

∫ t

t−η

(t− s)αm−1f(s, u(s))ds

∥∥∥∥∥
=

∣∣∣∣∣
⟨
y∗,

m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η

(t− s)αm−αi−1u(s)ds+
1

Γ(αm)

∫ t

t−η

(t− s)αm−1f(s, u(s))ds

⟩∣∣∣∣∣
≤

m−1∑
i=1

|ai|
Γ(αm − αi)

∫ t

t−η

(t− s)αm−αi−1 |⟨y∗, u(τ)⟩| ds+

+
1

Γ(αm)

∫ t

t−η

(t− s)αm−1 |⟨y∗, f(τ, u(τ))⟩| ds

≤
m−1∑
i=1

r|ai|ηαm−αi

Γ(αm − αi + 1)
+

Mηαm

Γ(αm + 1)
≤ rηαm +

Mηαm

Γ(αm + 1)

≤ M + rΓ(αm + 1)

Γ(αm + 1)
ηαm < ε.

and thus using property (x) measure of the non-compactness we infer

β

({
m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η

(t− s)αm−αi−1u(s)ds+ (3.2.2)

1

Γ(αm)

∫ t

t−η

(t− s)αm−1f(s, u(s))ds, u ∈ V

})
≤ 2ε.

Since by Lemma 1.5.1 the function t→ v(t) := β(V (t)) is continuous on [0, t− η] it

follows that s → (t − s)αm−1g(v(s)) is continuous on [0, t − η]. Hence, there exists

δ > 0 such that ∥∥(t− τ)αm−1g(v(τ))− (t− s)αm−1g(v(s))
∥∥ < ε

2

and

∥g(v(ξ))− g(v(τ))∥ < ε

2ηαm−1
.

If |τ − s| < δ and |τ − ξ| < δ with τ, s, ξ ∈ [0, t− η], then it follows that

|(t− τ)αm−1g(v(ξ))− (t− s)αm−1g(v(s))| ≤ |(t− τ)αm−1g(v(τ))− (t− s)αm−1g(v(s))|

+ (t− τ)αm−1|g(v(ξ))− g(v(τ))|

< ε,

that is

|(t− τ)αm−1g(v(ξ))− (t− s)αm−1g(v(s))| < ε, (3.2.3)
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for all τ , s, ξ ∈ [0, t − η] with |τ − s| < δ and |τ − ξ| < δ. Consider the following

partition of the interval [0, t− η] into n parts 0 = t0 < t1 . . . < tn = t− η such that

ti − ti−1 < δ (i = 1, 2, . . . , n). By Lemma 1.5.1 for each i there exists si ∈ [ti−1, ti]

such that β(V ([ti−1, ti])) = v(si), i = 1, 2, . . . , n. Then we have (see [37], Theorem

2.2)

m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds+
1

Γ(αm)

∫ t−η

0

(t− s)αm−1f(s, V (s))ds ⊂

⊂
m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η

(t−s)αm−αi−1V (s)ds+
n∑

j=1

1

Γ(αm)

∫ ti

ti−1

(t−s)αm−1f(s, V (s))ds ⊂

⊂
m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η

(t−s)αm−αi−1V (s)ds+

+
1

Γ(αm)

n∑
i=1

(ti − ti−1)conv{(t− s)αm−1f(s, u(s)); s ∈ [ti−1, ti], u ∈ V },

and so

β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds+
1

Γ(αm)

∫ t−η

0

(t− s)αm−1f(s, V (s))ds

)
≤

≤ β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds

)
+

+
1

Γ(αm)

n∑
i=1

(ti−ti−1)β
(
conv{(t− s)αm−1f(s, u(s)); s ∈ [ti−1, ti], u ∈ V }

)
= β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds

)
+

+
1

Γ(αm)

n∑
i=1

(ti − ti−1)β
(
{(t− s)αm−1f(s, u(s)); s ∈ [ti−1, ti], u ∈ V }

)
≤

≤ β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds

)
+

+
1

Γ(αm)

n∑
i=1

(ti − ti−1)(t− ti)
αm−1β (f([0, a0]× V [ti−1, ti]))
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≤ β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds

)
+

+
1

Γ(αm)

n∑
i=1

(ti − ti−1)(t− ti)
αm−1g(V [ti−1, ti]) ≤

≤ β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds

)
+

+
1

Γ(αm)

n∑
i=1

(ti − ti−1)(t− ti)
αm−1g(v(si)).

Using (3.2.3) we have that

|(t− ti)
αm−1g(v(si))− (t− s)αm−1g(v(s))| < ε.

This implies that

1

Γ(αm)

n∑
j=1

(ti − ti−1)(t− ti)
αm−1g(v(si)) (3.2.4)

≤ 1

Γ(αm)

∫ t−η

0

(t− s)αm−1g(v(s))ds+ ε(t− η)/Γ(αm).

By using (3.2.2) we claim that

β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η

(t− s)αm−αi−1V (s)ds

)
≤ 2ε. (3.2.5)

Because if we let that

A(t) =
1

Γ(αm)

∫ t

t−η

(t− s)αm−1f(s, V (s))ds,

B(t) =
m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η

(t− s)αm−αi−1V (s)ds,

then a+B(t) ⊂ A(t)+B(t) for a ∈ A(t), implies that β(B(t)) ≤ β(A(t)+B(t)) < 2ε.

From relations (3.2.4) and (3.2.5) we obtain

β

(
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds+
1

Γ(αm)

∫ t−η

0

(t− s)αm−1f(s, V (s))ds

)
≤

(3.2.6)

≤ 2ε+
1

Γ(αm)

∫ t−η

0

(t−s)αm−1g(V (s))ds+ε(t−η)/Γ(αm).
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Since

(QV )(t) ⊂
m−1∑
i=1

ai
Γ(αm − αi)

∫ t−η

0

(t− s)αm−αi−1V (s)ds+

m−1∑
i=1

ai
Γ(αm − αi)

∫ t

t−η

(t− s)αm−αi−1V (s)ds+

+
1

Γ(αm)

∫ t−η

0

(t− s)αm−1f(s, V (s))ds+
1

Γ(αm)

∫ t

t−η

(t− s)αm−1f(s, V (s))ds,

then by virtue of (3.2.2) and (3.2.6) we have

β((QV )(t)) ≤ 1

Γ(αm)

∫ t−η

0

(t− s)αm−1g(v(s))ds+ ε(t− η)/Γ(αm) + 4ε

≤ 1

Γ(αm)

∫ t

0

(t− s)αm−1g(v(s))ds+ ε((t+ 4)/Γ(αm)).

