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Abstract 
 

The primary orientation of this thesis is to explore some interesting features of static and 
dynamic potentials in magnetized quantum plasmas including the dust dynamics in the 
presence of wave field associated with different modes. These modes may be 
electrostatic in nature. These investigations find significance applications in small and 
large scale plasmas. This thesis contains some new extensions to dust-lower-hybrid 
modes in quantum dusty plasmas. 
 
In chapter II, the effect of strong ambient static magnetic field on Shukla-Nambu-
Salimullah (SNS) potential in a dusty quantum magnetoplasma has been investigated 
using quantum hydrodynamic (QHD) model. The potential is significantly modified by 
quantum statistical effects, density inhomogeneity and dust polarization drift effect. It is 
found that dust polarization drift effect pre-dominates the ion polarization drift effect in 
high magnetic field environments. The potential around a static test charge has been 
plotted for different parameters in high density quantum magnetoplasmas. We have 
seen that for increasing values of number density and inhomogeneity scale length, the 
modified SNS potential decreased due to the decrease in the Fermi Debye length.  
 
Subsequently using the quantum hydrodynamic model for quantum magnetoplasmas, 
the Shukla–Nambu–Salimullah shielding potential and the far-field dynamical wake 
potential in a quantum dusty plasma with a nonuniform density and static magnetic field 
have been investigated in chapter III. The short-range screening potential and the long-
range oscillatory wake potential are found to be significantly affected by the 
nonuniformities in the density and the static magnetic field.  It is seen that SNS and 
oscillatory wake potentials increases with the increase of external magnetic field and for 
increasing values of number density and inhomogeneity scale length, the amplitude and 
effective length of wake potential decreased. The far-field oscillatory wake-field potential 
can explain attraction among the same polarity charges leading to the possible ordered 
structures or coagulation in the inhomogeneous quantum dusty magnetoplasma. 
 
Finally in chapter IV, the dispersion relation of the dust-lower-hybrid wave has been 
derived using the quantum hydrodynamic model of plasmas in an ultracold Fermi dusty 
plasma in the presence of a uniform external magnetic field. The dust dynamics, electron 
Fermi temperature and the quantum correction give rise to significant effects on the 
dust-lower-hybrid wave of the magnetized quantum dusty plasmas. Numerically it is 
found that frequency of the quantum dust-lower-hybrid wave increases with increasing 
wavenumber and with the increase of magnetic field at the small angle of propagation. 
The summary and conclusions are in the end of the thesis. 
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1.1 The Primer

The introductory chapter of my thesis has been divided into five sections using

the logical sequence. After introduction, this chapter starts with the understand-

ing of different type of plasma. These are dense quantum plasma, inhomogeneous

plasma and dusty plasma and these have been the basis of my research work. In

brief some properties and different approaches to treat the plasma are discussed

here. In section 3, there is a description of some properties of quantum plasmas.

Some of the modes propagating in complex plasmas have also been discussed.

This is given in section 4. Section 5 contains explanations of some basic phenom-

ena. These phenomena include physics of Debye screening potential, theory of

wake potential and Coulomb crystals. Lastly, I give a layout of my thesis.

1.2 Plasma

Plasma is the dominate state of matter in the universe, estimated to comprise

around 99% of all observable matter. It is often termed the fourth state of mat-

ter because its characteristics are quite different from the other three states.

The word plasma was first used by Langmuir in 1928 to describe the ionized

regions in gas discharges. Because of the abundance of plasma in the universe,

the knowledge of plasma physics becomes essential to understand phenomena in

Nature-especially in space. A plasma can be described as a quasineutral gas of

charged and neutral particles which exhibits collective behavior. The plasma par-

ticles are governed by the long-ranged electrostatic and electromagnetic forces
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instead of collisions in a normal gas.

Plasma is an optical and dielectric medium which is rich with fluctuating

electric and magnetic fields i.e. E, and B. Many challenging issues can be in-

vestigated, for example, the plasma may be non uniform with respect to number

density, it may be dissipative or dispersive have different temperatures which may

lead to complicated dispersion relations. The prominent property of the plasmas

is that it hosts large number of wave motions. The possibility of existence of a

particular wave depends upon typical plasma properties and parameters.

Normally the modes in plasmas are represented by the equation which relate

the frequency and wave vector is known by dispersion relation. We have two

approaches to solve for dispersion relation. Either we take ω as real and k as

complex or ω is taken as complex and k is taken as real. The latter one has

some mathematical ambiguities but sometime may be opted. The possible roots

describe the natural modes existing in plasmas. The dispersion relation does lack

of additive character. In other words we can not get dispersion relation of over

all neutral plasmas consisting upon electrons, ions and dust by adding dispersion

relations of individual species that are constituents of plasmas [1-3].

1.2.1 Debye Shielding

The phenomenon of Debye shielding is a fundamental property of a plasma.

When a test charged particle is immersed in a plasma, it will be shielded out by

either the ions or the electrons. A positively test charged particle will attract a

cloud of electrons, while a negatively test charged particle will be enclosed in an

ion cloud. This distribution of charges within the plasma gives rise to an electric

potential Φ(r) that is called the Debye potential
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Φ = Φ0 exp(−r/λD) .

If the plasma is cold, the shielding will be perfect outside the cloud. For

warmer plasmas, however, the small potentials at the edge of the clouds will not

be able to prevent the electrons or ions from escaping. For the size of shielding

cloud we introduce the Debye length which is a characteristic length for the

shielding of the potential around a test charged particle. The Debye length λD

is defined by the expression

λD =

√
ε0Te

nq2
e

,

where ε0 is the constant of permittivity, Te is the electron temperature, n is

the equilibrium plasma density at infinity and qe is the electron charge. It

is worth mentioning that the Debye length will increase when temperature in-

creases, which can be explained by the fact that the thermal motion of the plasma

particles will make the shielding weaker. Conversely, a dense plasma will make

the Debye length shorter, as there are more particles to shield out the potential.

A criterion for a plasma is that it is quasineutral. This is fulfilled when the

dimensions of the physical system are much larger than the Debye length, since

every local concentration of charge will be shielded in a distance much smaller

than the size of the system.

Plasma must satisfy the following tree conditions

λD ¿ L; ND >>> 1; ωτ > 1,

where L is the dimensions of a plasma system, ND is the number of particles

in a Debye sphere and ω is the frequency of plasma oscillations and τ is the mean

time between collisions with neutral atoms. Defining plasma as a collection of

positive and negative charges that are not atomically bound to one another, we

encounter two possibilities. Most commonly, the charges have abundant kinetic
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energy and fly easily past their neighbors, much like molecules in a gas. That’s

termed a weakly coupled plasma. For weakly coupled plasma electrostatic po-

tential energy is less than the kinetic energy, so it have high temperature and

low density plasma. Strongly coupled plasmas are characterized by dominant

coulomb forces over their thermal agitation and it have large density and/or

small temperature. The Γ (coupling coefficient) is the ratio of electrostatic to

kinetic energy, is large for strongly coupled plasmas because of high density and

small interparticle spacing.

1.2.2 Homogeneous and inhomogeneous Plasma

The plasmas with low temperature and with no external magnetic field has prob-

able uniformity in all directions with respect to number densities. Such a plasma

is enriched with simple waves due to uniform distribution of plasma particles and

small variation of density. Under this condition, the current density and electric

field strength of charged species is zero. The plasma of this nature rarely exists

except for the case of small scale plasmas, e.g., bounded plasmas with small di-

mensions [4-7]. However, non-uniformity in fields either electric or magnetic as

well as number densities is a natural occurrence. The gradient in density leads

to electric field and hence some currents. Drift waves and instabilities are conse-

quences of such situation [5,8].

1.2.3 Different approaches to treat the Plasmas

Analytically, we can tackle the plasmas by different possible ways [9].

Plasma as a Fluid: In a plasma one has to deal with an extensively large
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number of charged particles. As each of these particles follow a complicated

trajectory, it becomes impossible to keep of them all and observe the plasma

behavior. Hence there is need to find techniques to handle plasma to have a

reasonably accurate results. One such approach is to assume plasma to be a con-

ducting fluid. This model makes use of the well-established equations of Fluid

mechanics with some general properties of ideal fluids applicable to plasma. This

model, which is often referred to as the Magnetohydrodynamic (MHD) model,

has been successful in explaining the majority particles is neglected and only the

motion of fluid elements is taken into consideration. It is known as single fluid

model. There is another fluid model that is called two fluid model in which each

species like electrons, ions etc. can be treated as fluid elements separately.

Kinetic Theory of Plasma: The information that gets lost in a fluid model

is that relating to the distribution of velocities of the particles within a fluid

element, since the fluid variables are functions of position and time but not of

velocity. Any physical properties of the plasma that depend on this microscopic

detail can be discovered only by a description in six-dimensional (r,v) space.

Thus, instead of starting with the density of particles n(r, t) at position r and

time t, we begin with the so-called distribution function, f(r,v, t), which is the

density of particles in (r,v) space at time t. The evaluation of the distribution

function is described by kinetic theory.

With the additional information on particle velocities within a volume element

introduced by a phase space description, we now have microscopic detail that we

did not have before. For that reason, kinetic and fluid theories are identified as

microscopic and macroscopic, respectively.
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1.2.4 The technique of Fourier transformation

In the universe, all the waveforms, no matter what we observe are actually just

the sum of simple sinusoids of different frequencies. The Fourier transform is

a mathematical tool that shows us how to deconstruct the waveform into its

sinusoidal components. In other words, we can say that the Fourier transform

decomposes a waveform into sinusoids. Mathematically, to solve the differential

equations are little bit difficult. However by applying Fourier transformation

we can simplify the differential equations. Differential operators are replaced by

wave vector and angular frequency along with ı̇ =
√−1 which lead from differ-

ential to a simple solvable algebraic expression. In this way, we actually shift

coordinate space to Fourier space [10-12].

1.2.5 Conducting behavior of Plasma

The simplest plasmas consist of electrons and ions. The electrons are the lightest

species and therefore are very mobile and their presence reflects the conducting

behavior of plasmas. We can relate the current density and number density by

an equation and hence, in turn with the electric field generated due to the motion

of charged species. The vector equation can be described as J = qeneu [5,13].

