## Chapter-1 Introduction

1.1 Ferrocene  
1.1.1 Crystal Structure and Conformations  
1.1.2 Synthesis  
1.1.3 Bonding in ferrocene  
1.1.4 Physical properties  
1.1.5 Chemical properties  
1.1.6 Redox properties (electrochemistry)  

1.2 Ferrocenyl amides  
1.2.1 Synthesis of ferrocenyl amides  
1.2.2 Hydrogen Bonding in Ferrocenyl amides  

1.3 Applications of ferrocenyl amides  
1.3.1 Ferrocenyl amides as bio-conjugates of amino acids  
1.3.2 Ferrocenyl amides as anionic sensors  
1.3.3 Ferrocenyl amides as liquid crystalline materials  
1.3.4 Ferrocenyl amides as polymeric materials
1.3.5  Ferrocenyl amides as promising anti-cancer agents  25

1.4  Nitroaromatic compounds  26

1.5  Motivation and scope of the present work  27

1.6  State of the art  29

Chapter-2  Experimental Details  35-55

2.1  Chemicals and reagents  35

2.2  Drying of solvents  36

2.3  Analytical techniques and instrumentation  37

  2.3.1  Melting point determination  37

  2.3.2  FTIR spectroscopic studies  37

  2.3.3  Elemental analysis  37

  2.3.4  NMR spectroscopic studies  37

  2.3.5  Single crystal X-ray analysis  37

  2.3.6  UV Visible spectroscopic studies  37

  2.3.7  Polarizing optical microscopy  38

  2.3.8  Thermal characterizations  38

  2.3.9  Cyclic voltammetric studies  38

  2.3.10  Computational studies  38

  2.3.11  DNA extraction  38

2.4  Preparations  39

  2.4.1  Synthesis of ferrocene based precursors  39

  2.4.2  Synthesis of organic precursors  41

  2.4.3  Synthesis of ferrocenyl amides  52

Chapter-3  Results and Discussion  55-90

3.1  Synthesis and characterization of ferrocene based precursors  55

  3.1.1  Synthesis of 4-ferrocenyl aniline (Fc-a)  55
3.1.2 Characterization of Fc-a 56
3.1.3 Synthesis of 4-Ferrocenyl benzoyl chloride (Fc-b) 57

3.1.4 Characterization of 4-Ferrocenyl benzoyl chloride (Fc-b) 57

3.2 Synthesis of organic precursors 58

3.2.1 Synthesis of N-[4-(4-nitrophenoxy)phenyl]alkanamides (N-1 to N-14) 58

3.2.2 Synthesis of N-[4-(4-aminophenoxy)phenyl]-alkanamides (NA-1 to NA-14) 59

3.2.3 Synthesis 4-alkoxy benzoic acid derivatives (HX-1 to HX-7) 59

3.2.4 Synthesis of 4-(4-Alkoxyphenyl)benzoic acid derivatives (HXX-1 to HXX-5) 59

3.3 Characterization of organic precursors 59

3.3.1 Characterization of N-[4-(4-nitrophenoxy)phenyl]-alkanamides (N-1 to N-14) 60

3.3.2 Characterization of N-[4-(4-aminophenoxy)phenyl]-alkanamides (NA-1 to NA-2) 69

3.3.3 Characterization of 4-alkoxy benzoic acid derivatives (HX-1 to HX-7) 73

3.3.4 Characterization of 4-(4-alkoxyphenyl)benzoic acids (HXX-1 to HXX-5) 76

3.4 Synthesis of ferrocenyl amides (series I, II, III & IV) 76

3.5 Characterization of ferrocenyl amides (series I, II, III & IV) 77

3.5.1 FTIR spectral analysis 79

3.5.2 $^1$H/$^{13}$C-NMR spectroscopic studies 81

Chapter-4 Properties of the Synthesized Materials 91-147

4.1 Nitroaromatics 91

4.1.1 Electrochemical properties 92

4.1.2 DNA-binding studies by cyclic voltammetry 93
4.1.3 DNA-binding studies by docking 94
4.1.4 Diffusion coefficient 96
4.1.5 DNA-binding studies by UV-visible spectroscopy 97
4.1.6 Effect of alkyl chain length on the values of diffusion coefficient and Kf 97

4.2 Electrochemical properties of ferrocenyl amides 99
4.2.1 Electrochemical response of the compounds of series II 99
4.2.2 Effect of alkyl chain on electrochemical properties 102
4.2.3 Electrochemical response of the compounds of series III and IV 103

4.3 DNA-binding studies of ferrocenyl amides 106
4.3.1 DNA-binding studies by cyclic voltammetry 106
4.3.2 Diffusion coefficient 111
4.3.3 DNA-binding studies by UV visible spectroscopy 114

4.4 Liquid crystalline properties 116
4.4.1 Thermodynamic evaluation of the liquid crystalline ferrocenyl amides by DSC 117
4.4.2 Correlation of mesogenic behavior with the structure 121
4.4.3 Textures of mesophases observed by POM 124

Conclusion

References

List of Publications