Contents

Dedication I
Declaration II
Certificate III
Acknowledgement IV
Abstract V
List of Tables XIV
List of Figures XVI

Chapter 1
1. INTRODUCTION 1
1.1 Thermal Degradation of Polymers 3
1.2 Techniques to Study Polymer Degradation 5
1.3 Application of Thermal Analysis Methods on Polymers 6
1.4 Flammability of Polymers 7
1.5 Significance of Polymer Degradation 8
1.6 Classification of Thermal Degradation Reactions 9
1.6.1 Radical Depolymerization Reactions 9
1.6.2 Non-radical Depolymerization Reactions 9
1.6.3 Substituent Reactions 9
1.6.4 Cyclization Reactions with Elimination 10
1.7 Stabilization of Polymers 10
1.7.1 Stabilization in the Presence of Additives 10
1.8 Additives 14
1.8.1 The Role of Additives 14

Chapter 2
2. LITERATURE REVIEW 15
2.1 Poly(methyl methacrylate) 20
2.2 Poly(styrene-co-methyl methacrylate) 21
2.3 Poly(vinyl acetate) 23

Chapter 3
3. AIMS OF WORK 27
3.1 Motivation for Present Investigation 27
3.2 Plan/Strategy of Present Work 27
3.3 Aims of Current Study 28
Chapter 4

4. EXPERIMENTAL

4.1 Synthesis
4.1.1 Purification of Reagents
4.1.1.1 Methyl Methacrylate
4.1.1.2 Styrene
4.1.1.3 Vinyl Acetate
4.1.1.4 Initiator (2, 2´-azobisisobutyronitrile (AIBN))

4.1.2 Purification of Solvents
4.1.2.1 Acetone
4.1.2.2 Methanol
4.1.2.3 Tetrahydrofuran
4.1.2.4 Diethyl Ether

4.1.3 Preparation of Homopolymers and Copolymer
4.1.3.1 Preparation of Poly(methyl methacrylate)
4.1.3.2 Preparation of Poly(styrene-co-methyl methacrylate)
4.1.3.3 Preparation of Poly(vinyl acetate)

4.1.4 Additives
4.1.4.1 Preparation of Aluminum Acetylacetonate
4.1.4.2 Preparation of Phosphorus Tribromide

4.2 Characterization
4.2.1 Molecular Weight Determination
4.2.2 Infrared Spectroscopy
4.2.2a Monomers
4.2.2b Polymers and copolymer

4.3 Preparation of Sample
4.3.1 Sample Preparation for Analysis
4.3.2 Sample Preparation for Flammability Test
4.3.3 Pyrolysis Setup and Procedure for the Degradation of Polymer-Additive System

4.4 Experimental Techniques
4.4.1 Thermoanalytical Methods
4.4.1.1 Thermogravimetry (TG)
4.4.1.1a Activation Energy (E_a) and Order of Reaction (n)
4.4.1.2 Derivative Thermogravimetry (DTG)
4.4.1.3 Differential Thermal Analysis (DTA)
4.4.2 Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS)
4.4.3 Gel Permeation Chromatography (GPC)
4.4.4 Fourier Transform Infrared Spectroscopy (FTIR)
4.4.5 Flammability Test
Chapter 5

5. RESULTS

5.1 Scrutiny of AlBr₃, PBr₃ and SnCl₄ Additive’s effect on the Thermal Degradation of Poly(methyl methacrylate) (PMMA)

5.1.1 Thermoanalytical (TG-DTA-DTG) Curves of PMMA, Additives (AlBr₃, PBr₃ and SnCl₄) and Blends

5.1.2 Influence of Blend Composition on T₀, T₂₅, T₅₀, Tₘₐₓ

5.1.3 Activation Energy (Eₐ) and Order of Reaction (n) of Decomposition Reactions

5.1.4 UV spectra of additive and blend

5.1.5 Infrared Spectra of PMMA, Additives and Blends

5.1.6 Infrared Spectra of PMMA-Additives Blends Studied at Various Temperatures

5.1.7 Py-GC-MS Characterization of Polymer Blends

5.1.8 Flammability of Neat Polymer and its Blends

5.2 Thermoanalytical Sifting of AlBr₃, PBr₃ and SnCl₄ Additive’s Presence on the Pyrolysis of Poly(styrene-co-methyl methacrylate) [P(S-co-MMA)]

5.2.1 Thermoanalytical (TG-DTG-DTA) Curves of P(S-co-MMA) and Blends

5.2.2 Effect of Blend Composition on T₀, T₂₅, T₅₀, Tₘₐₓ

5.2.3 Activation Energies and Order of Reactions of Decomposition Reactions

5.2.4 Infrared Spectra of P(S-co-MMA) and Blends

5.2.5 Infrared Spectra of P(S-co-MMA)-Additives Blend Studied at Various Temperatures

5.2.6 Py-GC-MS Characterization of Copolymer Blends

5.2.7 Flammability of Neat Copolymer and Blends

5.3 The Effects of AlBr₃, PBr₃ and SnCl₄ Additives on the Thermal Behavior of Poly(vinyl acetate) (PVAc)

5.3.1 Thermoanalytical (TG-DTG-DTA) Studies of PVAc and its Blends

5.3.2 Influence of Blend Composition on T₀, T₂₅, T₅₀, Tₘₐₓ

5.3.3 Activation Energies and Order of Reactions of Decomposition Reactions

5.3.4 Infrared Spectrum of Polymer and its Blends

5.3.5 Infrared Spectrum of PVAc-Additives Blends Studied at Various Temperatures

5.3.6 Py-GC-MS Characterization of PVAc Blends

5.3.7 Flammability of Neat PVAc and its Blends

Chapter 6

6 DISCUSSION

6.1 Pyrolytical Sifting of Poly(methyl methacrylate) in the
Presence of Additives

6.1.1 Thermoanalytical, IR, Py-GC-MS and Flammability Characterization of Poly(methyl methacrylate) in the Presence of Aluminum Tribromide