The propagation of wave in the plasmas verifies the fact that the plasma is a

dielectric medium, for which oscillations of the medium and fields is prerequisite.

By default there is no external magnetic field inside the plasmas. However for

multi fluid plasmas, such response is incorporated through susceptibility which

shows the response of individual species or fluids for the fields. By taking sum

over unity and susceptibility over all species present in plasmas, we can find the

conducting response of plasmas as whole [6,7,10-12,14-25]. The mathematical
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expression in the presence of variety of effects like magnetic field, uniform or non

uniform plasmas, turns it into a complex form which is represented by a dielec-

tric tensor [6]. The response of medium to the externally applied field may be

linear [5,10-12] if some sign of proportionality exists there. The constant of this

proportionality is the medium response function which is constant. The nature

of this function may be complex. The absorption of wave is due to the dissipative

part and non zero refractive index is due to non dissipative part.

1.2.6 The dielectric response tensor

The inclusion of electric as well as magnetic fields, bring the algebraic complexity

alongwith qualitative change of orbits. Tensor formalism known as a response

tensor, develops the relationship between the disturbance and response in order to

avoid from any kind of confusion. Hence, the dielectric tensor as a dimensionless

expression contains the perturbations through susceptibilities which emphasizes

the additive property of coefficients for all of the species of plasmas and then

provides the dispersion relation of peculiar mode. Here the zero order quantities

are taken as stationary with respect to time and space, while first order quantities

are considered. The dielectric tensor is additive in its nature. The cold plasma

is the simplest approach for the calculation of response tensor of unmagnetized

plasmas, where each of the plasma species is solved by fluid equations that incor-

porate velocity, number density, charge and mass of corresponding species [1,2].

1.3 Dense Quantum Plasmas

The quantum effects should be taken into account when the plasma is dense

enough, so that the de Broglie wavelength of the charged carries is frequently

comparable to the average interparticle distance in the plasma system.
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Many authors [26-35] have investigated the different quantum effects in the

plasmas, such as the Bohm potential and the Fermi pressure [26-32], spin prop-

erties [33-40], as well as certain quantum electrodynamical effects [41-44].

In general, dense quantum plasma can be composed of electrons, positrons,

ions, and charged nanoparticles. It is characterized by high-plasma particle num-

ber densities and low-temperatures, in contrast to classical plasma that has high-

temperatures and low particle number density. Quantum plasmas are common

in different environments, e.g. in superdense astrophysical bodies [37,45,46] (i.e.

the interior of Jupiter and massive white dwarfs, magnetars, and neutron stars),

in intense laser-solid density plasma experiments [47-50], and in ultrasmall elec-

tronic devices (e.g. in microelectronics, semiconductor devices [51], nanowires

[52], carbon nanotubes [53], quantum diodes [54-58], ultracold plasmas [59,60],

and microplasmas [61]). More than four decades ago, Pines studied the proper-

ties of the high-density and low-temperature quantum plasmas [62]. The latter

is gaining momentum [26] in the context of studies of waves, instabilities and

nonlinear structures.

1.3.1 Properties of Quantum plasmas

The complete description of the quantum plasma as a system of many interacting

particles is a frantic task as is the case of classical plasmas, not only because it is

impossible to solve the Schrödinger equation for the N-particles wavefunction of

the system, but also because of the lack of such wavefunction for a macroscopic

system [63]. Now this problem can be modified by considering the plasma as an

ideal gas, i.e. that the two- and higher-order correlations between its particles

can be ignored. If this is the case, then the plasma can be studied as a collection

of quantum particles that act only via their mutual fields. In quantum plasmas,
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the Fermi-Dirac statistical distribution is usually applied rather than the exten-

sively used classical Boltzmann-Maxwell distribution. The typical scales, viz.

the time, the length, and the thermal speeds of the charged particles in quantum

plasmas, are quite different from that of classical plasmas. A one-dimensional

zero-temperature Fermi gas obeys the equation of state [38] of the form

Pα =
mαV 2

F n3
α

3n2
α0

, (1.1)

where mα is the mass of the species α (α equals e for the electrons, p for the

positrons), VF = (2EF /mα)1/2 is the Fermi speed, EF is the Fermi energy, and

nα is the particle number density with an equilibrium value nα0.

Due to the high number density in quantum plasmas, the plasma frequency

ωpα = (4πnα0e
2/mα)1/2 and the Thomas-Fermi length (analogue of the Debye

length in classical plasmas) λFα = VF /ωpα ≡ (2kBTF /mα)1/2/ωpα become signifi-

cantly different from the usual plasmas. Here e is the magnitude of the electronic

charge and kB is the Boltzmann constant. The Fermi temperature TF can be ex-

pressed in terms of equilibrium number density as

kBTF =
1

2
mαV 2

F ≡ EF =

(
h̄2

2mα

)
(3π2nα0)

2/3, (1.2)

where h̄ is the Planck constant divided be 2π. It is noted that when the tem-

perature approaches TF , the relevant distribution changes from the Maxwell-

Boltzmann to the Fermi-Dirac. It is well-known that in quantum plasmas, the

de Broglie wavelength (viz. λB = h̄/mαVTh) of the charge carriers is compa-

rable to the interparticle distance in the plasma system. The thermal speed

VTh = (2kBTTh/mα)1/2 is sufficiently smaller than the Fermi speed VF . In such

a situation, the plasma behaves like a Fermi gas, and the quantum mechanical

effects are expected to play a role in the behavior of the plasma particles dy-

namics. The de Broglie wavelength roughly represents the spatial extension of

Fermion wave function due to quantum uncertainty.
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In quantum plasmas, a strong electron density correlations start playing a

major role when the de Broglie wavelength is equal to or larger than the average

interparticle distance d = n
−1/3
e0 , that is

ne0λ
3
Be ≥ 1. (1.3)

For an opposite condition ne0λ
3
Be < 1, the plasma particles behave classically.

In fully degenerate quantum plasmas, there are two significant effects. The

first one is caused by the quantum force involving the electron tunneling at quan-

tum scales λBe through a potential barrier that contains the quantum mechanical

effects and it is represented by ϕB = −(h̄2/2me
√

ne)∇2√ne. The second is due

to the spin of the electrons and positrons in an external magnetic field [26,33].

The quantum force involving the Bohm potential produces dispersion at quantum

scales, while the spin of the electrons gives rise to a force that depends on the

charged particle magnetic moment µB = eh̄/2mec, where c is the speed of light

in vacuum. Both effects have important consequences for collective processes in

quantum plasmas.

1.3.2 Tackling Quantum Plasmas

The description of quantum plasma can be established on either Schrodinger’s

equation (in which the operators are time independent) or Heisenberg’s repre-

sentation (in which the time dependence is shifted from the wave function to

operators). Most of the models for quantum plasma employed now [47], use the

Schrodinger’s representation; the state of quantum plasma accounted either by

the wave functions of distinguish particles (supposed multistream model [27]), or

by the Wigner function [64,65]. This approach can be solved by a set of the so-

called hydrodynamics equations. Naturally, all models are made by simplifying

assumptions, which one should appreciate when analyzing results obtained from
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them. Nevertheless, applicability limits of results obtained from a peculiar model

are not always submitted explicitly (this particularly refer the widely used model

of quantum hydrodynamics [66,67]), which can conduct to their wrong interpreta-

tion. With the rapid increase in the number of publications on quantum plasmas

recently, the lack of detailed analysis of the made assumptions and the limita-

tions connected for the most common quantum plasma models becomes obvious,

therefore it is multipurpose to furnish such analysis. Studies of quantum plasma

physics get down with pioneering theoretical works of Klimontovich and Silin

[68] and Bohm and Pines [69-71] who analyzed the dispersive properties of the

electron plasma oscillations (EPOs) in dense quantum plasma with degenerate

electrons. Recently, there has been developing interest to look into new aspects

of dense quantum plasmas by developing the quantum hydrodynamic (QHD)

[26,72-74] and quantum kinetic equations by combining the quantum force relate

with the Bohm potential [74]. The Wigner-Poisson (WP) model [75,76] has been

applied to derive a set of QHD equations for dense electron plasma. The QHD

equations are constitute the electron continuity, non-relativistic electron momen-

tum and Poisson equations.

1.4 Complex Plasmas

Dust and plasmas are the two quite common components of the universe. Much

of the solid matter in the universe is composed of dust. Dust can be found in

different astrophysical environments in the form of dielectric (ices, silicates, etc.)

and metallic (graphite, magnetite, amorphous carbons, etc.). On the other hand,

a plasma is a quasi-neutral ionized gas consisting of electrons, ions, and neutral

atoms or molecules which exhibits collective behavior. Thus, dust coexists with

plasma and forms a Dusty Plasma [77,78]. A dusty plasma is a normal electron-
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ion plasma with an additional charged component of micron or sub micron-sized

dust particulates. The additional component may have a distribution of sizes,

shapes, and charge states, which can increase the complexity of the system, is

responsible for the name Complex Plasma. Dust grains of various sizes, origin,

and nature occur in many space environments [79-82]. They are extremely mas-

sive compared to the electrons and ions. The mass and size of the dust grains

may have the range of md ∼ (10−2 − 10−15) g and 1 µm − 1 cm, respectively.

Dust grains are highly charged compared to the electrons and ions. Typically,

they may have the charge of order Qd0 = Zd0e ∼ (102 − 105)e, where Zd0 the

equilibrium charge of the dust grain and e is the magnitude of the electronic

charge.

1.4.1 Properties of the Complex Plasmas

The qausi-neutrality condition at equilibrium can be modified in the presence

of a negatively charged dust component as

Qene0 + Qdnd0 = Qini0 , (1.4)

It is obvious from Eq. (1.4) that the net resulting electric charge is zero if there

are no perturbations in the dusty plasma. Here, nj0 is the equilibrium number

density of the plasma species j (j equals e for electrons, i for ions, and d for

dust grains), Qe = Zee is the electronic charge, Qi = Zie is the ionic charge, and

Qd = −Zd0e is the negatively charge dust grains. In dusty plasma, we assume

that all the dust grains have a uniform size, spherical in shape, and have a neg-

atively charge though there is a variation in mass, size, and charge. The plasma

particles are assumed to be point charges [83] as long as the dust grain size a

and the average inter-grain spacing d = (3/4πnd0)
1/3 are much smaller than the

effective dusty Debye length (λD) and the particle gyro-radius ρj (if the ambient
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magnetic field is present). This model is appropriate for describing the inter-

stellar clouds, cometary tails, planetary rings, as well as in noctilucent clouds.

