TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

TABLE OF CONTENTS ii

LIST OF TABLES vii

LIST OF FIGURES ix

NOTATIONS xvi

ABSTRACT xviii

CHAPTER 1: INTRODUCTION

1.1 General 1

1.2 Classification of Blast loads on structures 1

1.2.1 Classification on the basis of confinement 1

1.2.2 Classification on the basis of blast wave duration to time period of structure 3

1.3 Blast Basics 5

1.4 Explosion Scenarios and Designer Options 7

1.5 Structural Response against Blast 7

1.6 Review of Previous Research Works regarding effects of Impulsive Loading on Concrete Structures 9

1.7 Salient Findings of Previous Researchers 14

1.8 Problem Statement 16

1.9 Objectives and Scope 18

CHAPTER 2: FUNDAMENTALS OF BLAST LOADING

2.1 Introduction 19

2.2 Pressure Time History 19

2.3 Effect of angle of incidence on Reflected pressure 20

2.4 Path of Triple Point 22
2.5 Impulse of the blast wave

2.6 Factors affecting blast loading

2.7 Calculation of blast loads

2.8 Calculation of Blast effects

2.9 Effects of blast loading

- **2.9.1** Extent of damage during explosion
- **2.9.2** Floor failure
- **2.9.3** Glass breakage

2.10 Extent of protection

2.11 Research in Reactor Containment Analysis and Design Against External Explosions

CHAPTER 3: MODELLING OF EXTERNAL EXPLOSION EFFECTS ON ABOVE GROUND STRUCTURES

3.1 Prediction of blast load parameters

- **3.1.1** Blast Scaling law
- **3.1.2** Atmospheric considerations
- **3.1.3** Equivalency to TNT

3.2 Features of overpressure phase

3.3 Features of Nuclear weapons

3.4 Characteristics of Conventional high explosives

3.5 Unconfined vapour cloud explosions

3.6 Airflow and reflection process

3.7 Calculation of Reflected Overpressure

3.8 External impulsive loading on Superstructures

3.9 Dynamic Response of Blast Loaded Structures

- **3.9.1** Elastic SDOF system
- **3.9.2** Elastic-plastic SDOF Systems

3.10 Damage Mechanism at High Strain rate

- **3.10.1** Concrete under high strain rates
3.10.2 Reinforcing steel under high strain rates 63
3.11 Failure modes associated with blast loading 65
3.11.1 Global response of structural elements 65
3.11.2 Localized response of structural elements 65
3.11.3 Pressure-Impulse (P-I) Diagrams 66
3.12 Blast wave structure interaction 66
3.12.1 Air-induced ground shock Loading 68
3.12.2 Direct Ground Shock Loading 69
3.13 Blast Resistant Design Manuals 69
3.14 Computer Programs for Blast and Shock effects 71
3.15 Scope and Review of Computer Programs 71

CHAPTER 4: EXPERIMENTAL EVALUATION OF IMPULSIVE LOADING ON CONCRETE STRUCTURE

4.1 Introduction 77
4.2 Effects of structural configuration 78
4.3 Defining the threat 79
4.4 Scaling effects 79
4.5 Scope of Impulsive Loads in ACI Standard 359 80
4.6 Experimental Setup 81
4.7 Overpressure in the free air from surface explosions 84
4.8 Relationship between peak airpressure and scaled distance 85
4.9 The shock wave front arrival time T_a 87
4.10 The duration of the positive pressure phase of the shock wave 88
4.11 Shock wave reflection from the concrete structure 91
4.12 Ground shock wave from surface explosions 92
4.13 CONWEP introduction 92
4.14 CONWEP Assumptions/References for Ground Shock 93
4.15 Demonstration of CONWEP 94
4.16 Peak particle acceleration (PPA) 95
CHAPTER 5: EVALUATION OF CONTAINMENT STRUCTURE AGAINST EXTERNAL EXPLOSION

5.1 Introduction 101
5.2 SAP 2000 Review 101
 5.2.1 Features 101
 5.2.2 General Steps 102
 5.2.3 Time History Analysis 102
 5.2.4 Initial Conditions 103
 5.2.5 Overview of Shell Element Internal Forces/Stresses
 Output Sign Convention 104
5.3 Material properties of concrete and steel 107
5.4 Soil Structure Interaction 108
5.5 Model description 109
5.6 Forces due to vertical tendons 114
5.7 Forces due to hoop tendons 114
5.8 Forces due to dome tendons 115
 5.8.1 Pressure on dome elements 115
 5.8.2 Forces on ring girder 115
5.9 Forces due to temperature gradient 115
5.10 Numerical results 116
 5.10.1 Deflections 116
 5.10.2 Stress in Concrete 121
 5.10.3 Yielding and failure of concrete 124
5.11 Critical distance for different amount of surface blast charges 125
5.12 Simultaneous application of blast overpressure and shock wave 128
5.13 Summary 128

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions 129
 6.1.1 Experimental Findings of Scaled Model Reactor Containment 129
 6.1.2 Analytical Findings of Full Scale Reactor Containment 132
6.2 Recommendations 133

BIBLIOGRAPHY 134

ANNEXURE A 147

ANNEXURE B 161