As the last inequality is true for every ε > 0, we infer

β((QV )(t)) ≤ 1

Γ(αm)

∫ t

0

(t− s)αm−1g(v(s))ds, t ∈ [0, a0],

Because V = co(Q(V ) ∪ {y(·)}) then

β(V (t)) = β (co(Q(V (t)) ∪ {y(t)})) ≤ β((QV (t)))

and thus

v(t) ≤ 1

Γ(αm)

∫ t

0

(t− s)αm−1g(v(s))ds for t ∈ T0.

Since g(·) is a Gripenberg function, it follows that v(t) = 0 for t ∈ T0. Since V

as a subset of B̃ is equicontinuous, by Lemma 1.5.1 we infer

βc(V (T0)) = sup
t∈T0

β(V (t)) = 0.

Thus, by Arzelá-Ascoli’s theorem we obtain that V is weakly relatively compact in

C(T0, E). Using Theorem 1.5.2 there exists a fixed point of the operator Q which is

a solution of (3.1.1).

3.3 Conclusion

In this chapter, involving the concept of Pettis integral, we developed the existence

of solution of multi-term fractional differential equations in nonreflexive Banach

spaces, equipped with weak topology.
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Chapter 4

Weak Solution For Fractional
Differential Equation

In chapter 2, 3 we discussed the existence of solution of fractional differential equa-

tions, with one differential operator and multi-term fractional equations respectively,

in nonreflexive Banach spaces. In the present chapter we will establish an existence

of weak solution for the following fractional differential equation{
Dα

wy(t) = f(t, y(t))
y(0) = y0

(4.0.1)

where Dα
wy(·) is fractional Caputo weak derivative of the function y(·) : T → E

and f(·, ·) : T × E → E is a given function, T is bounded interval of real numbers

containing 0 and E is nonreflexive Banach space.

4.1 Preliminaries

Let x(·) : T → E be a given function and α > 0. As it is well known that, the

fractional Riemann-Liouville integral of order α > 0 of x(·) is defined by

Iαx(t) =

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, t ∈ [0, b], (4.1.1)

provided that the right side is point-wise defined on T . Also, the fractional Caputo

derivative of order α ∈ (0, 1] of x(·) is defined by

Dαx(t) := I1−αx′(t) =

∫ t

0

(t− s)−α

Γ(1− α)
x′(s)ds, t ∈ T, (4.1.2)
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provided that the right side is point-wise defined on T . In the above definitions the

integral sign ”
∫
” can be one of the following integrals: Riemann integral, Riemann-

Pettis integral, weak Riemann integral, Bochner integral, Pettis integral or other

kind of integral. Also, the derivative can be one of the following: strong derivative,

weak derivative or a Pseudo-derivative. The definitions, properties and applications

to fractional differential equations of fractional calculus using Bochner integral or

Pettis integral can be found in the papers [3], [12], [74].

4.2 Vector-Valued Fractional Integral And Abel

Integral Equation

In this section we set out to state vector-valued fractional integral and derivatives

and prove results from [5], that will be used in the remainder of this dissertation.

We will discuss fractional Pettis integral, fractional Bochner integral and Riemann-

Pettis integral.

Proposition 4.2.1. If x(·) : T → E is R-integrable on T , then

Iαx(t) = (P )

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, t ∈ T, (4.2.1)

that is, Iαx(t) exists on T as a fractional Pettis integral.

Proof. Indeed, since x(·) is R-integrable on T then, by Theorem 15 from [41], it

follows that x(·) is Pettis integrable on T . Moreover, by Theorem 7 from [41], x(·) is
also scalarly Riemann integrable on T , and so it is weakly measurable and bounded

on T . Thus, ⟨x∗, x(·)⟩ ∈ L∞(T ) for every x∗ ∈ E∗. Next, since the real function

s 7→ (t−s)α−1

Γ(α)
belongs to L1([0, t]) for each t ∈ (0, b] then, by Corollary 3.41 from [67],

it follows that the function s 7→ (t−s)α−1

Γ(α)
x(s) is Pettis integrable on [0, t] for every

t ∈ (0, b]. �

Remark 4.2.1. If x(·) : T → E is strongly measurable and R-integrable on T ,

then fractional integral Iαx(t) exists a.e. on T as a fractional Bochner integral.

This result is a direct consequence of Theorem 15 of [41] and Theorem 2.4 from [76].
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Proposition 4.2.2. Let α ∈ (0, 1) and let x(·) : T → E be a strongly differentiable

function on T . If the strong derivative x′(·) of x(·) is R-integrable on T , then

Dαx(t) = (B)

∫ t

0

(t− s)−α

Γ(1− α)
x′(s)ds, t ∈ T, (4.2.2)

that is, Dαx(t) exists a.e. on T as a fractional Bochner integral.

Proof. Since x (·) is strongly differentiable on T , then x(·) is strongly continuous on

T , and so x′(·) is strongly measurable on T . It follows that x′(·) is Bochner integrable
and thus, by Theorem 2.4 from [76], I1−αx(·) exists a.e. on T as a fractional Bochner

integral. �

The main properties of fractional Bochner or fractional Pettis integral together with

their applications to fractional differential equations are well known, being the sub-

ject of several works.

In the following, we will focus on the study of Riemann-Pettis integrability and its

applications to fractional calculus and fractional differential equations. Graves [42]

gave an example of a R-integrable function x(·) : [0, 1] → E which is not weakly

continuous for any t ∈ [0, 1]. A similar example was given by Alexiewicz and Orlicz

[6] in the case when E is not separable. Moreover, Alexiewicz and Orlicz [6] gave an

example of weakly continuous function which is not R-integrable. Kerner [47] has

considered another type of integral, corresponding to weak convergence.

