TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>P. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>i</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>vii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td>GENERAL INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Potato Importance</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Myzus persicae (Sulzer)</td>
<td>1</td>
</tr>
<tr>
<td>1.3 IPM of Myzus persicae</td>
<td>2</td>
</tr>
<tr>
<td>1.4 The Research Aims</td>
<td>4</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>6</td>
</tr>
<tr>
<td>REVIEW OF LITERATURE</td>
<td></td>
</tr>
<tr>
<td>2.1 Myzus persicae (Sulzer)</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Impact of environment and nutrients on M. persicae</td>
<td>7</td>
</tr>
<tr>
<td>2.3 Varetial/host plant resistance impact on M. persicae</td>
<td>9</td>
</tr>
<tr>
<td>2.4 Impact of predators on M. persicae</td>
<td>10</td>
</tr>
<tr>
<td>2.4.1 Importance of ladybird beetle in IPM of M. persicae</td>
<td>11</td>
</tr>
<tr>
<td>2.4.2 Importance of syrphidfly in IPM of M. persicae</td>
<td>13</td>
</tr>
<tr>
<td>2.4.3 Importance of green lacewing in IPM of M. persicae</td>
<td>14</td>
</tr>
<tr>
<td>2.4.4 Intraguild and extraguild predations</td>
<td>15</td>
</tr>
<tr>
<td>2.5 Impact of parasitoids on M. persicae</td>
<td>16</td>
</tr>
<tr>
<td>2.5.1 Importance of Aphidius spp in IPM of M. persicae</td>
<td>16</td>
</tr>
<tr>
<td>2.5.2 Hyperparasitism and predation of parasitoids</td>
<td>19</td>
</tr>
<tr>
<td>2.6 Impact of insecticides on M. persicae</td>
<td>19</td>
</tr>
<tr>
<td>2.7 Impact of insecticides on predators</td>
<td>22</td>
</tr>
<tr>
<td>2.8 The impact of insecticides on parasitoids</td>
<td>24</td>
</tr>
<tr>
<td>2.9 Role of yellow water pan in management of M. persicae</td>
<td>25</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>27</td>
</tr>
<tr>
<td>GENERAL MATERIALS AND METHODS</td>
<td></td>
</tr>
<tr>
<td>3.1 Geographical position of experimental zones/locations</td>
<td>27</td>
</tr>
</tbody>
</table>
3.2 Seeds collection 27
3.3 Experimental layouts and agronomic measures 27
3.4 Data collection/population estimates 28
 3.4.1 *M. persicae* 28
 3.4.2 Natural enemies 28
 3.4.3 Percent parasitism of *M. persicae* by *Aphidius* (PPA.A) 28
 3.4.4 Percent emergence rate of *Aphidius* from *Myzus* mummies (PERA) 28
 3.4.5 Fecundity rate of female *Aphidius* (FRA) 29
3.5 Yield 29
3.6 Data analysis 29

CHAPTER 4

IMPACT OF LOCATIONS, SEASONS AND POTATO VARIETIES ON GREEN PEACH APHID, *M. PERSICAЕ* (SULZER), AND NATURAL ENEMIES 30

4.1 Introduction 30
4.2 Materials and methods 32
 4.2.1 Experimental Design and layout 32
 4.2.2 Population Estimates 32
 4.2.3 Data Analysis 33
4.3 Results 33
 4.3.1 Climatology of the locations 33
 4.3.2 Impact of seasons, locations, varieties and Pgs on *Myzus* population 34
 4.3.3 Impact of seasons, locations and Pgs on ladybird beetle population 42
 4.3.4 Impact of seasons, locations and Pgs on syrphidfly population 45
 4.3.5 Impact of seasons, locations and Pgs on green lacewing population 48
 4.3.6 Impact of seasons, locations and Pgs on the population of parasitized *M. persicae* mummies 50
 4.3.7 Comparison of the population trends of the *M. persicae* and its natural enemies during spring and fall seasons (averaged over locations) 53
 4.3.8 Comparison of the population trends of the *M. persicae* and its natural enemies during spring and fall at different locations (averaged over Pgs) 53
 4.3.9 Comparison of the population trends of the *M. persicae* and its natural enemies during spring and fall at different locations (averaged over seasons) 53
 4.3.10 Comparison of the population trends of the *M. persicae* and its
natural enemies on spring season potato crop

