LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>Acknowledgements</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>Contents</td>
<td></td>
</tr>
<tr>
<td>ii</td>
<td>List of Tables</td>
<td>ii</td>
</tr>
<tr>
<td>iii</td>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>REVIEW OF LITERATURE</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Salinity extent</td>
<td>5</td>
</tr>
<tr>
<td>2.2</td>
<td>Effect of salinity on plant growth</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Osmotic stress</td>
<td>7</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Specific ion toxicity</td>
<td>8</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Nutritional imbalance</td>
<td>9</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Oxidative stress</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Response of maize to salinity</td>
<td>12</td>
</tr>
<tr>
<td>2.4</td>
<td>Boron</td>
<td>14</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Physical and chemical properties</td>
<td>14</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Natural occurrence of boron</td>
<td>14</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Boron availability in agricultural land</td>
<td>15</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Boron uptake by plants root</td>
<td>15</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Passive diffusion across lipid bilayer</td>
<td>15</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Active transport by BOR transporter</td>
<td>16</td>
</tr>
<tr>
<td>2.4.7</td>
<td>Facilitated transport by major intrinsic protein (MIP) channel</td>
<td>16</td>
</tr>
<tr>
<td>2.5</td>
<td>Functions of Boron</td>
<td>16</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Boron and plant cell wall</td>
<td>16</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Role in cell membrane</td>
<td>16</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Cell division</td>
<td>17</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Reproduction, pollen tube growth and pollen germination</td>
<td>17</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Boron and nitrogen fixation</td>
<td>17</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Phenol metabolism</td>
<td>17</td>
</tr>
<tr>
<td>2.6</td>
<td>Boron toxicity</td>
<td>17</td>
</tr>
<tr>
<td>2.7</td>
<td>Symptoms of boron toxicity in plants</td>
<td>19</td>
</tr>
<tr>
<td>2.8</td>
<td>Boron toxicity tolerance</td>
<td>19</td>
</tr>
<tr>
<td>2.9</td>
<td>Boron and salt stress</td>
<td>20</td>
</tr>
</tbody>
</table>
3 MATERIALS AND METHODS

<table>
<thead>
<tr>
<th>3.1</th>
<th>Growth conditions and experimental materials</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1</td>
<td>Experimental site</td>
<td>25</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Seed source</td>
<td>25</td>
</tr>
<tr>
<td>3.1.3</td>
<td>List of genotypes</td>
<td>26</td>
</tr>
<tr>
<td>3.2</td>
<td>Experimental techniques</td>
<td>26</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Study-1</td>
<td>26</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Study-2</td>
<td>27</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Study-3</td>
<td>28</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Study-4</td>
<td>29</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Study-5</td>
<td>30</td>
</tr>
<tr>
<td>3.3</td>
<td>SOIL ANALYSIS</td>
<td>31</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Mechanical analysis</td>
<td>31</td>
</tr>
<tr>
<td>3.3.2</td>
<td>pH of saturated paste</td>
<td>31</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Electrical conductivity (EC) of saturation extract</td>
<td>31</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Sodium and Potassium</td>
<td>31</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Boron</td>
<td>31</td>
</tr>
<tr>
<td>3.4</td>
<td>Plant Analysis</td>
<td>32</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Sodium and Potassium</td>
<td>32</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Boron</td>
<td>32</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Measurement of relative water contents (RWC)</td>
<td>32</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Measurement of membrane stability index (MSI)</td>
<td>32</td>
</tr>
<tr>
<td>3.4.5</td>
<td>Gas exchange characteristics</td>
<td>33</td>
</tr>
<tr>
<td>3.4.6</td>
<td>Leaf water potential</td>
<td>33</td>
</tr>
<tr>
<td>3.4.7</td>
<td>Leaf osmotic potential</td>
<td>33</td>
</tr>
<tr>
<td>3.4.8</td>
<td>Turgor potential</td>
<td>33</td>
</tr>
<tr>
<td>3.4.9</td>
<td>Activities of antioxidants enzymes</td>
<td>34</td>
</tr>
<tr>
<td>3.4.9.1</td>
<td>Superoxide dismutase: (SOD)</td>
<td>34</td>
</tr>
<tr>
<td>3.4.9.2</td>
<td>Catalase (CAT) and Peroxidase (POD)</td>
<td>34</td>
</tr>
<tr>
<td>3.5</td>
<td>Statistical analysis</td>
<td>35</td>
</tr>
</tbody>
</table>