A function x(·) : T → E is said to be Riemann-Pettis integrable (or RP -integrable,

for short) on T if x(·) is a scalarly Riemann integrable and, for each interval I ⊂ T ,

there exists an element zI ∈ E such that

⟨x∗, zI⟩ =
∫
I

⟨x∗, x(s)⟩ ds (4.2.3)

for every x∗ ∈ E∗. The element zI will be denoted by (w)
∫
I
x(s)ds and it is called

the weak Riemann integral of x(·) on I. Also, a RP -integrable function is some-

time called weakly Riemann integrable function. In fact, RP -integrability on T is

equivalent to the weak convergence of Riemann sums (1.4.3).

It is easy to see that every R-integrable function is RP -integrable, and every RP -

integrable function is Pettis integrable (see [41]). Alexiewicz and Orlicz [6] give an

example which proves that neither RP -integrability nor weakly continuity do imply

46



R-integrability. We shall denote by RP (T,E) the set of all RP -integrable function

from T into E.

Proposition 4.2.3. (Kerner [47], Alexiewicz and Orlicz [6]). Every weakly contin-

uous function from T into E is RP -integrable on T , that is, Cw(T,E) ⊂ RP (T,E).

The following properties are well known and easy to prove, they being direct

consequences of the definition and of the properties of the weak differentiability.

Proposition 4.2.4. If x(·) : T → E is weakly continuous on T , then the function

y(·) : T → E, given by

y(t) = (w)

∫ t

0

x(s)ds, t ∈ T, (4.2.4)

is weakly differentiable on T and y′w(t) = x(t) for every t ∈ T .

Proposition 4.2.5. If x(·) : T → E is weakly differentiable on T and x′w(·) is

weakly continuous on T , then

x(t) = x(0) + (w)

∫ t

0

x′w(s)ds, t ∈ T. (4.2.5)

Proposition 4.2.6. If x(·) : T → E is RP -integrable on T , then

Iαwx(t) :=

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, t ∈ T, (4.2.6)

exists on T as a fractional Pettis integral. Moreover, Iαw is a linear operator from

RP (T,E) into P∞(T,E), and for α, β ∈ (0, 1) we have

IαwI
β
wx(t) = Iα+β

w x(t), t ∈ T. (4.2.7)

Proof. Since each RP -integrable function x(·) : T → E is Pettis integrable, then

as in the proof of Proposition 4.2.1 we infer that Iαwx(t) exists on T as a fractional

Pettis integral. The linearity of Iαw is obviously, and (4.2.7) can be obtained in the

same manner as in Lemma 3.2 from [2]. �

We remark that if x(·) : T → E is R-integrable on T and measurable then Iαwx(t)

exists on T as a fractional Bochner integral and Iαwx(t) = Iαx(t) for t ∈ T .
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Remark 4.2.2. Also, if x(·) ∈ Cw(T,E), then x(·) is bounded on T . Then, if we

put M := sup
t∈T

||x(t)|| and fix x∗ ∈ E∗, it is easy to check that for t, s ∈ T , s ≤ t, we

have

| ⟨x∗, Iαwx(t)⟩ − ⟨x∗, Iαwx(s)⟩ | ≤
2M ||x∗||
Γ(1 + α)

(t− s)α.

It follows that the real-valued function t 7→ ⟨x∗, Iαwx(t)⟩ is continuous on T for every

x∗ ∈ E∗, an so Iαw is a linear operator from Cw(T,E) into Cw(T,E).

Since the weak derivative x′w(·) of a weakly differentiable function x(·) : T → E is

strongly measurable, then with the same proof as in Proposition 4.2.2, we obtain

the following result.

Proposition 4.2.7. Let α ∈ (0, 1) and let x(·) : T → E be a weakly differentiable

function on T . If the weak derivative x′w(·) of x(·) is RP -integrable on T , then

Dα
wx(t) := I1−α

w x′(t) =

∫ t

0

(t− s)−α

Γ(1− α)
x′w(s)ds, t ∈ T, (4.2.8)

exists a.e. on T as a fractional Bochner integral (and so as a fractional Pettis

integral).

Clearly, if x(·) : T → E is R-integrable on T , then Dα
wx(t) exists on T as a fractional

Bochner integral and Dα
wx(t) = Dαx(t) for t ∈ T .

Example 1. Let c be the space of all real converging sequences. Consider y(·) :

[0, 2π] → c given by

y(t)(n) =
sinnt

n
, t ∈ [0, 2π], n = 1, 2, ....

Since y(·) is bounded and scalarly integrable on [0, 2π], then y(·) is RP -integrable
on [0, 2π]. Also, for each x∗ ∈ c∗ = l1 there exists a unique a = (a1, a2, ...) ∈ l1 such

that

⟨x∗, y(t)⟩ =
∞∑
n=1

an
sinnt

n
, t ∈ [0, 2π].

Since
∞∑
n=1

an
sinnt
n

is uniformly and absolutely convergent on [0, 2π], then for each

x∗ ∈ c∗ we have (see [58, page 355])∫ t

0
(t−s)1/2−1

Γ(1/2)
⟨x∗, y(s)⟩ ds =

∫ t

0
(t−s)−1/2

Γ(1/2)

(
∞∑
n=1

an
sinns
n

)
ds

=
∞∑
n=1

an
n

∫ t

0
(t−s)−1/2

Γ(1/2)
sinnsds =

∞∑
n=1

an
n
z(t)(n) = ⟨x∗, z(t)⟩ ,
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where

z(t)(n) =
1

n

√
2

n

[
C

(√
2nt

π

)
sinnt− S

(√
2nt

π

)
cosnt

]
,

and C(x), S(x) are Fresnel integrals

C(x) =

∫ x

0

cos
πs2

2
ds and S(x) =

∫ x

0

sin
πs2

2
ds,

respectively. Obviously, z(·) ∈ c, and thus

I1/2w y(t)(n) = z(t)(n), t ∈ [0, 2π], n = 1, 2, ....

Also, we remark that y(·) is not weakly differentiable on [0, 2π] (see [81]).

If we consider x(·) : [0, 2π] → c given by

x(t)(n) =
sinnt

n2
, t ∈ [0, 2π], n = 1, 2, ...,

then x(·) is weakly differentiable and it is easy to see that

x′w(t)(n) =
cosnt

n
, t ∈ [0, 2π], n = 1, 2, ....