For a ¿ d ¿ λD, ρj, the charged dust particulates can be considered as massive

point particles similar to multiply charged negative (or positive) ion in multi-

species plasmas, while for d < λD, the effect of neighboring particles becomes

significant. For d À λD À a, the dust grains are completely isolated from their

neighbors and it is referred as dust in plasma [84]. For the negatively charged

particulates in a dusty plasma, we consider ne0 ¿ ni0 and Te ≥ Ti showing that

λDe À λDi ' λD. Whereas, the dust grains can be considered to be positively

charged particulates under the condition Teni0 ¿ Tine0 giving λD ' λDe ¿ λDi,

where Te(Ti) is the electron (ion) temperature and λDe(λDi) is the electron (ion)

Debye length. We note that the dust plasma frequency is much smaller than the

ion plasma frequency, i.e. ωpd ¿ ωpi, because the mass of the dust particles is

much greater than the mass of ion.

1.4.2 Applications of Complex Plasmas

The electron-ion plasmas are often mingled with micron-sized dust grains to form

dusty plasma. Such plasmas are present in various space environments, namely

planetary rings, installer molecular clouds, earth’s magnetosphere, cometary

rings, auroral displays, zodiacal light. Dust is also present in the environment

of low-temperature laboratory plasmas, like in tokamaks, semiconductor devices,

and thin films. In the last few years, industrial plasma processing researchers

have discovered that particles suspended in plasmas are a major cause of costly

wafer contamination during semiconductor manufacturing. However, in many

astrophysical and terrestrial plasmas, the dust grains are found to be elongated

rather than point-like. Such dust grains are expected to be formed due to co-
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agulation of smaller particles in partially or fully ionized plasmas by attractive

forces. It is observed that inelastic, adhesive, and collective interactions between

micron-sized charged dust particles give rise to kilometer-sized bodies, which are

known as planetesimal. In literature, it is suggested the possibility for the charged

dust particles to form Coulomb crystals if they are strongly coupled through the

electrostatic force and have small thermal motion.

1.4.3 Modes in Complex Plasmas

During the last two decades, the physics of dusty plasmas has reached a matured

level [77]. The inclusion of an additional dust component leads to new types of

collective modes and associated instabilities. A number of collective modes such

as the dust-acoustic waves (DAW), dust-ion-acoustic waves (DIAW), dust-lower-

hybrid wave (DLHW), dust Coulomb waves (DCW), dust lattice waves (DLW)

have been studied both in an unmagnetized and magnetized dusty plasmas.

Dust Acoustic Wave (DAW): The DAW in a multicomponent collionless

dusty plasma whose constituents are the electrons, ions and negatively charged

dust grains. The phase velocity of the DAW is much smaller than the electron

and ion thermal speeds such that condition vTd << ω/k << vTe, vTi in which

dust are mobile. These inertialess electrons and ions establish equilibrium in the

DAW potential φ. The pressure gradient is balanced by the electric force, lead-

ing to Boltzmann electron and ion number density perturbations. The restoring

force in the DAW comes from the pressures of the inertialess electrons and ions,

while the dust mass provides the inertia to support the waves. The frequency of

the DA waves is much smaller than the dust frequency. The electrostatic DAW

is observed experimentally, which indicates that it has frequency ≈ 15Hz with a

phase velocity - 9 cm/s [85].
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Dust Ion-Acoustic Wave (DIAW): The phase velocity of the DIA waves is

much smaller than the electron thermal speed such that vTd, vTi << ω/k <<

vTe. The phase velocity of the DIA waves in a dusty plasma is larger than

Cs =
√

Te/mi because ni0 > ne0 for negatively charged dust grains. The in-

crease in the phase velocity is attributed to the electron density depletion in

the background plasma, so that the electron Debye radius becomes larger. As

a result, there appears a stronger space charge electric field which is responsible

for the enhanced phase velocity of the DIA waves [86]. However, if the electrons

are warm Te >> Ti an electrostatic wave in which ions do play a major role is

found at lower frequencies. Since these are low-frequency oscillations, so ions are

mobile, electrons are inertialess and dust dynamics are immobile providing neu-

tralizing background, which can be seen through the quasi-neutrality condition.

The electron pressure provides the restoring force, and the ion mass provides

the inertial effect. These are also called ion-sound waves because all wavelengths

propagate at the same speed, the ion-acoustic speed (Te/mi). This is in contrast

to the plasma oscillations which have the same frequency for all wavelengths. For

typical laboratory conditions, the frequency of the DIAW is few kHz. Both the

DAW and DIAW have been observed experimentally [87-90].

Dust-Lower-Hybrid Wave (DLHW): A number of fundamental new modes,

particularly the dust-lower-hybrid (DLH) wave, have been shown to exist in plas-

mas which occur invariably in the presence of magnetic fields. In electron-ion

plasma, if the wave vector have small parallel component, the electron oscillate

along the magnetic field, leading to the dispersion relation for the lower hybrid

wave ω = ωlh[1 + (M/m)(k2
‖/k

2
⊥)]1/2, where ωlh = ωpi/[1 + (ω2

pe/ω
2
ce)]

1/2. In

dusty plasma, including the dust dynamics and assuming ω2
pi À ω2

ci for a high-

density plasma, the electrostatic dust-lower-hybrid wave frequency turns out to

be ω2 = ω2
dlh[1+(k2

‖/k
2)(ω2

pe/ω
2
pd)] where ωdlh = ωpdωci/ωpi is the DLH frequency.
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1.5 Electrostatic Potential

Shielding of the electric fields generated by free charge in plasmas is a primary

issue in plasma physics. When a free charge is placed into a plasma, charged

particles respond to the electric field caused by the free charge, and this leads

to the result that the electric field is determined by the dynamic response of the

plasma to the electric field applied externally. For an unmagnetized plasma, the

plasma equilibrium is simply the balance of the force due to the electric field

and the force due to the plasma pressure gradient; this results to the well-known

Debye shielding.

The search for model systems to study phase transitions of crystalline structures

was initiated by Wigner in the 1930s with the theory of the Wigner Crystal [91].

Since that time experimental verification has been achieved for several specific

systems. On the atomic scale these are ion crystals [92] and electron crystals

[93] and on macroscopic scales colloidal crystals in aqueous solutions [94]. Each

of these systems has advantages and disadvantages for the detailed study of the

phase transition of interest, such as formation, growth and melting of crystalline

structures. A macroscopic Coulomb crystal formed from a dusty plasma is termed

as plasma crystal [95].

The wake-field potential caused by a test particle has received enormous

amount of attention and is an active area of research in the perspective of its

applications in many phenomena e.g., in the acceleration of particles [96,97], in

the formation of the dust particles into regular crystalline structures in dusty

plasmas [98-100], and in the coagulation of small dust particles in space and

astrophysical plasmas. The idea of the wake potential was first introduced by

Nambu and Akama [101] in the electron-ion plasma which was further extended
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for the dusty plasmas by Nambu et al. [102].

Nambu et al. [102] introduced the wakefield concept to a dusty plasma in

which besides electron and ions one also has a large fraction of charged dust

grains. The presence of the latter gives rise to DA [85] and DIA [86] waves. By

incorporating the appropriate dielectric constant of DA and DIA waves, Nambu

et al. [86,102] calculated the wake potential around a test charge. Besides the

usual Debye screening potential, they found a new attractive potential. The

latter can be responsible for the attraction of charged dust particulates, leading

to microscopic coulomb crystallization and coagulation of dust grains in dusty

plasmas.

When the speed of a dust test charge is comparable to the phase speed of

the plasma wave, a wake-field potential is formed behind the test charge. This

wake-field is an oscillatory in nature containing both the positive and negative

potential regions. For higher speeds of test charge, the amplitude of the wake-

field is pronounced. Furthermore, the attractive wake-field has been explained

[103,104] with an external magnetic field and finite ion flows in the dusty plas-

mas. Numerous attempts [105-110] were made for calculating the Debye and

wake potentials, as well as highlighting the Coulomb crystallization in the mag-

netoplasmas. Quite recently, Salimullah et al. [111] studied that the properties

of the electrostatic Shukla- Nambu-Salimullah (SNS) potential in an inhomoge-

neous magnetoplasma with ion streaming and showed analytically the effects of

inhomogeneity scalelength, the external static magnetic field, and the diamag-

netic drift velocity of ion on the Debye and wake potential profiles. The effect of

ion polarization drift causes this new type of potential. A new shielding length

appears across the external magnetic field which is larger than the ordinary Debye

shielding length.

The formation of Coulomb lattices is also seen when an appropriate electric
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field is applied in dusty plasmas. The physical mechanism behind the attrac-

tive force in a dusty plasma is similar to the Cooper pairing of the electrons in

superconductors. The force of attraction between two electrons (or negatively

charged particles) is attributed to the polarization of the medium caused by a

test electron (negatively charged particulates) that attracts positive ions. The

excess positive ions, in turn, attract a neighboring electron (negatively charged

particulate). Thus, collective interactions involving phonons (DA waves) play an

essential role both in the Cooper pair mechanism in superconductivity as well

as in dusty plasmas. The electrostatic potential around the isolated test dust

particle can be written as [112]

Φ(x, t) =
∫ qt

2π2k2

δ(ω − k · vt)

ε(ω,k)
exp (ik · r) dk dω, (1.5)

where qt and vt(¿ vti) are the charged and velocity of the test dust particle, re-

spectively. The dielectric response function of the plasma in the presence of finite

ion flow with the speed vio is calculated under the condition kvti ¿| ω−kzvio |¿
kvte, where z-axis is directed along the ion flow. Here vti(vte) is the ion (electron

) thermal velocity. The dielectric response function is given by

ε(ω,k) = 1 + χe + χi + χd, where k is the wavevector, ω is the wave frequency,

and χe, χi and χd are the susceptibilities of electron, ion and dust particulate,

respectively. Substituting the vale of ε, one can obtain the electrostatic potential

as φ = φD + φF + φC , where φD is the usual Debye screening potential, φF is the

far-field potential and φC is the additional potential (wake potential) involving

the collective effects caused by the oscillations in the ion flow. Besides the Debye

screening potential, there appear far-field and non-Coulombian potentials. The

latter could be attractive and may be responsible for bringing like particulates

together so that microscopic Coulomb Crystallization can occur in dusty plasmas.