6.1.1.a Thermoanalytical (TG-DTG-DTA) Behavior
6.1.1.b Effect of Blend Composition on Thermal Degradation
6.1.1.c Activation Energy and Order of Reaction
6.1.1.d Infrared Spectroscopy
6.1.1.e Py-GC-MS Investigations
6.1.1.f Flammability of Polymer and Blends
6.1.1.g Degradation Mechanism

6.1.2 Thermoanalytical, IR, Py-GC-MS and Flammability Characterization of Poly(methyl methacrylate) in the Presence of Phosphorus Tribromide

6.1.2.a Thermogravimetry, Derivative Thermogravimetry and Differential Thermal Analysis
6.1.2.b Blends Composition Effect on Thermal Behavior
6.1.2.c Activation Energy and Order of Reaction Determination
6.1.2.d UV Findings
6.1.2.e IR Spectra
6.1.2.f Pyrolysis-Gas Chromatography-Mass Spectrometry Behavior
6.1.2.g Flammability Behaviour of Neat Polymer and its Blends
6.1.2.h Mechanism of Thermal Degradation

6.1.3 Thermoanalytical, IR, Py-GC-MS and Flammability Characterization of Poly(methyl methacrylate) Blended with Tin(IV) Chloride

6.1.3.a TG-DTG-DTA Investigations
6.1.3.b Blends Composition Effect on Thermal Behavior
6.1.3.c Activation Energy and Order of Reaction
6.1.3.d Infrared Studies of Blends at Various Temperatures
6.1.3.e Py-GC-MS Analysis
6.1.3.f Flammability of Polymer and Blends
6.1.3.g Mechanistic Behavior of Thermal Degradation

6.2 Scrutiny of Poly (styrene-co-methyl methacrylate) in the Presence of Inorganic Additives

6.2.1 Thermoanalytical, IR, Py-GC-MS and Flammability Characterization of Poly (styrene-co-methyl methacrylate) in the Presence of Aluminum Tribromide

6.2.1.a Thermal Analysis (TG-DTG-DTA)
6.2.1.b Effect of Blend Compositions on Thermal Degradation
6.2.1.c Activation Energy and Order of Reaction
6.2.1.d Infrared Spectroscopy
6.2.1.e Pyrolysis-Gas Chromatography-Mass Spectrometry (Py-GC-MS)
6.2.1.f Flammability of Polymer and Blends
6.2.1.g Degradation Mechanism
6.2.2 Thermoanalytical, IR, Py-GC-MS and Flammability Characterization of Poly (styrene-co-methyl methacrylate) in the Presence of Phosphorus Tribromide

6.2.2.a Thermogravimetry, Derivative Thermogravimetry and Differential Thermal Analysis 170
6.2.2.b Blends Composition Effect on Thermal Behavior 172
6.2.2.c Kinetic Parameters 172
6.2.2.d Infrared Spectroscopic Investigation 173
6.2.2.e Pyrolysis-Gas Chromatography-Mass Spectrometry 176
6.2.2.f Flammability Behavior of Neat Polymer and its Blends 177
6.2.2.g Mechanism of Thermal Decomposition 178

6.2.3 Thermoanalytical, IR, Py-GC-MS and Flammability Characterization of Poly (styrene-co-methyl methacrylate) in the Presence of Tin(IV) Chloride 183

6.2.3.a TG-DTG-DTA Investigations 183
6.2.3.b Blends Composition Effect on Thermal Behavior 185
6.2.3.c Ea and n Investigations 186
6.2.3.d Infrared Spectroscopic Studies 186
6.2.3.e Pyrolysis-Gas Chromatography-Mass Spectrometry Characterizations 189
6.2.3.f Flammability of copolymer and Blends 191
6.2.3.g Degradation Mechanism 191

6.3 Thermal Effect on Poly(vinyl acetate) in the Presence of Inorganic Additives

6.3.1 Thermoanalytical, IR, Py-GC-MS and Flammability Characterization of Poly(vinyl acetate) in the Presence of Aluminum Tribromide 194

6.3.1.a Thermoanalytical Study 194
6.3.1.b Effect of Blend Composition on Thermal Degradation 197
6.3.1.c Activation Energy and Order of Reaction 198
6.3.1.d Infrared Spectroscopy 198
6.3.1.e Py-GC-MS Investigations 201
6.3.1.f Flammability of Polymer and Blends 203
6.3.1.g Degradation Mechanism 203

6.3.2 Thermoanalytical, IR, Py-GC-MS and Flammability Characterization of Poly(vinyl acetate) in the Presence of Phosphorus Tribromide 206

6.3.2.a Thermogravimetry, Derivative Thermogravimetry and Differential Thermal Analysis 206
6.3.2.b Blends Composition Effect on Thermal Behavior 209
6.3.2.c Determination of Activation Energy and Order of Reaction 209
6.3.2.d FT-IR Characterizations 210
6.3.2.e Pyrolysis-Gas Chromatography-Mass Spectrometry Investigations 212
6.3.2.f Flammability Study of Neat Polymer and its Blends 213
6.3.2.g Mechanism of Thermal Degradation 214
Chapter 7

7. CONCLUSIONS

References

Future Plans

List of Publications