Since
∞∑
n=1

an
cosnt
n

is uniformly and absolutely convergent on [0, 2π], then for each

x∗ ∈ c∗ we have (see [58, page 354])∫ t

0
(t−s)−1/2

Γ(1−1/2)
⟨x∗, x′w(s)⟩ ds =

∫ t

0
(t−s)−1/2

Γ(1/2)

(
∞∑
n=1

an
cosns

n

)
ds

=
∞∑
n=1

an
n

∫ t

0
(t−s)−1/2

Γ(1/2)
cosnsds =

∞∑
n=1

anu(t)(n) = ⟨x∗, u(t)⟩ ,

where

u(t)(n) =
1

n

√
2

n

[
C

(√
2nt

π

)
cosnt+ S

(√
2nt

π

)
sinnt

]
.

Obviously, u(·) ∈ c, and thus

D1/2
w x(t)(n) = u(t)(n), t ∈ [0, 2π], n = 1, 2, ....

Lemma 4.2.8. If x(·) : T → E is a weakly differentiable function such that x′w(·)
is RP -integrable on T , then the function

x1−α(t) :=

∫ t

0

(t− s)−α

Γ(1− α)
x(s)ds, t ∈ T,
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is wAC and weakly differentiable on T . Moreover, (x1−α)
′
w (·) is RP -integrable and

(x1−α)
′
w (t) =

t−α

Γ(1− α)
y(0) + I1−αx′w(t) a.e. on T. (4.2.9)

Proof. Since x(·) is weakly differentiable on T , then for every x∗ ∈ E∗ the real

function t 7→ ⟨x∗, y(t)⟩ is differentiable on T and d
dt
⟨x∗, x(t)⟩ = ⟨x∗, x′w(t)⟩ for t ∈ T .

The last equality implies∫ s

0

⟨x∗, x′w(τ)⟩ dτ = ⟨x∗, x(s)⟩ − ⟨x∗, x(0)⟩ , s ∈ T, (4.2.10)

for every x∗ ∈ E∗. From (4.2.10) we obtain that∫ t

0

(t− s)−α

Γ(1− α)

∫ s

0

⟨x∗, x′w(τ)⟩ dτds =∫ t

0

(t− s)−α

Γ(1− α)
⟨x∗, x(s)⟩ ds−

∫ t

0

(t− s)−α

Γ(1− α)
⟨x∗, x(0)⟩ ds, t ∈ T,

for every x∗ ∈ E∗. It follows that∫ t

0

∫ s

0

(s− τ)−α

Γ(1− α)
⟨x∗, x′w(τ)⟩ dτds

=

∫ t

0

(t− s)−α

Γ(1− α)
⟨x∗, x(s)⟩ ds− t1−α

Γ(2− α)
⟨x∗, x(0)⟩ ,

and so

⟨x∗, x1−α(t)⟩ =
t1−α

Γ(2− α)
⟨x∗, x(0)⟩+

∫ t

0

y(s)ds, t ∈ T, (4.2.11)

for every x∗ ∈ E∗, where y(s) =
∫ s

0
(s−τ)−α

Γ(1−α)
⟨x∗, x′w(τ)⟩ dτ , s ∈ [0, t]. Since y(·) is

Lebesgue integrable on [0, t] for every t ∈ (0, b], then from (4.2.11) it follows that the

real function t 7→ ⟨x∗, x1−α(t)⟩ is AC on T for every x∗ ∈ E∗. Hence, from (4.2.11)

we infer that for every x∗ ∈ E∗ we have

d

dt
⟨x∗, x1−α(t)⟩ =

t−α

Γ(1− α)
⟨x∗, x(0)⟩+

∫ t

0

(t− τ)−α

Γ(1− α)
⟨x∗, x′w(τ)⟩ dτ,

for a.e. t ∈ T . Therefore, the function x1−α(·) is wAC and weakly differentiable on

T , and (4.2.9) holds. �

Remark 4.2.3. Relation (4.2.9) can be written as

Dα
wx(t) = (x1−α)

′
w (t)− t−α

Γ(1− α)
y(0) a.e. on T. (4.2.12)
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In this case (x1−α)
′
w (t) will be denoted by RLDα

wx(t) and it is called the weak

Riemann-Liouville derivative of x(·). The formula (4.2.12) suggests us that we can

extend the definition of the weak Caputo fractional derivative for RP -integrable

functions. Therefore, if x(·) ∈ RP (T,E), then its weak Caputo derivative is de-

fined by (4.2.12). It follows that the weak Caputo fractional derivatives Dα
wx(t)

are also defined for functions x(·) for which the weak Riemann-Liouville fractional

derivatives RLDα
wx(t) exist.

Remark 4.2.4. If x(·) is not weakly differentiable, then x1−α(·) will not be weakly
differentiable.

Example 2. Consider y(·) : [0, 2π] → c given by

y(t)(n) =
sinnt√

2n
, t ∈ [0, 2π], n = 1, 2, ...,

where c is the space of all real convergent sequences. As in Example 1 we obtain

that

y1−1/2(t)(n) = I1/2w y(t)(n) = z(t)(n), t ∈ [0, 2π], n = 1, 2, ....,

where z(·) ∈ c is given by

z(t)(n) =
1

n

[
C

(√
2nt

π

)
sinnt− S

(√
2nt

π

)
cosnt

]
.

Now we show that y1−1/2(·) is not weakly differentiable on [0, 2π]. Since c∗ = l1 for

each x∗ ∈ c∗ = l1 there exists a unique a = (a1, a2, ...) ∈ l1 such that

⟨x∗, z(t)⟩ =
∞∑
n=1

anz(t)(n), t ∈ [0, 2π].

Since
∞∑
n=1

an
cosnt√

n
and

∞∑
n=1

an
sin t√

n
are uniformly and absolutely convergent on [0, 2π]

and the sequences C
(√

2nt
π

)
and C

(√
2nt
π

)
are uniformly bounded on [0, 2π] it

follows that

d

dt
⟨x∗, z(t)⟩ =

∞∑
n=1

anz
′(t)(n) = C

(√
2nt

π

)
cosnt+ S

(√
2nt

π

)
sin t

for t ∈ [0, 2π]. We suppose that the weak derivative of z(·) at a point t0 ∈ [0, 2π]

exists and z′w(t0) = (b01, b
0
2, ...) ∈ c. Then we have

∞∑
n=1

anz
′(t0)(n) =

d

dt
⟨x∗, z(·)⟩ (t0) = ⟨x∗, z′w(t0)⟩ =

∞∑
n=1

anb
0
n
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for all x∗ ∈ c∗. From the above formula we obtain that b0n = C
(√

2nt0
π

)
cosnt0 +

S
(√

2nt0
π

)
sin t0, n = 1, 2, .... Note that lim

n→∞
b0n does not exist. This contradicts the

hypothesis (b01, b
0
2, ...) ∈ c. Hence, y1−1/2(·) is not weakly differentiate at any point

of [0, 2π]..