Physically a charged dust grains polarizes the medium by attracting positive ions

that are involved in the collective behaviors of the waves. Similar to the Cooper
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paring, the excess positive ions attract the neighboring dust grains. The force

of attraction between the two negatively charged dust grains is strong when the

test dust charge velocity is close to the Doppler shifted phase velocity of the

particular waves. In such a situation, there appears an oscillatory wake potential

behind a test particulate. Quasi-lattice structures could be formed because of

the presence of near-field attractive forces between like polarity dust grains [113].

1.6 Review of thesis

Chapter 1 of the thesis is an introductory chapter. This provides relevant knowl-

edge about plasma physics and basics of my work which are included in my thesis.

In chapter 2, the effect of strong ambient static magnetic field on Shukla-Nambu-

Salimullah (SNS) potential in a dusty quantum magnetoplasma has been investi-

gated using quantum hydrodynamic (QHD) model. The potential is significantly

modified by quantum statistical effects, density inhomogeneity and dust polar-

ization drift effect. Effective length of the modified SNS potential is found to be

a sensitive function of external static magnetic field, E×B0 drift and the scale-

length of inhomogeneity. Here E is the electric polarization vector produced via

density inhomogeneity and B0 is the ambient static magnetic field. It is found

that dust polarization drift effect predominates the ion polarization drift effect in

high magnetic field environments. It attracts our attention to the careful study

of the underlying physics of dusty plasma environment of neutron stars and mag-

netars.

Chapter 3 deals with the detailed study of static shielding potential and os-

cillating far-field dynamical wake potential in quantum dusty plasma. Using

the quantum hydrodynamic model for quantum magnetoplasmas, the Shukla-

Nambu-Salimullah (SNS) shielding potential and the far-field dynamical wake
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potential in a quantum dusty plasma with a nonuniform density and ambient

static magnetic field have been investigated in detail. The short range screen-

ing potential different from the symmetric Debye-Hückel potential and the long

range oscillatory wake potential are found to be significantly affected by the

nonuniformties in the density and the static magnetic field. The far-field oscilla-

tory wake-field potential can explain attraction among the same polarity charges

leading to the possible ordered structures or coagulation in the inhomogeneous

quantum dusty magnetoplasma.

In chapter 4, the dispersion relation of the dust-lower-hybrid wave has been de-

rived using the quantum hydrodynamic model of plasmas in an ultracold Fermi

dusty plasma in the presence of a uniform external magnetic field. The dust dy-

namics, electron Fermi temperature effect, and the quantum corrections give rise

to significant effects on the dust-lower-hybrid wave of the magnetized quantum

dusty plasmas.

Discussion

References
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2.1 Introduction

The shielding of test charge is one of the most fundamental property of a

plasma, either quasineutral or non-neutral and weakly or strongly coupled, in

which a positive charge is placed in a plasma, this test charge is accumulated

by oppositely charged particles [114]. Shielding was first introduced by De-

bye and Hückel [115] in 1923. Basically, the symmetric Debye-Hückel poten-

tial around a static test charge arises due to quasineutrality in the unmagne-

tized plasma. However, in magnetized plasma, a strongly anisotropic Shukla-

Nambu-Salimullah (SNS) potential is presented. The SNS potential is elliptical

in shape elongated across the external magnetic field [116]. The subsistence of

the SNS electrostatic potential in magnetized plasmas was studied by several

authors [105,108,109,117,118].

When plasma is very dense, the de Broglie wavelength associated to the charge

particles is comparable to the inter-particle distance. In such circumstances, the

plasma must behave as a Fermi gas and the quantum effects play imperative

role to modify the behavior of the charged particles. For a quantum plasma,

the Debye length is smaller than the dimension of the system. So, to study the

Debye shielding, the quantum effects must be considerable when the de Broglie

wavelength is comparable to the plasma Debye length. During the last two

decades, plasma physics community has been trying to rediscover the new features

of the quantum plasma using either the quantum fluid model [27,72,119] or the

quantum kinetic model [120].

Astrophysical plasmas [121,122] and metallic plasmas [123] are the major

areas that have been explored. Such systems have very high particle number

density (as compared to classical plasma) and a quantum mechanical model is

needed to describe the behavior of plasmas. Furthermore, the study of electrons
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and holes in semiconductors [124] is another flourishing area of quantum plasmas.

Astrophysical and cosmological plasmas may have electrons, ions, positrons and

dust as well [125,126]. The dust dynamics or even a stationary dust grains may

generate new dust modes in these systems. Moreover, these compact objects

have very strong magnetic field (of the order of 1010 − 1014 Gauss) that may

influence the properties of plasmas [127] in their environment.

Some efforts have been carried out [128-132] to study the shielding processes

in unmagnetized quantum plasmas. However, screening in magnetized quantum

plasmas is an area which require more investigations. Recently, Salimullah et al.

[133] have explored modified Debye screening potential in an electron-ion quan-

tum plasma using laboratory parameters. The effect of inhomogeneity on the SNS

potential [134] through the ion polarization drift in a quantum dusty plasma has

also been studied. So far, no work has been done on the phenomenon of shield-

ing potential in an inhomogeneous quantum dusty magnetoplasma environment

incorporating the polarization drift effect of dust particles. In this chapter, we

explore the effect of magnetic field on the shielding potential in an astrophys-

ical environment where the density inhomogeneity and dust polarization drift

effect are present. Let the electric field Ex̂ produced due to the inhomogeneous

ion/dust distribution be transversed to the ambient magnetic field B0ẑ in the

plasma. Thus, the inhomogeneity of plasma ions/dust in the x−direction gives

rise to a diamagnetic drift frequency to the ions/dust in the y−direction. In ad-

dition, the presence of the uniform electric field E0, responsible for the uniform

ion/dust drift and the magnetic field B0, causes the uniform ion/dust streaming

in the y−direction and produces a Doppler shift of the electrostatic drift wave

frequency in dusty plasma. However, the electrons satisfy the Boltzmann distri-

bution. We shall use the quantum hydrodynamic (QHD) model. We assume that

the Fermi temperature (TF ) of the system is more than the thermal temperature

(T). In Sec. 2.2, the dielectric response function of the non-uniform quantum
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dusty magnetoplasma is derived using the QHD model. Sec. 2.3 will be devoted

to the calculation of modified SNS potential. Numerical analysis and graphical

discussion are given in Sec. 2.4.

2.2 Dielectric Response Function

We consider an infinitely extended inhomogeneous high density quantum

plasma containing electrons, ions, and charged dust grains. A homogeneous

ambient static magnetic field, B0ẑ, is taken into account. The quasineutrality

condition for plasma species satisfy the relation, ni0(x) + (qd/e)nd0(x) = ne0(x),

where nj0(x) is the equilibrium number density of the jth species (j = electrons,

ions or dust), qd is the average charge on a dust grain, and e is the electronic

charge. We are interested to analyze the screening potential of the system in

the presence of modified electrostatic perturbations including the effects of the

heavier species in the presence of strong ambient magnetic field.

The governing equations in the QHD model [28,133,134] for the electrons,

ions and charged dust grains in the presence of the ambient magnetic field B0

are

mj nj0
∂

∂t
vj = − nj0 qj∇φ + nj0

qj

c
vj ×B0 −∇ pFj +

h̄2

4mj

∇(∇2nj1), (2.1)

∂nj

∂t
+∇. (nj vj) = 0, (2.2)

where nj is the number density of species (nj = nj0 + nj1), φ(r, t) is the elec-

trostatic potential and qj, mj, h̄ and c are the charge, mass, the Planck’s con-

stant divided by 2π, and the velocity of light in a vacuum, respectively. In

Eq. (2.1), we assume that the plasma particles in a one-dimensional zero-

temperature Fermi gas satisfying the pressure law [26,29,72], pj = mjV
2
Fjn

3
j/3n

2
j0

where VFj = (2kBTFj/mj)
1/2 is the Fermi speed; kB, and TFj are the Boltzmann
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constant and Fermi temperature.

Furthermore, the Poisson’s equation satisfying the electrostatic potential φ of

the electrostatic perturbation as

∇2φ = 4πe
(
ne1 − ni1 − qd

e
nd1

)
. (2.3)

In the presence of the density inhomogeneities in the x−direction and the ambient

static magnetic field, B0 = ẑB0, we assume that the presence of drift waves

propagating in the yz-plane, proportional to exp [− i (ωt− kyy − kzz)], where

k2
y À k2

z . Here, ω and k are the angular frequency and wavenumber vector,

respectively. Using Eqs. (2.1)-(2.3), we can obtain the dielectric susceptibility

for the jth species [134,135] as

χj = −
ω2

pj

[
k2

z

ω2 +
k2

y

ω2−ω2
cj

(
1− ωcj

kyLjω

)]

k2 − k2V ′2
Fj

[
k2

z

ω2 +
k2

y

ω2−ω2
cj

(
1− ωcj

kyLjω

)] , (2.4)

where ωpj = (4πnj0q
2
j /mj)

1/2 and ωcj = qjB0/mjc are the plasma frequency and

the cyclotron frequency of the jth species. In Eq. (2.4), V ′
Fj = VFj(1 + γj)

1/2

where γj = h̄2k2/8mjTFj, Lj = nj0/n
′
j0 is the scale length of inhomogeneity and

n′j0 = −∂nj0(x)/∂x.