4 RESULTS AND DISCUSSION

<table>
<thead>
<tr>
<th>4.1</th>
<th>Screening of different maize genotypes against salinity in solution culture</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1</td>
<td>Shoot fresh weight (g plant⁻¹)</td>
<td>36</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Shoot dry weight (g plant⁻¹)</td>
<td>36</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Root fresh weight (g plant⁻¹)</td>
<td>38</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Root dry weight (g plant⁻¹)</td>
<td>38</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Shoot length (cm)</td>
<td>40</td>
</tr>
<tr>
<td>4.1.6</td>
<td>Root length (cm)</td>
<td>40</td>
</tr>
<tr>
<td>4.1.7</td>
<td>Leaf (Na⁺) concentration (mol m⁻³)</td>
<td>42</td>
</tr>
<tr>
<td>4.1.8</td>
<td>Leaf (K⁺) concentration (mol m⁻³)</td>
<td>42</td>
</tr>
<tr>
<td>4.1.9</td>
<td>Leaf K⁺: Na⁺ ratio</td>
<td>43</td>
</tr>
<tr>
<td>Discussion</td>
<td></td>
<td>45</td>
</tr>
</tbody>
</table>

4.2	**Effect of salinity and boron toxicity on water relations of the selected maize genotypes**	51
4.2.1	Shoot fresh weight (g plant⁻¹)	51
4.2.2	Shoot dry weight (g plant⁻¹)	51
4.2.3	Root fresh weight (g plant⁻¹)	53
4.2.4	Root dry weight (g plant⁻¹)	53
4.2.5	Shoot length (cm)	55
4.2.6	Root length (cm)	55
4.2.7	Shoot Boron concentration (mmol g⁻¹ dry wt.)	57
4.2.8	Root Boron concentration (mmol g⁻¹ dry wt.)	57
4.2.9	Shoot Na⁺ concentration (mol m⁻³)	59
4.2.10	Root Na⁺ concentration (mol m⁻³)	59
4.2.11	Shoot K⁺ concentration (mol m⁻³)	61
4.2.12	Root K⁺ concentration (mol m⁻³)	61
4.2.13	Relative water content (%)	63
4.2.14	Membrane stability index (%)	63
4.2.15	Leaf area (cm⁻²)	65
4.2.16	Water potential (MPa)	65
4.2.17	Osmotic potential (MPa)	67
4.2.18	Turgor potential (MPa)	67
Discussion		69

4.3	**Effect of salinity and boron toxicity on chlorophyll contents and photosynthetic parameters**	76
4.3.1	Shoot fresh weight (g plant⁻¹)	76
4.3.2	Shoot dry weight (g plant⁻¹)	76
4.3.3	Root fresh weight (g plant⁻¹)	78
4.3.4	Root dry weight (g plant⁻¹)	78
4.3.5	Shoot and root Boron concentration (mmol g⁻¹ dry wt.)	80
4.3.6	Shoot and root Na⁺ concentration (mol m⁻³)	80
4.3.7	Shoot and root K⁺ concentration (mol m⁻³)	81
4.3.8	Chlorophyll contents (SPAD)	85
4.3.9	Photosynthetic rate (µmolCO₂ m⁻² S⁻¹)	85
4.3.10	Stomatal conductance (mmol m⁻² S⁻¹)	87
4.3.11	Transpiration rate (mmolH₂O m⁻² S⁻¹)	87

Discussion

4.4	Comparative oxidative stress tolerance of selected maize genotypes against salinity and boron toxicity	98
4.4.1	Shoot fresh weight (g plant⁻¹)	98
4.4.2	Shoot dry weight (g plant⁻¹)	98
4.4.3	Root fresh weight (g plant⁻¹)	100
4.4.4	Root dry weight (g plant⁻¹)	100
4.4.5	Shoot Boron concentration (mmol g⁻¹ dry wt.)	102
4.4.6	Shoot Na⁺ concentration (mol m⁻³)	102
4.4.7	Shoot K⁺ concentration (mol m⁻³)	104
4.4.8	Super oxide dismutase (sod unit/mg protein)	104
4.4.9	Catalase (cat unit/mg protein)	106
4.4.10	Peroxidase (pod unit/mg protein))	106

Discussion

4.5	Comparative yield performance of selected maize genotypes against salinity and boron toxicity in soil	110
4.5.1	Shoot fresh weight (g plant⁻¹)	110
4.5.2	Shoot dry weight (g plant⁻¹)	110
4.5.3	Grain Yield (g plant⁻¹)	110
4.5.4	1000 Grain Weight (g)	112
4.5.5	Plant Height (cm)	112
4.5.6	Shoot boron concentration (mmol g⁻¹ dry wt.)	112
4.5.7	Shoot Na⁺ concentration (mol m⁻³)	114
4.5.8	Shoot K⁺ Concentration (mol m⁻³)	114

Discussion

| 5 | SUMMARY | 119 |
| 6 | LITERATURE CITED | 122 |