Remark 4.2.5. Let x(·) : T → E be a weakly differentiable function function such

that x′w(·) is RP -integrable. Then as in the proof of Lemma 4.2.8 we can show that

the function

xα(t) :=

∫ t

0

(t− s)α−1

Γ(α)
x(s)ds, t ∈ T,

is wAC and weakly differentiable and

(xα)
′
w(t) =

tα−1

Γ(α)
x(0) + Iαwx

′
w(t) on T.

Also, if E is a weakly sequentially complete space and x(·) : T → E is weakly

differentiable, then the function xα(·) is AC on T .

Corollary 4.2.9. Let E be a weakly sequentially complete space. If y(·) : T → E is

weakly differentiable , then the function y1−α(·) is AC on T .

Proposition 4.2.10. If x(·) : T → E is a weakly differentiable function such that

x′w(·) is RP -integrable on T and α, β ∈ (0, 1), then

(a) IαwD
α
wx(t) = x(t)− x(0) on T ;

(b) Dα
wI

α
wx(t) = x(t) on T .

Proof. Indeed, using (4.2.8), Proposition 4.2.5 and Proposition 4.2.6, we have

IαwD
α
wx(t) = IαwI

1−α
w x′w(t) = I1wx

′
w(t) = (w)

∫ t

0

x′w(s)ds

= x(t)− x(0), t ∈ T.

Also, using Remark 4.2.5 and Proposition 4.2.5 we have

Dα
wI

α
wx(t) = I1−α

w (Iαwx)
′
w(t) = I1−α

w

[
tα−1

Γ(α)
x(0) + Iαwx(t)

]
= x(0) + (w)

∫ t

0

x′w(s)ds = x(0) + x(t)− x(0) = x(t)

on T . �
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Theorem 4.2.11. If y(·) ∈ RP (T,E), then the Abel integral equation∫ t

0

(t− s)α−1

Γ(α)
x(s)ds = y(t), t ∈ T = T , (4.2.13)

has a solution in x(·) ∈ RP (T,E) if and only if the function y1−α(·) has the following
properties:

(a) y1−α(·) is wAC on T ,

(b) y1−α(·) is weakly differentiable a.e. on T and

x(t) = (y1−α)
′
w(t), for a.e. t ∈ T, (4.2.14)

(c) y1−α(0) = 0.

Proof. Suppose that x(·) ∈ RP (T,E) is a solution of (4.2.13). Then from (4.2.13)

it follows that ∫ t

0

(t− s)α−1

Γ(α)
⟨x∗, x(s)⟩ ds = ⟨x∗, y(t)⟩ , t ∈ T , (4.2.15)

for every x∗ ∈ E∗. Since ⟨x∗, x(·)⟩ and ⟨x∗, y(·)⟩ are Riemann integrable (in partic-

ular, Lebesgue integrable) on T for every x∗ ∈ E∗, using the same reasoning as in

[80, Section 1.2] it follows that∫ t

0

⟨x∗, x(s)⟩ ds = ⟨x∗, y1−α(t)⟩ , t ∈ T , (4.2.16)

for every x∗ ∈ E∗. Since for every x∗ ∈ E∗ the real-valued function t 7→ ⟨x∗, x(t)⟩
is Lebesgue integrable on T , then it follows that for every x∗ ∈ E∗ the real-valued

function t 7→ ⟨x∗, y1−α(t)⟩ is differentiable a.e. on T ,

d

dt
⟨x∗, y1−α(t)⟩ = ⟨x∗, x(t)⟩ for a.e. t ∈ T,

and t 7→ d
dt
⟨x∗, y1−α(t)⟩ is a bounded function on T . Therefore, for every x∗ ∈ E∗

the function t 7→ ⟨x∗, y1−α(t)⟩ is AC and weakly differentiable a.e. on T , and we are

finished.

Conversely, suppose that the function y1−α(·) is wAC and weakly differentiable a.e.

on T , and y1−α(0) = 0. Since y1−α(·) is weakly differentiable a.e. on T , then for

every x∗ ∈ E∗ the real function t 7→ ⟨x∗, y1−α(t)⟩ is differentiable a.e. on T and
d
dt
⟨x∗, y1−α(t)⟩ = ⟨x∗, (y1−α)

′
w(t)⟩ for a.e. t ∈ T . If for every x∗ ∈ E∗, we put

53



g(x∗)(t) := d
dt
⟨x∗, y1−α(t)⟩, for a.e. t ∈ T , then g(x∗)(·) ∈ L1(T ). We will now show

that for every x∗ ∈ E∗ the real function g(x∗)(·) is a solution of (4.2.15). For this

purpose we replace ⟨x∗, x(·)⟩ by g(x∗)(·) in the left-hand side of (4.2.15) and denote

the result by f(x∗)(·), that is,∫ t

0

(t− s)α−1

Γ(α)
g(x∗)(s)ds = f(x∗)(t), t ∈ T . (4.2.17)

If we show that for every x∗ ∈ E∗ the functions f(x∗)(·) and ⟨x∗, y(·)⟩ are equal on T ,
then our assertion is proved. Note using (4.2.17), the equality f(x∗)(·) = ⟨x∗, y(·)⟩
on T is shown in the proof of Theorem 2.1 from [80]. �

Remark 4.2.6. If α ∈ (0, 1) is replaced by β := 1− α ∈ (0, 1), then the results of

Theorem 4.2.11 remain valid, that is, if y(·) ∈ RP (T,E), then the integral equation∫ t

0

(t− s)−β

Γ(1− β)
x(s)ds = y(t), t ∈ T ,

has a solution in x(·) ∈ RP (T,E) if and only if the function yβ(·) has the following

properties:

(a) yβ(·) is wAC on T ,

(b) yβ(·) is weakly differentiable a.e. on T and

x(t) = (yβ)
′
w(t), for a.e. t ∈ T,

(c) yβ(0) = 0.