The general dielectric response function for the magnetized inhomogeneous

quantum dusty plasma is obtained by taking the following assumptions:

ω ≤ ω∗i,d ¿ ωci , ωcd , k2
y À k2

z ,

kV ′
Fe À ω À kV ′

F i,d . (2.5)

Therefore

ε(ω,k) = 1 + χe(ω,k) + χi(ω,k) + χd(ω,k), (2.6)

or

ε(ω,k) = 1 +
ω2

pe

k2
yV

′2
Fe

+
k2

y

k2

ω2
pi

ω2
ci

− k2
z

k2

ω2
pi

ω′2
− ω∗i

ω′
+

k2
y

k2

ω2
pd

ω2
cd

− k2
z

k2

ω2
pd

ω′2
− ω∗d

ω′
, (2.7)
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where ω∗i = ω2
pi/kyLiωci is the ion-drift frequency, ω∗d = ω2

pd/kyLdωcd is the dust-

drift frequency and ω′ = ω − kyu0 stands for the Doppler shifted frequency both

for ion and dust dynamics. The density inhomogeneity along the x−direction

generates an electric field Ex̂ which in turn produces E × B0 drift u0 in the

y−direction. This drift speed u0 = c E/B0 is same for ion and dust species

because it does not depend upon mass and charge. Here, the quantum mechanical

effect for ions and dust grains is neglected due to their heavier masses, but is

retained through the dynamics of electrons. Note that both ions and dust are

taken as cold, inhomogeneous, and magnetized. Usually dust species is taken as

cold and unmagnetized, but in the presence of strong magnetic field it can be

taken as magnetized. Equation (2.7) can be written as

ε(ω,k) =
1

k2

[
k2
‖ + k2

⊥(1 + fi + fd) + k′2Fe

(
1 +

u0M
−2
Fs

Liωci

+
u0M

−2
Fd

Ldωcd

)]
, (2.8)

where Li and Ld are the scale length of inhomogeneities for ion and dust particles,

fi = ω2
pi/ω

2
ci, fd = ω2

pd/ω
2
cd, MFs,d = u0/CFs,d , k′Fe = 1/λ′Fe, and λ′Fe = V ′

Fe/ωpe.

Note that CFs and CFd are the ion-acoustic and dust-acoustic velocities at elec-

tron Fermi temperature, respectively. In obtaining Equation (2.8), we have con-

sidered low frequency waves assuming ω′ ' −kyu0 and k2
y À k2

z .

2.3 Modified Screening Potential

Now, the standard formula of electrostatic potential [101,136] around a test

charge in the presence of electrostatic mode (ω,k) is given in the Eq. (1.5).

Substituting Eq. (2.8) into Eq. (1.5), and using the cylindrical coordinates

[133,134], we may obtain the potential due to the test charge as

Φ(ρ, ξ) =
qt

π

∫ J0(k⊥ρ) eik‖ξ k⊥ dk⊥ dk‖

k2
‖ + k2

⊥(1 + fi + fd) + k′2Fe

(
1 +

u0M−2
Fs

Liωci
+

u0M−2
Fd

Ldωcd

) . (2.9)

In obtaining Equation (2.9), we have evaluated ω - and θ - integrations. Now

taking V 2
Fe À (h̄2k4/4m2

e) for long wavelengths and after performing the k‖− and
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k⊥−integrations [133,134], we get

Φ(ρ, ξ) =
qt√

1 + fi + fd

exp [−
√

ρ2 + ξ2(1 + fi + fd) / L′s]√
ρ2 + ξ2(1 + fi + fd)

, (2.10)

where

L′s = λFe

√
1 + fi + fd/

√
1 + C2

Fs/u0Liωci + C2
Fd/u0Ldωcd. (2.11)

Using the quasi-neutrality condition, the length L′s can be re-written as

L′s = λFe

√
1 + fi + fd/

√√√√1− 1

u0

ω2
pe

ωce

λ2
Fe

|Le| . (2.12)

If the inhomogeneity of the dust species is neglected and consider the dust as

unmagnetized, thus our findings resemble with the result of Ref. [134]. However,

in Ref. [134], the gradient of the magnetic field is presented, while it is absent

here. We have taken this simpler choice because a static magnetic field is usually

considered to confine the astrophysical and laboratory plasmas. But the purpose

of this chapter is to explore the SNS potential in a very high magnetic field

environment. Therefore by taking the assumption fi ¿ fd, we can write Eq.

(2.10) as

Φ(ρ, ξ) =
qt√

1 + fd

exp [−
√

ρ2 + ξ2(1 + fd) / L′′s ]√
ρ2 + ξ2(1 + fd)

, (2.13)

with

L′′s = λFe

√
1 + fd/

√√√√1− 1

u0

ω2
pe

ωce

λ2
Fe

|Le| . (2.14)

The quantum effect in Eq. (2.13) is represented by the Fermi statistical effect.

From Eqs. (2.13) and (2.14), we notice that the modified Debye shielding is

a sensitive function of the scale length of inhomogeneity |Le|, drift speed u0,

dimensionless parameter fd, and ambient magnetic field B0. The amplitude of

the potential is reduced by the factor
√

1 + fd, however the effective length L′′s =

λFe

√
1 + fd is increased by this factor when the particle moves in the z−direction.

For a homogeneous strongly magnetized quantum plasma (Le →∞), Eq. (2.13)



32

can be written as

Φ(ρ, ξ) =
qt√

1 + fd

exp [−
√

ρ2 + ξ2(1 + fd) / L′′s ]√
ρ2 + ξ2(1 + fd)

, (2.15)

where L′′s = λFe

√
1 + fd. Note that the usual SNS potential is modified by

the contribution of the dust polarization drift effect. So, in the dusty plasma

environment of astrophysical objects, which have very high magnetic field, the

ion polarization drift effect is much less than the dust polarization drift effect

(fi ¿ fd). The same effect is achieved under the condition ω2
peλ

2
Fe ¿ u0ωceLe.

For ω2
peλ

2
Fe À u0ωceLe, with positive density gradient, the Debye shielding is lost

and the plasma does not behave as plasma. However, if we take negative density

gradient for ω2
peλ

2
Fe À u0ωceLe, then the shielding can exist and the effective

length L′′s in Eq. (2.14) reduces to

L′′s ' λFe

√
1 + fd/

√
1

u0

ω2
pe

ωce

λ2
Fe

Le

' λFe

√
1 + fd

√
MFsLeωci

CF s
. (2.16)

Here, we notice that L′′s increases by the factor ”MFsLeωci”. It is important to

mention here that the scale length of the inhomogeneity can be either positive

or negative depending upon the density gradient.

2.4 Numerical and graphical representations

To better understand the behavior of the potential of a test charge particle

in a quantum dusty plasma, we have numerically solved Eq. (2.13). We choose

some parameters for high density quantum plasmas like white dwarf, neutron

stars [125,137]: ne0 ≈ ni0 = 1027 cm−3, TFe ≈ 107K, B0 = 108G and plotted the

potential for fi = ω2
pi/ω

2
ci and fd = ω2

pd/ω
2
cd. The results of our calculations are

depicted in the form of curves in Figs. 1-3. Figs. 1-3 show the normalized SNS

potential as a function of ρ′ and ξ′ in the presence of the static magnetic field.

Here, the quantum effect arises through the Fermi temperature only. Fig. 1 shows
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the normalized potential as a function of ξ′ with ρ′ = 0 for M = 0.005, fi ≈ 10

and fd ≈ 103.

Fig. 1 clearly shows that normalized SNS potential decreases in dusty plasma

as compared to SNS potential in electron-ion plasma. It is also observed here,

that potential is rapidly decaying with the contribution of dust polarization drift

effect fd = ω2
pd/ω

2
cd. Because the ion polarization drift effect is much less than

the dust polarization drift effect (fi ¿ fd), this is due to the ion gyrofrequency

which is much larger than the dust gyrofrequency, ωci À ωcd and polarization

drift effect depends directly on the mass. To compare the SNS screening potential

with other potentials, for example, almost spherically symmetric Debye-Hückle

potential, SNS screening potential is asymmetric in the direction perpendicular

to ẑB0. It is also mentioned here SNS potential decreases as compared to Debye-

Hückle potential due to the presence of ion polarization drift effect fi = ω2
pi/ω

2
ci.

When effects of shielding are negligible and charge q must give rise to the usual

Coulomb potential φ(r) ≈ 1/r.

Fig. 2 shows the normalized SNS potential in quantum dusty magnetoplasma

at the different values of the number density ne0. It is observed here, potential de-

creases with the increase of number density e.g. ne0 = 1027cm−3, ne0 = 1028cm−3

and ne0 = 1029cm−3 in quantum dusty magnetoplasma. For higher densities of

plasma particles shielding length of the potential is decreased and potential falls

much faster in quantum plasmas.

Fig. 3 shows the normalized SNS potential with the effect of inhomogeneity

scale length Le. If we consider the inhomogeneity in our chosen plasma system,

potential increases. When we plot the potential at different values of inhomo-

geneity scale length Le = 4cm, Le = 6cm and Le = 8cm, the SNS potential

decreases with the increase of Le. These values of inhomogeneity scale length are

estimated in comparison of the Fermi Debye length of the plasma and the other

parameters ne0, B0 and M when the effect of inhomogeneity is considered to ex-
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ist the SNS potential [c.f. Eq. 2.14]. The inhomogeneity scale length should be

greater than the Fermi Debye length. If inhomogeneity scale length approaches

to infinity (Le → ∞) then plasma system will be homogeneous and we will get

usual SNS potential.
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Figure Captions

Fig. 1: The variation of the normalized SNS potential Φ′(ρ′, ξ′) for fi =

ω2
pi/ω

2
ci and fd = ω2

pd/ω
2
cd. Dotted line corresponds to fi = 10, dashed line for

both fi = 10 and fd = 103 and solid line for fd = 103. Other parameters are

ne0 ≈ ni0 = 1027 cm−3, TFe ≈ 107K, B0 = 108G.

Fig. 2: The variation of the normalized SNS potential Φ′(ρ′, ξ′) for different

values of the number density, ne0 with the presence of fd. Dotted line corresponds

to ne0 = 1027cm−3, dashed line for ne0 = 1028cm−3 and ne0 = 1029cm−3 for solid

line and other parameters as in Fig. 1.

Fig. 3: The variation of the normalized SNS potential Φ′(ρ′, ξ′) with

different values of inhomogeneity scale length Le. Dotted line corresponds to

Le = 4 cm, dashed line for Le = 6 cm and Le = 8 cm for solid line and other

parameters are same as in Fig. 1.



Chapter 3

Potentials in a nonuniform quantum dusty
magnetoplasma
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3.1 Introduction

The fundamental property of a plasma is the Debye-Hückel potential [115]

which is the reduced potential of a static test charged particle in the plasma.

