Table of Contents

Acknowledgements v
List of publications vi
Abstract x

1. Introduction 2

1.1 Semiconductor materials 4

1.2 Properties of II – VI group binary and ternary semiconductor thin films
 1.2.1 Zinc Selenide (ZnSe) thin films 5
 1.2.2 ZnS thin films 6
 1.2.3 ZnS\(_x\)Se\(_{1-x}\) thin films 8
 1.2.4 Mg\(_x\)Zn\(_{1-x}\)O thin films 9

1.3 Motivation 10

1.4 Objectives of this work 15

1.5 Structure of thesis 15

References 16

2. Thin film deposition and characterization techniques 26

2.1 Deposition techniques and parameters of thin films 26
 2.1.1 Thermal evaporation process in PVD 27
 2.1.2 Deposition parameters 28
 2.1.3 Resistive heating evaporation (RHE) 29
 2.1.4 Electron beam evaporation 31
 2.1.5 Closed Space Sublimation (CSS) 34

2.2 Characterization techniques 36
 2.2.1 X-ray diffraction (XRD) 36
 2.2.2 Atomic Force Microscopy 38
 2.2.3 Scanning electron microscopy (SEM) 39
 2.2.4 Spectrophotometer 42

2.3 Optical characterization 43
2.3.1 Nonlinear curve fitting of experimental transmission curve 45
2.3.2 Models used for the determination of n and α 47
2.4 Resistivity measurement 49
2.5 Glass substrates 50
2.6 Ion-beam facility and electron yield measuring device 50
References 52

3. Effect of annealing on structural and optoelectronic properties of nanostructured ZnSe thin films 56
3.1 Introduction 57
3.2 Experimental setup 58
3.3 Results and discussion 59
 3.3.1 Composition and surface analysis 59
 3.3.2 Structural properties 61
 3.3.3 Optical properties 63
 3.3.4 Electrical properties 68
3.4 Conclusions 69
 References 70

4. Ion-induced secondary electron emission from ZnS thin films deposited by closed-spaced sublimation 73
4.1 Introduction 74
4.2 Experimental 75
4.3 Simulation Model 77
4.4 Results and discussion 80
References 88

5. Optical and structural properties of ZnS$_x$Se$_{1-x}$ thin films deposited by thermal evaporation 92
5.1 Introduction 93
5.2 Experimental setup 93
5.3 Results and discussion 94
5.4 Conclusions 103
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. Characterization of ternary Mg\textsubscript{x}Zn\textsubscript{1-x}O thin films deposited by electron beam evaporation</td>
<td>107</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>108</td>
</tr>
<tr>
<td>6.2 Experimental</td>
<td>109</td>
</tr>
<tr>
<td>6.3 Results and discussion</td>
<td>110</td>
</tr>
<tr>
<td>6.3.1 Structural properties</td>
<td>110</td>
</tr>
<tr>
<td>6.3.2 Composition and surface analysis</td>
<td>112</td>
</tr>
<tr>
<td>6.3.3 Optical properties</td>
<td>114</td>
</tr>
<tr>
<td>6.4 Electrical properties</td>
<td>119</td>
</tr>
<tr>
<td>6.5 Conclusion</td>
<td>120</td>
</tr>
</tbody>
</table>

References: 121

7. Appendix 1. Measurement of laser induced damage threshold of Mg\textsubscript{x}Zn\textsubscript{1-x}O thin films: 125

References: 128