4.3 Differential EquationWith CaputoWeak Deriva-

tives

In this section we establish an existence of weak solution for the following fractional

differential equation, in nonreflexive Banach spaces.{
Dα

wy(t) = f(t, y(t))
y(0) = y0

(4.3.1)

where Dα
wy(·) is fractional Caputo weak derivative of the function y(·) : T → E and

f(·, ·) : T × E → E is a given function.
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A continuous function y(·) : T → E is said to be a weak solution of (4.3.1) if y(·)
is weakly differentiable, y′w(·) is RP -integrable, Dα

wy(t) = f(t, y(t)) for a.e. t ∈ T

and y(0) = y0.

Lemma 4.3.1. Let f(·, ·) : T × E → E be a function such that f(·, y(·)) is weakly

continuous for every continuous function y(·) : T → E. Then a continuous function

y(·) : T → E is a weak solution of (4.3.1) if and only if it satisfies the integral

equation

y(t) = y0 + (P )

∫ t

0

(t− s)α−1

Γ(α)
f(s, y(s))ds, t ∈ T. (4.3.2)

Proof. Indeed, if the continuous function y(·) : T → E is a weak solution of (4.3.1),

then from Proposition 4.2.10 it follows that y(t)− y(0) = Iαwf(t, y(t)) on T ; that is,

y(·) satisfies the integral equation (4.3.2). Conversely, suppose that the continuous

function y(·) : T → E satisfies the integral equation (4.3.2). Then the weakly

continuous function z(·) := f(·, y(·)) satisfies the Abel equation∫ t

0

(t− s)α−1

Γ(α)
z(s)ds = v(s), t ∈ T,

where v(t) := y(t)−y0, t ∈ T . From Theorem 4.2.11 it follows that v1−α(·) is weakly
differentiable a.e. on T and

z(t) = (v1−α)
′
w(t) = (y1−α)

′
w(t)−

t−α

Γ(1− α)
y0 for a.e. t ∈ T .

Then by (4.2.12) we have that z(t) = Dα
wy(t) for a.e. t ∈ T ; that is, Dα

wy(t) =

f(t, y(t)) a.e. on T . �

In the follows, assume that the function f(·, ·) : T×E → E satisfies the following

assumptions:

(h1) f(·, ·) is weakly-weakly continuous;

(h2) f(·, ·) is bounded, that is, there exists M > 0 such that ||f(t, y)|| ≤ M for all

(t, y) ∈ T × E;

(h3) g : [0,∞) → [0,∞) is a non-decreasing continuous function such that g(0) = 0

and g(t) < t for all t > 0;

(h4) β(f(T × A)) ≤ g(β(A)) for every bounded set A ⊂ E.
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Theorem 4.3.2. Suppose that f(·, ·) : T × E → E satisfies (h1)-(h4). Then there

exist an interval Tδ = [0, δ] ⊂ T such that the set of solutions of (4.3.1) defined on

Tδ is non-empty and compact in the space Cw(Tδ, E).

Proof. In our proof we shall use some ideas from the papers [7, 21]. Let δ ∈ (0, b] be

such that δα

Γ(α+1)
< 1. Consider the nonlinear operator Q : Cw(Tδ, E) → Cw(Tδ, E)

defined by

(Qy)(t) = y0 +

∫ t

0

(t− s)α−1

Γ(α)
f(s, y(s))ds, t ∈ Tδ.

We remark that for y(·) ∈ Cw(Tδ, E) we have that, by Remark 4.2.1, the operator

Q is well defined. Let t ∈ Tδ. By the Hahn-Banach theorem, there exists x∗ ∈ E∗

such that ∥x∗∥ = 1 and ∥(Qy)(t)∥ = |⟨x∗, (Qy)(t)⟩|. Then, using the assumption

(h2), we have

∥(Qy)(t)∥ ≤ ∥y0∥+
∫ t

0

(t− s)α−1

Γ(α)
|⟨y∗, f(s, y(s))⟩| ds

≤ ∥y0∥+
Mδα

Γ(α + 1)
< ∥y0∥+M.

Let r := ∥y0∥+M and

B̃ := {y(·) ∈ Cw(Tδ, E); ∥y(·)∥c ≤ r}.

We shall consider B̃ as a topological subspace of Cw(Tδ, E). It is easy to see that B̃

is convex and closed, and Q(B̃) ⊂ B̃. Next we show that Q(B̃) is an equicontinuous

set. Let t, s ∈ Tδ. We suppose without loss of generality that s < t and (Qy)(t) ̸=
(Qy)(s). By the Hahn-Banach theorem, there exists a y∗ ∈ E∗ with ∥y∗∥ = 1 and
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∥(Qy)(t)− (Qy)(s)∥ = |⟨y∗, (Qy)(t)− (Qy)(s)⟩|. Then

∥(Qy)(t)− (Qy)(s)∥ = |⟨y∗, (Qy)(t)− (Qy)(s)⟩|

=

∣∣∣∣∫ t

0

(t− τ)α−1

Γ(α)
⟨y∗, f(τ, y(τ))⟩ dτ −

∫ s

0

(s− τ)α−1

Γ(α)
⟨y∗, f(τ, y(τ))⟩ dτ

∣∣∣∣
≤

∫ s

0

(
(s− τ)α−1

Γ(α)
− (t− τ)α−1

Γ(α)

)
|⟨y∗, f(τ, y(τ))⟩| dτ +

∫ t

s

(t− τ)α−1

Γ(α)
|⟨y∗, f(τ, y(τ))⟩| dτ

≤ M

Γ(1 + α)
[sα − tα + 2 (t− s)α] ≤ 2M

Γ(1 + α)
(t− s)α ,

and so Q(B̃) is an equicontinuous set. Next we will prove that Q restricted to

B̃ is a continuous operator. For this, fix y(·) ∈ B̃, ε > 0 and y∗ ∈ E∗ with

∥y∗∥ ≤ 1. Since f(·, ·) is weakly-weakly continuous we have, by a Krasnoselskii type

Lemma (see [87]), that there exists a weak neighborhood W of 0 in E such that

|⟨y∗, f(s, y(s))− f(s, z(s))⟩| ≤ εΓ(1+α)
δα

for s ∈ Tδ and z(·) ∈ B̃ with y(s)−z(s) ∈ W .