4.3.11 Comparison of the population trends of the *M. persicae* and its natural enemies on fall season potato crop

4.4 Discussion

4.5 Conclusions

4.6 Recommendations

CHAPTER 5

ANTIBIOTIC RESISTANCE OF POTATO VARIETIES AGAINST GREEN PEACH APHID, *M. PERSICAe* (SULZER)

5.1 Introduction

5.2 Materials and methods

5.3 Results

5.3.1 *M. persicae* survival rate

5.3.2 *M. persicae* development time

5.3.3 *M. persicae* fecundity rate

5.3.4 *M. persicae* intrinsic rate of multiplication (*r_m*)

5.3.5 Varieties ranking based antibiosis test

5.4 Discussion

5.5 Conclusions

5.6 Recommendations

CHAPTER 6

FIELD EVALUATION OF FOLIAR INSECTICIDES AGAINST GREEN PEACH APHID, *M. PERSICAe* (SULZER), ON POTATO VARIETIES AND THEIR IMPACT ON NATURAL ENEMIES

6.1 Introduction

6.2 Foliar insecticides

6.2.1 Provado 1.6F

6.2.2 Actara 25WG

6.3 Materials and methods

6.3.1 Data collection/population estimates

6.4 Data analysis

6.5 Results

6.5.1 Effect of the foliar insecticides on the *M. persicae* population

6.5.2 Effect of the foliar insecticides on ladybird beetle population

6.5.3 Effect of foliar insecticides on syrphidfly population

6.5.4 Effect of the foliar insecticides on green lacewing population
6.5.5 Effect of the foliar insecticides on the population of parasitized *M. persicae* mummies

6.5.6 Effect of the foliar insecticides on the PPA

6.5.7 Effect of the foliar insecticides on the PER

6.5.8 Effect of the foliar insecticides on the FRA

6.5.9 Effect of the foliar insecticides on the yield of potato varieties

6.6 Discussion

6.7 Conclusions

6.8 Recommendations

CHAPTER 7

FIELD EVALUATION OF SOIL ROUTED INSECTICIDES ON POTATO VARIETIES AGAINST GREEN PEACH APHID, *M. persicae* (SULZER), AND THEIR IMPACT ON NATURAL ENEMIES

7.1 Introduction

7.1.1 Admire 2F

7.1.2 Platinum 2SC

7.2 Materials and Methods

7.2.1 Data collection/population estimates

7.3 Data analysis

7.4 Results

7.4.1 Effect of the soil routed insecticides on the *M. persicae* population

7.4.2 Effect of the soil routed insecticides on ladybird beetle population

7.4.3 Effect of the soil routed insecticides on syrphidfly population plants

7.4.4 Effect of the soil routed insecticides on green lacewing population

7.4.5 Effect of the soil routed insecticides on the population of parasitized *M. persicae* mummies

7.4.6 Effect of the soil routed insecticides on the PPA

7.4.7 Effect of the soil routed insecticides on the PER

7.4.8 Effect of the soil routed insecticides on the FRA

7.4.9 Effect of the soil routed insecticides on the yield of potato varieties

7.5 Discussion

7.6 Conclusions

7.7 Recommendations
CHAPTER 8

EVALUATION OF VARIOUS IPM STRATEGIES CONDUCTED ON POTATO VARIETIES AGAINST GREEN PEACH APHID, M. PERSICAE (SULZER), WITH MINIMUM ADVERSE IMPACTS ON NATURAL ENEMIES

8.1 Introduction 137
8.2 Materials and methods 138
8.2.1 Data collection/population estimates 139
8.3 Data analysis 140
8.4 Results 140
8.4.1 Effect of various IPM strategies on M. persicae population 140
8.4.2 Effect of various IPM strategies on ladybird beetle population 143
8.4.3 Effect of various IPM strategies on syrphidfly population 146
8.4.4 Effect of various IPM strategies on green lacewing population 147
8.4.5 Effect of various IPM strategies on the population of parasitized M. persicae mummies 151
8.4.6 Effect of the various IPM strategies on the PPAA 154
8.4.7 Effect of the various IPM strategies on the PERA 158
8.4.8 Effect of various IPM strategies on the FRA 163
8.4.9 Effect of the various IPM strategies on yield of the potato varieties 167
8.5 Discussion 169
8.6 Conclusions 175
8.7 Recommendations 175

CHAPTER 9

GENERAL DISCUSSION 177
FUTURE CHALLENGES 182

SUMMARY 183

LITERATURE CITED 188

APPENDICES 208