Later, the potential distribution of a slowly moving test charge was pursued

by others [138-140]. The concept of an oscillatory wake-field potential in an

electron-ion plasma was first introduced by Nambu and Akama [101]. They

explained the attraction among the same charged electrons in terms of the wake

potential generated due to the resonant interaction of the electrons and the ion-

acoustic wave. This idea was extended to dusty plasmas by Nambu et al. [102] to

explain the dust-crystal formation in the laboratory [141]. In all these studies, the

plasma was assumed to be homogeneous and quantum mechanical effects were

neglected at higher density. Recently, the Debye-Hückel and wake potentials

have been studied in homogeneous and unmagnetized quantum plasmas [129-

131]. However, in most of the laboratory situations of plasma experiments and

space and astrophysical systems, plasmas involved will be nonuniform in nature.

Also, the ambient magnetic field in space systems or the applied magnetic field

in the laboratory plasmas may be inhomogeneous with uniform gradient.

Moreover, in recent years, there has been a growing enthusiasm in quantum

plasmas because of their importance in microelectronics and electronic devices

with nano-electronic components [29,51], dense astrophysical systems [45,121,122],

and in laser-produced plasmas [44,142-144]. When a plasma is cooled to an ex-

tremely low temperature, the de Broglie wavelengths of the plasma particles

could be at least comparable to the scale lengths, such as Debye length or Lar-

mor radius, etc. in the system. In such systems, the ultracold dense plasma

would behave as a Fermi gas and quantum mechanical effects might play a vital

role in the behavior of the charge carriers of these plasmas under extreme condi-
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tions. Recently, Shukla and Eliasson [131] have studied the screening and wake

potentials of a test charge in a homogeneous and unmagnetized quantum plasma.

They considered the quantum effect through the Bohm potential only, which is

valid for a relatively low-density quantum plasma and a short wavelength per-

turbation. For high-density quantum plasmas and relatively longer wavelength,

the Fermi degenerate pressure will dominate over the Bohm potential term in the

equation of motion.

We can visualize that the density and static ambient magnetic field in a

quantum dusty magnetoplasma can be nonuniform with finite scale lengths. The

density inhomogeneity causes the presence of very low-frequency drift waves due

to diamagnetic drifts and the magnetic field inhomogeneity causes a uniform

stream of ions.

In this chapter, we study the potential distributions around a slowly mov-

ing or static test charge in a dense quantum dusty plasma in the presence of a

nonuniform density and nonuniform magnetic field with uniform gradients in the

same direction (x-axis). In Sec. 3.2, we derive the dielectric response function

of the nonuniform quantum dusty magnetoplasma using the quantum hydrody-

namic model of plasmas (QHD). Then, using the test particle model, we obtain

the modified Shukla-Nambu-Salimullah (SNS) and the wake potential in Sec. 3.3.

Numerical results and graphical representations are given in Sec. 3.4.

3.2 Quantum Dielectric Response Function

We consider an infinitely extended inhomogeneous high-density dusty magneto-

plasma containing electrons, ions and charged dust grains in the presence of an in-

homogeneous static ambient magnetic field B0(x) ‖ ẑ. At equilibrium, we assume

that the charge quasineutrality condition is satisfied, that is ni0+(qd/e)nd0 = ne0,

where nj0(x) is the equilibrium number density of the jth species (j = electrons,

ions or dust), qd is the average charge on a dust grain, and e is the electronic
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charge.

The governing equations in the quantum hydrodynamic model [28,72,145-147]

for the electrons, ions and charged dust grains (j = e, i, d) in the presence of the

ambient magnetic field B0 are given in Eqs. (2.1)-(2.3) and in the presence of

the density inhomogeneities in the x-direction and the ambient magnetic field,

B0 = ẑ B0(x), we assume the presence of drift waves propagating in the YZ-

plane, proportional to exp [− i (ωt− kyy − kzz)] where k2
y À k2

z . Here, ω and

k are the angular frequency and wavenumber vector, respectively. Using Eqs.

(2.1-2.3) and after some straight-forward calculations, we obtain the dielectric

susceptibility for the jth species where j = e, i, d as

χj = −
ω2

pj

[
k2

z

ω2 +
k2

y

ω2−ω2
cj

(
1− ωcj

kyLjω

)]

k2 − k2V ′2
Fj

[
k2

z

ω2 +
k2

y

ω2−ω2
cj

(
1− ωcj

kyLjω

)] , (3.1)

where ωpj = (4πnj0q
2
j /mj)

1/2 and ωcj = qjB0/mjc are the plasma frequency and

the cyclotron frequency of the jth species. In Eq. (3.1), V ′
Fj = VFj(1 + γj)

1/2

where γj = h̄2k2/8mjTFj and the scale length of inhomogeneity Lj = nj0/n
′
j0

where n′j0 = −∂nj0(x)/∂x. ω′ = ω − kyV0 is the Doppler shifted frequency for

ions. We use Eq. (3.1) to find the general dielectric response function of the

nonuniform quantum dusty magnetized plasma under various possible conditions

from

ε(ω,k) = 1 + χe(ω,k) + χi(ω,k) + χd(ω,k). (3.2)

3.3 Modified SNS and Wake Potentials

To study the screening and dynamical potentials in a nonuniform quantum dusty

plasma in the presence of a static ambient magnetic field with a gradient, we as-

sume
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ω ≤ ω∗i ¿ ωci, k2
y À k2

z ,

kzV
′
Fe À ω À kzV

′
Fi, (3.3)

where ω∗i = ω2
pi/kyLi ωci is the ion-drift frequency. Then, using assumptions, Eqs.

(3.3), the dielectric response function is obtained from Eqs. (3.1) and (3.2)

ε(ω,k) ' 1 +
ω2

pe

k2
yV

′2
Fe

+ fi − ω∗i
ω
− ω2

pd

ω2
, (3.4)

where, fi = ω2
pi/ω

2
ci. Here, the quantum mechanical effect is taken through the

motion of electrons, which is neglected for ions and dust grains because of their

heavier masses.

On account of the density inhomogeneities, the electrons and ions acquire

diamagnetic drift frequencies. However, because of the inhomogeneity of the am-

bient static magnetic field in the dusty plasma with a gradient in the x-direction,

ions can have an additional drift velocity [148]

V0 = − c ∂B0(x)/∂x

4πqd0nd0

ŷ. (3.5)

In the presence of the density nonuniformity and the continuous ion streaming

because of the magnetic field nonuniformity, the dielectric function can be written

as

ε(ω,k) = 1 +
ω2

pe

k2
yV

′ 2
Fe

+ fi − ω∗i
ω − kyV0

− ω2
pd

ω2
. (3.6)

Since the above dielectric function involves an extremely low-frequency and

low-phase velocity mode involving the dust dynamics, we can assume V0 > ω/ky

and Eq. (3.6) reduces to

ε(ω,k) ' F − ω2
pd

ω2
, (3.7)

where

F = 1 +
1

k2λ′2Fe

+
k2
⊥

k2
fi −

ω2
pi

k2V0|Li|ωci

, (3.8)

and |Li| = |ni0(x)/(∂ni0(x)/∂x)| .
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Taking 1/k2λ′2Fe ¿ fi − ω∗i /(ω − kyV0), the dust-lower-hybrid drift wave dis-

persion relation is given by

ω2 = ω2
dlh/

(
1− ωci

k2V0|Li|

)
. (3.9)

The inverse of the dielectric response function associated with the dust-lower-

hybrid drift wave is
1

ε(ω,k)
=

1

F

(
1 +

ω2
k

ω2 − ω2
k

)
, (3.10)

where

ω2
k = ω2

pd/F. (3.11)

The electrostatic potential around a test charge particulate [101,136] in the

presence of the electrostatic mode (ω,k) in a magnetized dusty plasma whose

response function is given by ε(ω,k), Eq. (3.6), is given by Eq. (1.5).

Substituting Eq. (3.10) into the standard formula of electrostatic potential

Eq. (1.5), we obtain the total potential as Φ = Φc + Φw where the Coulombian

potential is given by substituting first part of Eq. (3.10)

Φc(x) =
qt

π

∫ J0(k⊥ ρ) exp(ik‖z)k⊥ dk⊥ dk‖

k2
‖ + (1 + fi)k2

⊥ +
ω2

pe

V 2
Fe+h̄2k2

⊥/4 m2
e
− ω2

pi

V0|Li| ωci

, (3.12)

where J0 is the zero-order Bessel function of the first kind with argument k⊥ρ. We

note that the quantum effect in Eq. (3.12) arises through the Fermi degenerate

pressure as well as the Bohm potential effect. For a sufficiently high-density

quantum plasma, the Bohm potential effect can be small at relatively small k⊥,

i.e. longer wavelength waves (λ2
Fe À h̄2k2

⊥/4m2
eω

2
pe). Then, the Eq. (3.12)

reduces to

Φc(ρ, z) =
qt

π

∫ J0(k⊥ ρ) exp(ik‖z)k⊥ dk⊥ dk‖
k2
‖ + (1 + fi)k2

⊥ + k2
Fe(1− V0M−2/|Li| ωci)

, (3.13)

where kFe = 1/λFe = ωpe/VFe, M = V0/CFs and CFs = ωpiλFe

Following Ref. [111,116], the Coulombian part of the electrostatic potential

is given by

Φc(ρ, z) =
qt√

1 + fi

exp[−
√

ρ2 + z2(1 + fi)/Ls]√
ρ2 + z2(1 + fi)

, (3.14)



45

where

Ls =
λFe

√
1 + fi√

1− C2
Fs/V0|Li| ωci

. (3.15)

For C2
Fs ¿ V0|Li| ωci, the modified shielding potential reduces to the usual

SNS potential [111,116] which is elongated in the direction perpendicular to the

magnetic field. The plasma inhomogeneity effect, the ion streaming due to the

ambient magnetic field inhomogeneity and the ambient magnetic field have the

significant effects on the shielding potential. For C2
Fs À V0|Li| ωci, Ls becomes

imaginary and the shielding is lost. Hence, there is a drastic modification of the

shielding potential when C2
Fs ≤ V0|Li| ωci.