Then it follows that

|⟨y∗, (Qy)(t)− (Qz)(s)⟩| ≤
∫ t

0

(t− s)α−1

Γ(α)
|⟨y∗, f(s, y(s))− f(s, z(s))⟩| ds

≤ εδα

Γ(1 + α)
≤ ε,

and thus Q restricted to B̃ is a continuous operator.

Let K := convQ(B̃). Since Q(B̃) is bounded and equicontinuous in C(Tδ, E) it

follows that K is also bounded and equicontinuous. Let V be a subset of K such

that βc(V ) ̸= 0, V (t) := {y(t); y(·) ∈ V } and (QV )(t) := {(Qy)(t); y(·) ∈ V }.

Let t ∈ Tδ and ε > 0. If we choose η > 0 such that η <
(

εΓ(α+1)
M

)1/α
and∫ t

t−η
(t−s)α−1

Γ(α)
f(s, y(s))ds ̸= 0 then, by the Hahn-Banach theorem, there exists a

y∗ ∈ E∗ with ∥y∗∥ = 1 and∥∥∥∥∫ t

t−η

(t− s)α−1

Γ(α)
f(s, y(s))ds

∥∥∥∥ =

∣∣∣∣⟨y∗,∫ t

t−η

(t− s)α−1

Γ(α)
f(s, y(s))ds

⟩∣∣∣∣ .
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It follows that∥∥∥∥∫ t

t−η

(t− s)α−1

Γ(α)
f(s, y(s))ds

∥∥∥∥ ≤
∫ t

t−η

(t− s)α−1

Γ(α)
|⟨y∗, f(s, y(s))⟩| ds ≤ ε,

and thus using property (x) of the measure of noncompactness we infer

β

({∫ t

t−η

(t− s)α−1

Γ(α)
f(s, V (s))ds

})
≤ 2ε. (4.3.3)

Next, since s→ (t−s)α−1 is continuous on [0, t−η] it follows that there exists γ > 0

such that ∣∣(t− τ)α−1 − (t− s)α−1
∣∣ < ε

for all τ, s ∈ [0, t − η] with |τ − s| < γ. Consider the following partition of the

interval [0, t − η] into n parts 0 = t0 < t1 . . . < tn = t − η such that ti − ti−1 < δ

(i = 1, 2, . . . , n) and put Ti = [ti−1, ti]. Then we have (see [21])∫ t−n

0

(t− s)α−1

Γ(α)
f(s, y(s))ds =

=
1

Γ(α)

n∑
i=1

(w)

∫ ti

ti−1

(t− s)α−1f(s, y(s))ds

∈ 1

Γ(α)

n∑
i=1

(ti − ti−1)conv{(t− s)α−1f(s, z); s ∈ Ti, z ∈ Z},

where Z := {y(s); y(·) ∈ V }, so

β

(∫ t−η

0

(t− s)α−1

Γ(α)
f(s, V (s))ds

)
≤

≤ 1

Γ(α)

n∑
i=1

(ti − ti−1)β
(
conv{(t− s)α−1f(s, z); s ∈ Ti, z ∈ Z}

)
,

where∫ t−η

0

(t− s)α−1

Γ(α)
f(s, V (s))ds :=

{∫ t−η

0

(t− s)α−1

Γ(α)
f(s, y(s))ds; y(·) ∈ V

}
.

From above and by the properties of β we have

β

(∫ t−η

0

(t− s)α−1

Γ(α)
f(s, V (s))ds

)
≤
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≤ 1

Γ(α)

n∑
i=1

(ti − ti−1)β
(
{(t− s)α−1f(s, z); s ∈ Ti, z ∈ Z}

)
≤ 1

Γ(α)

n∑
i=1

(ti − ti−1)(t− ti)
α−1β (f(Ti × Z))

≤ 1

Γ(α)

n∑
i=1

(ti − ti−1)(t− ti)
α−1g(β(Z)).

Using the continuity on [0, t−η] for the real valued function s→ (t−s)α−1, we have

that

1

Γ(α)
(ti − ti−1)(t− ti)

α−1g(β(Z)) ≤ g(β(Z))

∫ ti

ti−1

(t− s)α−1

Γ(α)
ds+

ε (ti − ti−1)

Γ(α)
β(Z)

and so

1

Γ(α)

n∑
i=1

(ti − ti−1)(t− ti)
α−1g(β(Z)) ≤ g(β(Z))

∫ t−η

0

(t− s)α−1

Γ(α)
ds+

ε(t− η)

Γ(α)
β(Z).

Thus we obtain

β

(∫ t−η

0

(t− s)α−1

Γ(α)
f(s, V (s))ds

)
≤ δα

Γ(α+ 1)
g(β(Z)) +

ε(t− η)

Γ(α)
β(Z)

(4.3.4)

≤ g(β(Z)) +
εδ

Γ(α)
β(Z).

Since

(QV )(t) ⊂ 1

Γ(α)

∫ t−η

0

(t− s)α−1f(s, V (s))ds+
1

Γ(α)

∫ t

t−η

(t− s)α−1f(s, V (s))ds,

then by virtue of (4.3.3) and (4.3.4) we have

β((QV )(t)) ≤ g(β(Z)) +
εδ

Γ(α)
β(Z) + 2ε, t ∈ Tδ.

As the last inequality is true for every ε > 0, we have

β((QV )(t)) ≤ g(β(Z)), t ∈ Tδ.

Using Lemma 1.5.1 and (h3) we have

β((QV )(t)) ≤ g(β(V (t))) ≤ g(βc(V )), t ∈ Tδ
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and thus βc((QV )) ≤ g(βc(V )) ≤ βc(V ). Using similar arguments as in the middle

of the proof of Theorem 2.3 in [7], we can show that K is a closed convex subset of

Cw(Tδ, E). Therefore, by a Schauder-Tichonov type theorem [7, Cor 2.1] it follows

that the set of the fixed points of Q in B̃ is non-empty and compact, so the set of

solutions of the problem (4.3.1) on Tδ is non-empty and compact in Cw(Tδ, E). �

We end this paper with a remark. If for α = 1 we put D1y(·) = y′(·), then from

Theorem 4.3.2 we obtain the following generalization of some known results (see

[23, 53, 86, 87]).

