LIST OF CONTENTS

List of Tables

List of Figures

List of Appendices

Acknowledge

List of abbreviations

Abstract

CHAPTER 1. INTRODUCTION
1.1 Statement of the Problem
1.2 Objectives of the Study
1.3 Significances of the Study

CHAPTER No. 2 REVIEW OF THE LITERATURE
2.1 Historic Profile of Tuberculosis
2.2 Epidemiology/ Prevalence of Tuberculosis
 2.2.1 World Wide Prevalence
 2.2.2 Local Prevalence
 2.2.3 Tuberculosis Transmission
 2.2.3.1 Nosocomial transmission
 2.2.3.2 Community transmission
 2.2.3.3 Molecular Epidemiology
 2.2.4 Risk Factors Contributing the Transmissions
 2.2.5 WHO Contribution (DOTS Programme)
 2.2.5.1 WHO Targets for TB
 2.2.5.2 DOTS Strategy
 2.2.5.2 New global stop TB strategy
2.2.5.3 Green light committee
2.2.5.4 World wide TB strategy
2.2.6 Tuberculosis and prisoners
2.2.7 Anti-tubercular organization
2.2.8 Tuberculosis and AIDS
2.2.9 World Wide Ideas To Highlight Tuberculosis

2.3 General features of *Mycobacterium tuberculosis*

2.3.1 General Features of *Mycobacterium tuberculosis*.
2.3.2 Species of *Mycobacterium tuberculosis*.
2.3.3 Atypical/ anonymous/ environmental M-TB
2.3.4 Acid fast staining of *M. tuberculosis*.
2.3.5 Cultural characteristics of mycobacteria
2.3.6 Partial resistance to acid or alkali of M-TB
2.3.7 Identification of *Mycobacterium*
2.3.8 Other identification tests for *M. tuberculosis*.
2.3.9 Normal habitat of M. tuberculosis

2.4 Molecular Features of *Mycobacterium tuberculosis*

2.4.1 Genotyping/ DNA sequencing
2.4.2 Genetic basis of resistance
2.4.3 Restricted fragment polymorphism PCR (RFPKR) and DNA probes
2.4.4 Single-Strand Conformational Polymorphism PCR
2.4.5 Comparison of molecular beacon assay to SSCP-PCR

2.5 Pathogenesis of Tuberculosis

2.5.1 Granulomatous Lesions and Tissues Destructions
2.5.2 Categorization of Patients on basis of smear results
2.5.3 Disease Classification on basis of area of origin

2.6 Resistance of *Mycobacterium tuberculosis*

2.6.1 Epidemiology of Resistant *Mycobacterium*
2.6.2 Factors Contributing to the Developing the Resistance.

2.7 Molecular Basis of Resistance
2.7.1 Prevention of the Development of Resistance

2.7.2 Test Procedures Used for Drug Sensitivity/Resistance for MTB

2.8 Diagnosis and Prognosis

2.8.1 Patients personal and medical history

2.8.2 Patient’s Physical (Symptomatic) Examination

2.8.4 Radiological Examination (X-Rays Abnormalities)

2.8.5 Acid Fast Staining/Microscopic Examination

2.8.6 Cultivation and Identification

2.8.7 Automated Detection System

2.8.8 Genodiagnosis

2.8.8.1 DNA probes

2.8.8.2 Polymerase Chain Reaction

2.8.8.3 PCR-SSCP

2.8.8.4 Comparison, reading and Interpretation of data:

2.8.9 Serodiagnosis

2.8.9.1 ELIZA test

2.8.9.2 International immune diagnostic (IID) one step tuberculosis test:

2.8.10 Gas Liquid Chromatography and HPLC

2.8.11 Susceptibility Evaluation

2.9 Treatment of Tuberculosis

2.9.1 Chemotherapy of Tuberculosis

2.9.1.1 1st line therapy of susceptible MTB:

2.9.1.1.1 Pharmacology of Rifampicin

2.9.1.1.2 Pharmacology of Isoniazid

2.9.1.1.3 Pharmacology of Ethambutol

2.9.1.1.4 Pharmacology of Pyrazinamide

2.9.1.2 2nd line therapy of resistant MTB

2.9.2 Laser Therapy

2.9.3 Radiotherapy

Taha Nazir Ph.D Thesis, 2010, Microbiolgy, Biological Sciences, Quaid-e-Azam University, Islamabad, Pakistan. Email: tahanazir@yahoo.com
2.9.4 Surgical Resection
2.9.5 Chemoprophylaxis