Substituting the second part of Eq. (3.10) in Eq. (1.5), we obtain the dy-

namical potential as

Φw(x, t) =
qt

π

∫ δ(ω − k.vt)J0(k⊥ρ) exp(i k‖z) k⊥ω2
pd dk⊥ dk‖

(ω2 − k2
⊥ω2

pd) F
. (3.16)

For a slowly moving test charge (k · vt ≈ 0), time-independent wake potential

reduces to

Φw(ρ, z) = − qt

π

∫ J0(k⊥ ρ) exp(ik‖z) k⊥ dk⊥ dk‖

k2
‖ + (1 + fi)k2

⊥ +
ω2

pe

V 2
Fe+h̄2k2

⊥/4 m2
e
− ω2

pi

V0|Li| ωci

. (3.17)

Taking V 2
Fe À h̄2 k2

⊥/4 m2
e and following the standard technique [106]

Φw(ρ = 0, z) =

(
qt

(1 + fi)z

)
. sin

(
z

Lw

)
, (3.18)

where the effective length of the wake potential is given by

Lw =
1√

ω2
pi

V0|Li| ωci
− 1

λ2
Fe

,

=
λFe√

V0 M−2/|Li| ωci − 1
,

Lw =
λFe√

ρFs/M |Li| − 1
, (3.19)

where ρFs = CFs/ωci.

The wake potential exists for V0M−2 > |Li|ωci , that is for CFs >
√

V0|Li| ωci . In
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the other limit CFs <
√

V0|Li| ωci , the wake potential does not become effective.

Under this condition, the total potential reduces to the SNS potential. However,

the wake potential shows a drastic modification when CFs '
√

V0|Li| ωci.

On inspection of Eqs. (3.14) and (3.18), we notice that for C2
Fs ¿ V0|Li| ωci,

one retrieves the SNS potential of a homogeneous plasma (|Li| ∼= ∞). However,

for C2
Fs À V0|Li|ωci, the dynamical oscillating wake potential becomes operative

for distances greater than the modified shielding length.

3.4 Numerical results and graphical representa-

tions

To have some numerical appreciation of the potential around a slowly moving

or static test charge in a dense nonuniform quantum dusty magnetoplasma, we

have plotted the the modified Shukla-Nambu-Salimullah (SNS) Eq. (3.14) and

the wake potential Eq. (3.18) for the following set of parameters for high density

quantum plasmas like white dwarf, neutron stars [125,137]: ne0 ≈ ni0 = 1027

cm−3, TFe ≈ 107K, B0 = 108G and plotted the potential for fi = ω2
pi/ω

2
ci. The

results of our calculations are depicted in the form of curves in the Figs. 1-4.

Fig. 1 shows the normalized SNS potential as a function of ξ′ with ρ′ = 0 and

Figs. 2-4 show the normalized wake potential as a function of ξ′ with ρ′ = 0

in the presence of nonuniform density and nonuniform magnetic field. Here, the

quantum effect arises through the Fermi temperature only.

Figure 1 shows the effect of magnetic field on the normalized SNS potential

Φ′ via different values of fi = ω2
pi/ω

2
ci and M ≤ 1. It follows that normalized SNS

potential decreases with the increasing value of fi = 10, fi = 50, and fi = 100.

For relatively smaller value of magnetic field, fi is large then potential decreases

in the parallel direction to the external magnetic field.

Figure 2 shows the effect of magnetic field on the normalized wake potential

Φ′ via different values of fi = ω2
pi/ω

2
ci. From the dotted, dashed and solid curves,
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we notice that the amplitude of the oscillatory wake potential decreases with

increasing value of fi.

Figures 3 illustrates the variation of the normalized wake potential, Φ′ as a

function of the number density, ne0. It is evident from Fig. 2 that the amplitude

of the oscillatory wake potential decreases with the increase of number density

e.g. ne0 = 1027cm−3, ne0 = 5× 1027cm−3 and ne0 = 1028cm−3 in quantum dusty

magnetoplasma. For higher densities of plasma particles effective length of the

oscillatory wake potential is decreased in quantum plasmas. This oscillatory wake

potential has maxima or minima in plasma BEYOND the Debye potential. These

positive or negative places will attract Dust particles or clusters of particles giving

rise to a quasi lattice in the plasma, called the plasma crystals. So, the effective

length is the lattice spacing of the plasma crystals. Therefore, this long-range

potential is responsible for the formation of new ordered structures of particles

in plasmas.

Figure 4 shows the behavior of Φ′ with the effect of inhomogeneity scale length

Li. When we plot the potential at different values of inhomogeneity scale length,

the amplitude of the oscillating wake potential decreases with the increase of

Li. If inhomogeneity scale length approaches to infinity (Li → ∞) then plasma

system will be homogeneous.
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Figure Captions

Fig. 1: The variation of the normalized SNS potential Φ′(ρ′, ξ′) for different

values of fi = ω2
pi/ω

2
ci. Dotted line corresponds to fi = 10, dashed line for fi = 50

and fi = 100 for the solid line. Other parameters are ne0 ≈ ni0 = 1027 cm−3,

TFe ≈ 107K, B0 = 108G.

Fig. 2: The variation of the normalized wake potential Φ′(ρ′, ξ′) for dif-

ferent values of fi = ω2
pi/ω

2
ci. Dotted line corresponds to fi = 10, dashed line for

fi = 50 and fi = 100 for the solid line. Here, other parameters are same as in

Fig. 1.

Fig. 3: The variation of the normalized wake potential Φ′(ρ′, ξ′) for differ-

ent values of the number density, ne0. Dotted line corresponds to ne0 = 1027cm−3,

dashed line for ne0 = 5 × 1027cm−3 and ne0 = 1028cm−3 for solid line and other

parameters as in Fig. 1.

Fig. 4: The variation of the normalized wake potential Φ′(ρ′, ξ′) with

different values of inhomogeneity scale length Li. Dotted line corresponds to

Li = 1.5 cm, dashed line for Li = 2.5 cm and Li = 3.5 cm for solid line and other

parameters are same as in Fig. 1.



Chapter 4

Dust-lower-hybrid waves in quantum plasmas
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4.1 Introduction

There has been a considerable interest on the quantum mechanical effects

in some specific areas of plasma physics, viz. microelectronics [29,51], dense

astrophysical systems [45,121,122], and in laser-produced plasmas [142]. When

a plasma is cooled to an extremely low temperature, the de Broglie wavelengths

of the plasma particles could be comparable to the dimensions of the systems.

In such plasmas, the ultracold dense plasma would behave as a Fermi gas and

quantum mechanical effects might play a vital role in the behavior of the charge

carriers of these plasmas under these extreme conditions. In microelectronics and

very large integrated circuit fabrications, the systems may develop contaminants

due to etching, implantations, etc. which might lead to new properties. The laser-

produced plasmas and plasmas in high density astrophysical objects may also be

contaminated by a number of reasons. Thus, these ultracold plasma systems

may behave as dusty plasmas [31,125,128,149] where quantum mechanical effects

could lead to new properties of these systems.

A number of fundamental new modes, particularly the dust-lower-hybrid

(DLH) wave, have been shown to exist in plasmas which occur invariably in the

presence of magnetic fields. In electron-ion plasma, if the wave vector have small

parallel component, the electron oscillate along the magnetic field, leading to

the dispersion relation for the lower hybrid wave ω = ωlh[1 + (M/m)(k2
‖/k

2
⊥)]1/2,

where ωlh = ωpi/[1+ (ω2
pe/ω

2
ce)]

1/2. In dusty plasma, including the dust dynamics

and assuming ω2
pi À ω2

ci for a high-density plasma, the electrostatic dust-lower-

hybrid wave frequency turns out to be ω2 = ω2
dlh[1 + (k2

‖/k
2)(ω2

pe/ω
2
pd)] where

ωdlh = ωpdωci/ωpi is the DLH frequency. Waves and instabilities play a vital role

in these ultracold and superdense plasma systems, particularly in diagnostics of

charged grain impurities in microelectronics. Recently, using the magnetohy-
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drodynamic model for the magnetized quantum plasmas developed by Haas [28]

and others, Shukla et al. [150] have studied the nonlinear interactions in quan-

tum magnetoplasmas including the usual high-frequency (ω ' √
ωce ωci) elec-

trostatic lower-hybrid wave where electrons are assumed magnetized and ions

unmagnetized. We present here the quantum effects on the low-frequency dust-

lower-hybrid waves below the ion-cyclotron frequency, where dust dynamics plays

the vital role. Shukla and Ali [149] have also studied the modification of dust-

acoustic waves in unmagnetized dusty quantum plasmas. Haas et al. [29] studied

the linear ion-acoustic wave in an unmagnetized quantum plasma at these super

conditions. The counterpart of dust-acoustic wave in a magnetized dusty plasma

involving the dust dynamics is the existence of the dust-lower-hybrid (DLH) mode

which was pointed out in the literature [151-153]. In this chapter, we investigate

the modification of the DLH wave in a quantum plasma in the presence of a

uniform external magnetic field. In Sec. 4.2, we derive the dispersion relation

of the modified quantum dust-lower-hybrid wave in dusty magnetoplasma using

the quantum hydrodynamic model of plasmas (QHD). Then numerical analysis

and graphical representations is given in Sec. 4.3.

4.2 Modified quantum dust-lower-hybrid wave

We consider a collisionless supercooled and dense dusty plasma consisting of

electrons, ions, and relatively highly charged and massive dust particles in the

presence of a uniform external magnetic field, (B0 ‖ ẑ). We assume that the

electrons possess significant quantum mechanical effects. However, we neglect

the quantum effects on ions and dust dynamics because of the high mass which

gives rise to an insignificant de Broglie wavelength.

The governing equations Eq. (2.1) and Eq. (2.2), for quantum hydrodynamic

model in the presence of external magnetic field B0 are used to calculate the
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dynamics of electrons, ions and dust particulates in dusty plasma. Following the

standard techniques [151-153,154], the dielectric susceptibility of the plasma can

be obtained by solving Eqs. (2.1) and (2.2) to obtain

χj =
k2
⊥

k2

ω2
pjF

′
j

ω2
cj − ω2 F ′ 2

j

− k2
‖

k2

ω2
pj

ω2

1

F ′
j

, (4.1)

where the quantum correction factor is given by

F ′
j = 1− k2 V ′ 2

Fj

ω2
= 1− k2 V 2

Fj

ω2
− h̄2 k4

4m2
jω

2
. (4.2)

Let us consider a supercooled Fermi dusty plasma where electrons are con-

sidered hot at the Fermi temperature with Bohm potential effect, ions are cold,

magnetized and non quantum. Then

χe =
1

k2λ′ 2Fe

, (4.3)

χi =
k2
⊥

k2

ω2
pi

ω2
ci

− k2
‖

k2

ω2
pi

ω2
, (4.4)

where λ′Fe = V ′
Fe/ωpe is the Debye length of electrons at the Fermi temperature,

TFe. Here, we have assumed the low-frequency electrostatic wave of the dusty

magnetoplasma with ω2 ¿ ω2
ci and ω2 ¿ k2V ′ 2

Fe .

