Table of Contents

<table>
<thead>
<tr>
<th>Serial #</th>
<th>Title</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acknowledgements</td>
<td>i</td>
</tr>
<tr>
<td></td>
<td>List of Appendices</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>List of Tables</td>
<td>v</td>
</tr>
<tr>
<td></td>
<td>List of Figures</td>
<td>vi</td>
</tr>
<tr>
<td></td>
<td>List of Abbreviations</td>
<td>ix</td>
</tr>
<tr>
<td></td>
<td>Summary</td>
<td>x</td>
</tr>
</tbody>
</table>

Chapter 1 Introduction and Review of Literature

1.1 Heavy Metals

1.2 Role of Fungi in Metal Removal

1.3 Mechanism of Metal Removal

1.4 *Aspergillus niger*

1.5 Dead and Non-Living Biomass

Research Aims and Objectives

19

Chapter 2 Materials and Methods

2.1 Isolation and Molecular Identification of Microorganism

2.2 Total spore count

2.3 Preparation of inoculum

2.4 Genotyping of *Aspergillus niger* for Identification

2.4.1 DNA Extraction

2.4.2 Amplification by PCR

2.4.3 PCR Profile

2.4.4 Primers

2.4.5 Electrophoresis of PCR Products

2.4.6 Purification of PCR Product

2.4.7 Preparation of Heat Shock Cells

2.4.8 Ligation of Purified PCR products in Transformation Vector (PTZ57R/T)

2.4.9 Transformation by Heat Shock Method

2.4.10 Selection of Transformants

2.4.11 Rapid Plasmid Miniprep

2.4.12 Restriction Analysis of Clones

2.4.13 Sequencing of 18S-rRNA Gene Fragments

2.5 Optimization of growth conditions of the fungal isolate

2.5.1 Optimization of growth at different temperatures

2.5.2 Optimization of growth at different pH

2.6 Maximum resistance level of fungal isolate against Cr$^{6+}$ and Ni$^{2+}$

2.7 Batch Mode Experiments for Single Metal Removal

2.7.1 Shake flask experiments for the determination of optimum conditions for Cr$^{6+}$ biosorption

2.7.1.1 Biosorption of Cr$^{6+}$ at different metal concentration

2.7.1.2 Biosorption of Cr$^{6+}$ at different temperatures

2.7.1.3 Biosorption of Cr$^{6+}$ at different pH

2.7.2 Biosorption of Cr$^{6+}$ by fungal isolate in oven-dried conditions

2.7.2.1 Production of oven-dried biomass

2.7.2.2 Effect of Initial Metal Concentration on Cr$^{6+}$ removal

2.7.2.3 Effect of Temperature on Cr$^{6+}$ removal

2.7.2.4 Effect of pH on Cr$^{6+}$ removal

2.7.3 Shake flask experiments for the determination of optimum conditions for Ni$^{2+}$ biosorption

2.7.3.1 Biosorption of Ni$^{2+}$ at different metal concentrations

2.7.3.2 Biosorption of Ni$^{2+}$ at different temperatures

2.7.3.3 Biosorption of Ni$^{2+}$ at different pH

2.7.4 Biosorption of Ni$^{2+}$ by fungal isolate in oven-dried conditions

2.7.4.1 Effect of Initial metal concentration on Ni$^{2+}$ removal

2.7.4.2 Effect of temperature on Ni$^{2+}$ removal

2.7.4.3 Effect of pH on Ni$^{2+}$ removal
Table of Contents

2.8 Maximum resistance level of fungal isolate against Cr⁶⁺ and Ni²⁺ in mixture 30
2.9 Batch Mode Experiments for Bi-metal Mixture Removal 30
2.9.1 Shake flask experiments for the determination of optimum conditions for Cr⁶⁺ and Ni²⁺ biosorption in mixture 30
2.9.1.1 Biosorption of Cr⁶⁺ and Ni²⁺ at different metal concentrations 30
2.9.1.2 Determination of optimum temperature for biosorption of Cr⁶⁺ and Ni²⁺ 31
2.9.1.3 Determination of optimum pH for biosorption of Cr⁶⁺ and Ni²⁺ 31
2.9.2 Biosorption of Ni²⁺ and Cr⁶⁺ by oven-dried biomass of A. niger RH-19 31
2.9.2.1 Effect of temperature on Ni²⁺ and Cr⁶⁺ removal 31
2.9.2.2 Effect of pH on Ni²⁺ and Cr⁶⁺ removal 32
2.9.2.3 Effect of weight of biomass on Ni²⁺ and Cr⁶⁺ removal 32
2.9.3 Biosorption of Ni²⁺ and Cr⁶⁺ by non-growing biomass of RH-19 32
2.9.3.1 Production of non-growing biomass 32
2.9.3.2 Determination of optimum temperature for biosorption of Cr⁶⁺ and Ni²⁺ 32
2.9.3.3 Determination of optimum pH for biosorption of Cr⁶⁺ and Ni²⁺ 33
2.10 Biosorption of Ni²⁺ and Cr⁶⁺ in a stirred tank fermentor 33
2.11 Adsorbate 34
2.12 Analytical Procedure 34
2.12.1 Digestion of filtrate and preparation of samples 34
2.12.2 Metal analysis 34
2.12.2.1 Standards 35
2.12.2.2 Analysis conditions for chromium 35
2.12.2.3 Analysis conditions for nickel 35
2.12.2.4 Procedure 35
2.13 Adsorption Isotherms 36
2.14 Determination of mechanism of uptake of the heavy metals 37
2.14.1 Preparation of samples for Electron Microscopy 37
2.14.2 Tissue processing for ultrastructure 37