Corollary 4.3.1. If f(·, ·) : T ×E → E is a function such that all conditions from

Theorem 4.3.2 hold, then the differential equation
y′(t) = f(t, y(t))

y(0) = y0

(4.3.5)

has a weak solution on [0, δ].

4.4 Conclusions

In this chapter, we introduced and studied the notions of the fractional Riemann-

Pettis integral and the fractional Caputo weak derivative. Using these tools we ob-

tain an existence result for fractional differential equations in a nonreflexive Banach

space equipped with the weak topology. It is well known that there exist functions

x(·) : T → E that are strongly mesurable and scalarly Lebesgue integrable on T ,

but they are neither Pettis integrable, nor Bochner integrable on T , and so x(·) is
also neither Riemann integrable, nor Riemann-Pettis integrable on T . An example

is given by the function x(·) : [0.1] → c0 defined by

x(t) =
(
nχ(0, 1

n
](t)
)
n≥1

, t ∈ [0, 1].

We note that this function is Dunford integrable on T . Therefore, to define the

notion of a fractional integral for the function x(·) it will be necessary to use other
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kinds of integral such as the Dunford integral, the Henstock–Kurzweil integral or

the Henstock–Kurzweil–Pettis integral.
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[47] M. Kerner, Gewöhnliche Differentialeichungen der allgemeinen Analysis, Prac Matematyczno

– Fizycznych 40(1932) 47–87.

[48] W. J. Knight, Absolute continuity of some vector functions and measures, Can. J. Math.

24(5)(1972) 737–746.

[49] W. J. Knight, Solutions of differential equations in Banach spaces, Duke Math. J. 41(1974)

437–442.

[50] W.J. Knight, Existence of solutions of differential equations in Banach spaces, Bull. Amer.

Math. Soc. 86(1974) 148–149.

[51] K. Kuratowski, Sur les espaces complets, Fund. Math. 15(1930) 301–309.

[52] I. Kubiaczyk, S. Szufla, Kneser’s theorem for weak solutions of differential equations in Ba-

nach spaces, in: V. Lakshmikantham (Ed.), Nonlinear Equations in Abstract Spaces (1978),

387—404.

[53] I. Kubiaczyk, S. Szufla, Kenser’s theorem for weak solutions of ordinary differential equations

in Banach spaces, Publ. Inst. Math. (Beograd) (N.S.) 32(46) (1982) 99–103.

[54] I. Kubiaczyk, On a fixed point theorem for weakly sequentially continuous mapping, Disc.

Math. Diff Inclusions 15(1995) 15-20.

[55] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Systems,

Cambridge Academic Publishers, Cambridge, 2009.

[56] V. Lakshmikantham, S. Leela, Nonlinear Differential Equations in Abstruct spaces, Pergamon

Press New York,

[57] L. Liu, F. Guo, C. Wu, Y. Wu, Existence theorems of global solutions for nonlinear Volterra

type integral equations in Banach spaces, J. Math. Anal. Appl. 309 (2005) 638–649.

[58] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential

Equations, Wiley and Sons, New York, 1993.

[59] A.R. Mitchell, Ch. Smith, An existence theorem for weak solutions of differential equations

in Banach spaces, in: V. Lakshmikantham (Ed.), Nonlinear Equations in Abstract Spaces

(1978), 387—404.

66



[60] M. E. Munroe, A note on weak differentiability of Pettis integrals, Bull. Amer. Math. Soc.

52(1946) 167–174.

[61] K. Musial, Topics in the theory of Pettis integration, In: School of Measure Theory and Real

Analysis, Grado, Italy, May 1992.

[62] D. O’Regan, Fixed point theory for weakly sequentially continuous mapping, Math. Comput.

Modeling 27(5)(1998) 1–14.

[63] D. O’Regan, Fixed point theory for weakly sequentially closed mapps, Arch. Math. (Brno)

36(2000) 61–70.

[64] D. O’Regan, Weak solutions of ordinary differential equations in Banach spaces, Appl. Math.

Lett. 12 (1999) 101–105.

[65] N. S. Papageargiou, Weak solutions of differential equations in Banach spaces, Bull. Austral.

Math. Soc. , 33(1986) 407–418

[66] E. Perri, On a Characterization of reflexive Banach spaces, Rend. Sem. Mat. Univ. Padova

69(1983) 211–219.

[67] J. P. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44(1938) 277–304.

[68] R. S. Philips, Integration in a convex linear topological space, Trans. Amer. Math. Soc.

47(1940) 114–145.

[69] G. Pianigiani, Existence of solutions of ordinary differential equations in Banach spaces, Bull.

Ac. Pol. Math. 23(1975) 8537.

[70] R. Rejouani. On the question of the Riemann integrability of functions with values in a

Banach space, Vestnik Moscov. Univ. Ser. I Math. Meh. 26(1971) 75–79.

[71] J. R. Ruiz, Integrales vectoriales de Riemann y McShane, Tesina de Licenciatura, Universidad

de Murcia, 2002.

[72] S. Szufla, Kneser’s theorem for weak solutions of an mth–order ordinary differential equation

in Banach spaces, Nonlinear Anal. 38(1999), 785–791.

67



[73] H. A. H. Salem, On the fractional calculas in abstract spaces and their applications to the

Dirichlet–type problem of fracitonal orders, Comptuers and Mathematics with Applications

59(2010) 1278–1293.

[74] H. A. H. Salem, A. M. A. El–Sayed, Weak solution for fractional order integral equations in

reflexive Banach space, Mathematica Slovaca 55(2)(2005) 169–181.

[75] H. A. H. Salem, Multi–term fractional differential equations in Banach spaces, Mathematical

and Computer Modelling 49(2009)829–823.

[76] H. A. H. Salem, S. M. A. El–Sayed, A note on the fractional Calculus in Banach spaces,

Studia Sci. Math. Hungar. 42(2)(2005) 115–130.

[77] H. A.H. Salem, Monotonic solutions of multi–term fractional differential equations, Comment.

Math. 47 (1) (2007) 1—7.

[78] H. A.H. Salem, Global monotonic solutions of multi–term fractional differential equations,

Applied Mathematics and Computation 217(2011)6597–6603.
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