Table of Contents

Acknowledgement i
Abstract ii
Index of Tables iv
Index of Figures vii

Chapter 1: Introduction 1 – 47

1.1 Nanotechnology 1
1.2 Spinel Compounds 3
1.2.1 Normal Spinel 5
1.2.2 Inverse Spinel 5
1.2.3 Random Spinel 5
1.3 Spinel Ferrite 7
1.3.1 Chemical Composition of Spinel Ferrite 7
1.3.2 Crystal Structure of Spinel Ferrite 7
1.3.3 Cation Distribution in Spinel Ferrites 11
1.3.3.1 Ionic Radius 11
1.3.3.2 Electronic Configuration 11
1.3.3.3 Electrostatic Energy 11
1.3.4 Electrical Properties of Spinel Ferrites 12
1.3.4.1 Temperature Dependent Electrical Properties 12
1.3.4.2 Frequency Dependent Electrical Properties 15
1.3.5 Magnetic Properties of Spinel Ferrites 20
1.3.5.1 Magnetic Ordering 21
1.3.5.2 Direct Exchange Interaction 25
1.3.5.3 Super-Exchange Interaction 27
1.3.5.4 Double Exchange Interaction 28
1.3.5.5 Hysteresis 29
1.3.5.6 Magnetic Anisotropy 31
1.3.6 Significance of Spinel Ferrites 32
1.4 Synthesis and Characterization of Spinel Ferrites: Literature Survey 34
1.5 Aims and Objectives 46

Chapter 2: Experimental 48 – 76
2.1 Chemicals Used 48
2.2 Apparatus Used 48
2.3 Methods of Sample Preparation 50
2.3.1 Micro-emulsion Method 51
2.3.2 Synthesis procedure 52
2.4 Characterization of Samples 53
2.4.1 Thermal Analysis 53
2.4.1.1 Principle of Thermal Analysis 53
2.4.1.2 Construction and Working of Thermal Analyzer 53
2.4.1.3 Applications 55
2.4.2 X-Ray Diffractometer (XRD) 55
2.4.2.1 Principles of X-ray Diffraction 56
2.4.2.2 Identification of Unknown Material 58
2.4.2.3 Structure Determination 59
2.4.2.4 Crystallite Size Calculation 60
2.4.3 Energy Dispersive X-Ray Fluorescence (ED-XRF) 60
 2.4.3.1 Principle of ED-XRF 61
 2.4.3.2 Construction of ED-XRF 62
 2.4.3.3 Applications 62
2.4.4 Scanning Electron Microscopy (SEM) 63
 2.4.4.1 Principle of SEM 63
 2.4.4.2 Working of SEM 63
 2.4.4.3 Applications 65
2.4.5 DC- Electrical Resistivity measurement 65
 2.4.5.1 Principle of Resistivity Measurement 65
 2.4.5.2 Construction of Two-Point Probe for Resistance Measurements 66
 2.4.5.3 Calculations for Resistivity Parameters 67
2.4.6 Dielectric Measurements 69
 2.4.6.1 Principle of Dielectric Measurements 69
 2.4.6.2 Working of LCR Meter 69
 2.4.6.3 Calculations for Dielectric Parameters 70
2.4.7 Magnetic Susceptibility 71
 2.4.7.1 Principle of Magnetic Induction and Susceptibility 71
 2.4.7.2 Construction of High Temperature Susceptometer 71
 2.4.7.3 Parameters Calculated from Susceptibility Measurements 73
2.4.8 Hysteresis Measurements 73
 2.4.8.1 Construction of the Hysteresis Measurement Setup 74
 2.4.8.2 Parameters Obtained from Hysteresis Loops 76
Chapter 3: Results and Discussion

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Structural and Morphological Properties</td>
<td>77</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Thermal Analysis</td>
<td>77</td>
</tr>
<tr>
<td>3.1.2</td>
<td>X-ray Diffraction Studies</td>
<td>80</td>
</tr>
<tr>
<td>3.1.2.1</td>
<td>Lattice Parameter</td>
<td>81</td>
</tr>
<tr>
<td>3.1.2.2</td>
<td>X-Ray Density and Porosity</td>
<td>84</td>
</tr>
<tr>
<td>3.1.2.3</td>
<td>Crystallite Size</td>
<td>85</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Elemental Composition</td>
<td>87</td>
</tr>
<tr>
<td>3.1.4</td>
<td>Surface Morphology</td>
<td>92</td>
</tr>
<tr>
<td>3.2</td>
<td>Electrical Properties</td>
<td>95</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Dc-Electrical Resistivity</td>
<td>96</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Activation Energy of Hopping</td>
<td>100</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Drift Mobility</td>
<td>102</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Dielectric Constant</td>
<td>105</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Dielectric Losses</td>
<td>110</td>
</tr>
<tr>
<td>3.3</td>
<td>Magnetic Properties</td>
<td>118</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Curie Temperature</td>
<td>118</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Saturation Magnetization</td>
<td>123</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Remnant Magnetization</td>
<td>133</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Coercivity</td>
<td>136</td>
</tr>
</tbody>
</table>

Conclusions 144
Future Suggestions 147
References 148
List of Publications 157
Appendix 158