Chapter 3 Results 39

3.1 Isolation and Morphological Identification of Microorganism 39
3.2 Genotyping of Aspergillus niger for Identification 39
3.2.1 Amplification of 18S rRNA 39
3.2.2 Nucleotide Accession number of 18S rRNA 40
3.2.3 Aspergillus niger strain RH-1918S rRNA gene partial cds (EU021051) 41
3.3 Optimization of growth conditions of the fungal isolate 42
3.3.1 Optimization of growth at different temperatures 42
3.3.2 Optimization of growth at different pH 42
3.4 Maximum resistance level of fungal isolate against Cr⁶⁺ and Ni²⁺ 43
3.5 Total spore count 44
3.6 Batch Mode Experiments for Single Metal Removal 45
3.6.1 Biosorption of Cr⁶⁺ with growing fungal biomass by shake flask experiments 45
3.6.1.1 Determination of optimum metal concentration for Cr⁶⁺ biosorption 45
3.6.1.2 Determination of optimum temperature for Cr⁶⁺ biosorption 46
3.6.1.3 Determination of optimum pH for Cr⁶⁺ biosorption 47
3.6.2 Biosorption of Cr⁶⁺ by fungal isolate in oven-dried conditions 49
3.6.2.1 Removal of Cr⁶⁺ at different metal concentrations 49
3.6.2.2 Removal of Cr⁶⁺ at different temperatures 49
3.6.2.3 Removal of Cr⁶⁺ at different pH 50
3.6.3 Biosorption of Ni²⁺ with growing fungal biomass by shake flask experiments 51
3.6.3.1 Determination of optimum metal concentration for Ni²⁺ biosorption 51
3.6.3.2 Determination of optimum temperature for Ni²⁺ biosorption 52
3.6.3.3 Determination of optimum pH for Ni²⁺ biosorption 53
3.6.4 Biosorption of Ni²⁺ by fungal isolate in oven-dried conditions 55
3.6.4.1 Removal of Ni²⁺ at different metal concentrations 55
3.6.4.2 Removal of Ni²⁺ at different temperatures 56
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6.4.3</td>
<td>Removal of Ni(^{2+}) at different pH</td>
<td>57</td>
</tr>
<tr>
<td>3.7</td>
<td>Maximum resistance level of fungal isolate against Cr(^{6+}) and Ni(^{2+}) in mixture</td>
<td>58</td>
</tr>
<tr>
<td>3.8</td>
<td>Batch Mode Experiments for Bi-metal Mixture Removal</td>
<td>59</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Shake flask experiments for the determination of optimum conditions for Cr(^{6+}) and Ni(^{2+}) biosorption in Bimetal Conditions</td>
<td>59</td>
</tr>
<tr>
<td>3.8.1.1</td>
<td>Determination of optimum metal concentration for biosorption of Ni(^{2+}) and Cr(^{6+})</td>
<td>59</td>
</tr>
<tr>
<td>3.8.1.2</td>
<td>Determination of optimum temperature for biosorption of Ni(^{2+}) and Cr(^{6+})</td>
<td>60</td>
</tr>
<tr>
<td>3.8.1.3</td>
<td>Determination of optimum pH for biosorption of Ni(^{2+}) and Cr(^{6+})</td>
<td>62</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Biosorption of Ni(^{2+}) and Cr(^{6+}) by oven-dried biomass of A. niger RH-19 in Bimetal Conditions</td>
<td>64</td>
</tr>
<tr>
<td>3.8.2.1</td>
<td>Determination of optimum temperature for biosorption of Ni(^{2+}) and Cr(^{6+})</td>
<td>64</td>
</tr>
<tr>
<td>3.8.2.2</td>
<td>Determination of optimum pH for biosorption of Ni(^{2+}) and Cr(^{6+})</td>
<td>66</td>
</tr>
<tr>
<td>3.8.2.3</td>
<td>Determination of optimum biomass weight for biosorption of Ni(^{2+}) and Cr(^{6+})</td>
<td>67</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Biosorption of Ni(^{2+}) and Cr(^{6+}) by non-growing biomass of A. niger RH-19 in Bimetal Conditions</td>
<td>69</td>
</tr>
<tr>
<td>3.8.3.1</td>
<td>Determination of optimum temperature for biosorption of Ni(^{2+}) and Cr(^{6+})</td>
<td>69</td>
</tr>
<tr>
<td>3.8.3.2</td>
<td>Determination of optimum pH for biosorption of Ni(^{2+}) and Cr(^{6+})</td>
<td>70</td>
</tr>
<tr>
<td>3.9</td>
<td>Biosorption of Ni(^{2+}) and Cr(^{6+}) in a stirred tank fermentor</td>
<td>72</td>
</tr>
<tr>
<td>3.10</td>
<td>Equilibrium Modeling</td>
<td>74</td>
</tr>
<tr>
<td>3.11</td>
<td>Mechanism of uptake of the heavy metals</td>
<td>78</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Discussion</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Future Prospects</td>
<td>105</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>References</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>Appendices</td>
<td>xii</td>
</tr>
</tbody>
</table>