2.10 Prevention of Tuberculosis
2.10.1 Prevention of Transmission
2.10.2 Prevention of Susceptible/MDR Tuberculosis
2.10.3 Vaccination

CHAPTER No. 3 MATERIALS AND METHODS

3.1 Experimental Requirements

3.1.1 Chemicals and Reagents

3.1.2 Apparatuses and Glass Wares

3.1.3 Equipments and Instruments

3.2 Location

3.3 Experimental Period

3.4 Experimental drugs

3.4.1 Rifampicin

3.4.2 Isoniazid

3.4.3 Pyrazinamide

3.4.4 Ethambutol

3.5 Patient Selection

3.6 Specimen Collection

3.7 Experimental Design

3.8 Experimental Parameters
3.9 Preparation of LJ (Lowenstein Jensen) Media

3.9.1 Ingredients of LJ media

3.9.2 Stock Solutions

3.9.3 Weighing and Mixing

3.9.4 Sterilizing/ Autoclaving of the Apparatus and Glass Wares

3.9.5 Egg Homogenizing

3.9.6 Preparation of Malachite Green Solution 2%

3.9.7 Final Mixing to Prepare the Media

3.9.8 Filling and Capping the Media into the Bijoux Bottles

3.9.9 Coagulation/ Hardening the Media (slanting) by Water Bath

3.9.10 LJ medium Containing 4(p)-Nitrobenzoic Acid (PNB) 500 µg/ ml

3.10 Specimen Treatment/ Processing

3.10.1 Decontamination & Homogenization of Specimens by Modified Petroff Method

3.10.2 Concentrating Tubercle Bacilli by Centrifugation

3.10.3 Transport Media for Preserving *Mycobacterium TB*

3.11 Inoculation and Incubation of Strain for Primary Culture

3.12 Sensitivity/ Resistance Testing of *Mycobacterium tuberculosis*

3.12.1 Standard Drug Concentrations

3.12.2 Incorporation of Drug in LJ Media

3.12.3 Preparation of Required 10^3 & 10^5 Dilutions of *Mycobacterium TB*

3.13 Inoculation and Incubation
Prevalance, characterization and clinical evaluation of indigenous *M. tuberculosis*

3.14 Identification of *Mycobacterium TB* Complex

3.15 Reading and Recording the Results

3.16 Determination of Elevated MICs of Resistant *Mycobacterium TB*

 3.16.1 Preparation of LJ media and inoculums dilutions:

 3.16.2 Profile of Elevated Drug Levels

 3.16.3 Inoculation and Incubation:

 3.16.4 Reading and Recording the Results

3.17 Molecular basis of resistance of *Mycobacterium-TB* against Pyrazinamide:

 3.17.1 Isolation of DNA of Mycobacterial Tuberculosis:

 3.17.2 Quantitative analysis of *Mycobacterial* Genomic DNA

 3.17.3 PCR Amplification of *Mycobacterium TB* Genomic DNA

 3.17.4 PCR of fragments of Pyrazinamide resistant PncA gene and SSCP analysis

 3.17.4.1 PCR of the 215bp fragment from Pnc A Gene and SSCP analysis

 3.17.4.2 PCR of the 179 bp Fragment from Pnc A Gene and SSCP Analysis

 3.17.4.3 PCR of the 217 bp Fragment from Pnc A Gene and SSCP Analysis

 3.17.5 Detection of PCR Amplified Products

 3.17.5.1 Silver Staining Method

 3.17.5.2 SSCP Analysis of Pnc A Gene

 3.17.6 PCR of the 611 bp Fragment from Pnc A Gene for Sequencing Analysis

 3.17.7 Purification of Amplification Product

 3.17.8 Sequencing PCR for the Detection of Mutation in Pnc A Gene

Taha Nazir Ph.D Thesis, 2010, Microbiology, Biological Sciences, Quaid-e-Azam University, Islamabad, Pakistan. Email: tahanazir@yahoo.com
3.17.9 Purification of Sequencing PCR