The susceptibility for the unmagnetized and cold dust particles is obtained

as

χd = − ω2
pd

ω2
, (4.5)

where the dust plasma frequency, ωpd = (4πq2
d nd0/md)

1/2 and the symbol d refers

to dust grains.

Substituting the density perturbations, ns = − χsk
2φ/4 π qs with s = e, i, d

in the Poisson’s equation, one can easily obtain the dispersion relation for the

dust-lower-hybrid mode from [151-153]

ε(ω,k) = 1 + χe + χi + χd = 0, (4.6)
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Taking k2
⊥ À k2

‖ to take into account the maximum effect of the external

magnetic field and ω2
pi À ω2

ci for a high-density plasma, we write the dielec-

tric function of the quantum dusty plasma under consideration with quantum

correction as

ε(ω,k) = 1 +
1

k2λ′ 2Fe

+
k2
⊥

k2

ω2
pi

ω2
ci

− k2
‖

k2

ω2
pi

ω2
− ω2

pd

ω2
, (4.7)

For ω2
pi/ω

2
ci À 1/k2λ′ 2Fe À 1, we finally obtain the dispersion relation of the

dust-lower-hybrid wave with quantum correction as

ω2 = ω2
dlh

(
1 +

k2
‖

k2

ω2
pi

ω2
pd

) (
1− 1

k2
⊥ρ′ 2Fs

)
, (4.8)

where ωdlh = ωpdωci/ωpi is the DLH frequency, and

ρ′ 2Fs =
C ′ 2

Fs

ω2
ci

,

C ′ 2
Fs = ω2

piλ
′ 2
Fe,

λ′ 2Fe =
V 2

Fe (1 + γe)

ω2
pe

,

γe =
h̄2k2

8me kB TFe

.

Here, ρFs is the ion Larmor radius at the electron Fermi temperature with

quantum correction γe = h̄2k2

8me kB TFe
. Equation (4.8) is the main result of this

paper. The DLH wave is seen to be significantly modified by quantum effect.

The dispersion relation for the DLH wave in the magnetized Fermi dusty plasma

is given by Eq. (4.8) where the electrons at the Fermi temperature drive the

wave.

4.3 Numerical analysis and discussion

We now proceed with the presentation of our numerical results of nearly

perpendicular quantum dust-lower-hybrid wave Eq. (4.8) ω as a function of
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various parameters of interest in a quantum dusty magnetoplasmas. Our plasma

model is inspired by high density quantum plasmas. Thus, we apply our results

to astrophysical quantum plasmas like environment of white dwarf [125,137]:

ne0 ≈ ni0 = 1027 cm−3, TFe ≈ 107K, B0 = 107G and θ = π/10. Here, the

quantum effect arises through the Fermi temperature and Bohm potential.

Figure 1 shows the variation of ω as a function of wavenumber k. It follows

that frequency of the quantum dust-lower-hybrid wave increases with the increase

of k.

Figure 2 illustrates the variation of ω as a function of propagation angle θ.

It is evident from Fig. 2 that frequency of the quantum dust-lower-hybrid wave

increases at small angle of propagation. Here we consider nearly perpendicular

propagation of the quantum dust-lower-hybrid wave.

Finally we examine the variation of ω as a function of external magnetic field

B0 as depicted in Fig. 3. It is seen that frequency of the quantum dust-lower-

hybrid wave increases with the increase of the magnetic field.
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Figure Captions

Fig. 1: The variation of ω as a function of the wavenumber k for the

following parameters in a high density astrophysical quantum plasmas like white

dwarf: ne0 ≈ ni0 = 1027 cm−3, TFe ≈ 107K, B0 ≈ 108G, k = (3× 103− 104) cm−1

and θ = π/10 .

Fig. 2: The variation of ω as a function of the propagating angle θ for

k = 8× 103cm−1 and the other parameters are same as in Fig. 1.

Fig. 3: The variation of ω as a function of the magnetic field B0 for

k = 8× 103cm−1 and other parameters are same as in Fig. 1.



Chapter 5

Summary of the Thesis
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5.1 Summary and Conclusion

This chapter summarizes the results of the whole work in this thesis and

conclusions drawn from them.

Modern technological advancement demands miniaturization of electronic de-

vices. In such (nano-scale) devices quantum effects play a significant role. The

study of quantum effects in plasmas therefore becomes important and indeed

helps to understand a number of phenomena. Quantum mechanical effects in

plasmas enable us to overcome some very important issues like resonance tun-

neling in semiconductor diodes. Further, the dense astrophysical objects like

neutron stars and white dwarfs, can also be studies as a quantum plasma. In the

introductory chapter of this thesis, the quantum plasma, its properties and its

potential applications have briefly described.

The shielding of a test charge particle is an intrinsic property of the plasma,

a test charge may be plasma species inside or injected from the outside. This

is expressed as Debye potential or Debye-Hückel potential. This electrostatic

potential of the test charge does not fall like in vacuum, as 1/r, but rather obeys

a Yukawa-like potential exp(−r/λD)/r, which decays much more quickly and on

a distance of the order of Debye length. In quantum plasmas, this Debye length

decreases to many orders as compare to classical plasma. But, if a test charge

propagates through a plasma (as a boat in a river or a bullet in the air), then an

additional wake-field potential is formed behind the test charge. This wake-field

is an oscillatory in nature containing both the positive and negative potential

regions. In quantum Plasmas, these positive and negative potential regions give

the modification in the effective length of the wake potential that is the lattice

spacing of the plasma crystals.

This thesis presents new features of the electrostatic potential containing the
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shielding and wake potentials by using linear dielectric theory in a quantum dusty

magnetoplasmas. Chapter 2 described the Shukla-Nambu-Salimullah SNS poten-

tial in a nonuniform quantum magnetoplasma using test particle approach. The

QHD equations have been employed in the presence of static ambient magnetic

field to study a system composed of electrons, ions, and dust. The general ex-

pression for the dielectric response function has been derived. The inhomogeneity

of the number density and the quantum effect are taken into account to study

dense magnetoplasma environments in the presence of dust grains. The major

issue addressed here is the contribution of dust polarization drift effect in a high

magnetic field environment, like white dwarf, atmosphere of neutron stars. We

applied our theoretical results to high density quantum plasma. From numerical

analysis, it is found that the dust polarization drift effect significantly modifies

the usual SNS potential. It turns out that the presence of dust polarization drift

overpowers the ion polarization drift in very high magnetic field regions. So, in a

very dense environment having dust and strong magnetic field, the dust polariza-

tion drift effect must be taken into account. Furthermore, we have seen that for

increasing values of number density and inhomogeneity scale length, the modi-

fied SNS potential decreased due to the decrease in the Fermi Debye length. Our

results may help to study the energy loss phenomenon due to particle-particle

and wave-particle interactions in the dense strongly magnetized plasma systems.

The present investigation may also help to study the insight features of dusty

magnetoplasma environments of astrophysical objects and space plasmas as well.

In chapter 3, we consider the shielding and dynamical wake potentials around

a static or a slowly moving test charge in a nonuniform quantum dusty magne-

toplasma. Both the short-range SNS and long-range wake potential around the

slowly moving test charge significantly depend on the density and static mag-

netic field inhomogeneities. The quantum hydrodynamic model has been used to

find the particle dynamics under appropriate conditions. The quantum plasma
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is assumed having inhomogeneities in the density and static magnetic field in the

same direction transverse to the direction of the magnetic field. The nonuniform

static magnetic field gives rise to a uniform ion streaming. The density inhomo-

geneity causes modification of the plasma dielectric response function. We find

that the uniform ion streaming due to the gradient in the static magnetic field,

the scale-length of density inhomogeneity of ions, the magnitude of the static

magnetic field, and the quantum effect on electrons due to degenerate pressure,

cause a significant modification of the shielding and the oscillatory wake po-

tentials. From numerical and graphical representation, it is seen that SNS and

oscillatory wake potentials increases with the increase of external magnetic field.

Furthermore, we have found that wake potential is modified by higher values of

number density of plasma particles and scale length of inhomogeneity. For in-

creasing values of number density and inhomogeneity scale length, the amplitude

and the effective length of wake potential decreased. The wake potential has a

long-range behavior in both forward and backward directions which oscillates in

a periodic manner. This long-range potential should be responsible for the for-

mation of new ordered structures of dust particles in plasmas that are confined in

an external magnetic field. The wake-field potential may give rise to attraction

among the like-polarity charges providing the possibility of Wigner crystal for-

mation at nano-scale in dense inhomogeneous quantum dusty magnetoplasmas.

Chapter 4 illustrates the dispersion relation for the dust-lower-hybrid waves in an

ultracold and uniformly magnetized Fermi dusty plasma by employing the quan-

tum hydrodynamic model of a plasma with quantum and thermal corrections. It

is found that the dispersion relation of the dust-lower-hybrid wave is significantly

affected by the quantum correction. Numerically it is seen that frequency of the

quantum dust-lower-hybrid wave increases with increasing wavenumber. Finally,

we have examined the effects of external magnetic field and angle of propaga-

tion on the nearly perpendicular propagating dust-lower-hybrid wave. It is found
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that frequency of quantum dust-lower-hybrid wave increases with the increase of

magnetic field and with the small angle of propagation. This is a fundamental

mode of a quantum dusty plasma in the presence of a uniform external magnetic

field. These modes will find applications in diagnosing the charged dust impu-

rities in microelectronics and wave-particles interactions in the dusty quantum

magnetoplasmas.

Finally, Chapter 5 is the concluding chapter of the thesis has been written on

the basis of chapter 1 to chapter 4. The major findings and the ideas of further

development have also been given in this chapter.
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