3.17.10 List of Primers

CHAPTER No. 4 RESULTS

4.1 Collection of Clinical Isolates of *Mycobacterium Tuberculosis*

4.2 Gender wise distribution of study sample

4.3 The pulmonary and extra-pulmonary specimen’s distribution

4.4 Pattern of resistance of *Mycobacterium TB* strains against 1st line antitubercular drugs

4.4.1 Rifampicin resistance pattern of *Mycobacterium TB* strains

4.4.2 Isoniazid resistance pattern of *Mycobacterium TB* strains

4.4.3 Ethambutol resistance pattern of *Mycobacterium TB* strains

4.4.4 Pyrazinamide resistance pattern of *Mycobacterium TB* strains

4.5 Quantitative (number of colonies) based pattern of resistance of indigenous *Mycobacterium TB* strains

4.5.1 Comparison of Rifampicin resistance percentage with quantity of growth/ number of colonies of *Mycobacterium TB*

4.5.2 Comparison of isoniazid resistance percentage with quantity of growth/ number of colonies of *Mycobacterium TB*

4.5.3 Comparison of ethambutol resistance percentage with quantity of growth/ number of colonies of *Mycobacterium TB*

4.5.4 Comparison of pyrazinamide resistance percentage with quantity of growth/ No. of colonies of *Mycobacterium TB*

4.6 Over all growth based resistance pattern of *Mycobacterium TB* against 1st line antitubercular drugs
Prevalance, characterization and clinical evaluation of indigenous *M. tuberculosis*

4.7 Overall mono-resistance pattern of *Mycobacterium TB* against 1st line antitubercular drugs

4.8 Poly-resistance profile of *Mycobacterium TB* strains categorized on basis of resistance against two, three or all of the four 1st line antitubercular drugs

4.9 Overall trend of resistance of *Mycobacterium TB* during January - December, 2005, against 1st line antitubercular drugs

4.10 Determination level of resistance of resistant *mycobacterium TB*

4.10.1 Level of resistance of rifampicin resistant *mycobacterium TB*

4.10.2 Level of resistance of isoniazid resistant *mycobacterium TB*

4.10.3 Level of resistance (in % age) of ethambutol resistant *mycobacterium TB*

4.10.4 Level of resistance (in % age) of pyrazinamide resistant *mycobacterium TB*

4.11 Overall Level of resistance (in % age) of resistant *mycobacterium TB*

4.12 Therapeutical interpretation of 1st line antitubercular drugs

4.13 Molecular basis of pyrazinamide resistance of Mycobacterium Tuberculosis

CHAPTER No. 5 DISCUSSION

5.1 Gender comparison

5.2 The pulmonary and extra-pulmonary specimen’s distribution

5.3 The drug concentration incorporated in LJ media

5.4 Sensitivity/ resistant of *M. Tuberculosis* against 1st line anti-TB drugs

5.5 Sensitivity/ resistant of *Mycobacterium tuberculosis* against Rifampicin

5.6 Sensitivity/ resistant of *Mycobacterium tuberculosis* against Isoniazid

5.7 Sensitivity/ resistant of *Mycobacterium tuberculosis* against Ethambutol

5.8 Sensitivity/ resistant of *Mycobacterium tuberculosis* against Pyrazinamide

5.9 Mono-resistance profile against 1st line antituberculosis drugs

Taha Nazir Ph.D Thesis, 2010, Microbiology, Biological Sciences, Quaid-e-Azam University, Islamabad, Pakistan. Email: tahanazir@yahoo.com
5.10 Poly resistance profile against two three or all of the four 1st line antituberculosis drugs
5.11 Overall trend of resistance prevalence of Mycobacterium TB against 1st line anti-TB drugs during Nov. 2004 to Dec. 2005
5.12 Therapeutical interpretation of resistant Mycobacterium TB against 1st line antituberculosis drugs
5.13 Therapeutical interpretation of rifampicin against its resistant Mycobacterium TB
5.14 Therapeutical interpretation of isoniazid against its resistant Mycobacterium TB
5.15 Therapeutical interpretation of ethambutol against its resistant Mycobacterium TB
5.16 Therapeutical interpretation of pyrazinamide against its resistant Mycobacterium TB
5.17 Detection of mutation in PncA gene in pyrazinamide resistant Mycobacterium tuberculosis

CONCLUSIONS

RECOMMENDATIONS

REFERENCES

APPENDICES