Chapter – 1 INTRODUCTION

1.1. Chemical Precipitation 2

1.2. Membrane Technology 2

1.3. Extraction 3

1.3.1. Principles for Choosing Extractant 3

1.3.2. Choice of Extractant 4

1.3.3. Types of Extraction 6

1.3.3.1. Liquid-Liquid Extraction 6

1.3.3.2. Solid-Liquid Extraction 6

1.4. Adsorption isotherms 7

1.4.1. Freundlich Adsorption Isotherm 8

1.4.2. Langmuir Adsorption Isotherm 8

1.4.2.1. Dimensionless constant (R_L) 9

1.4.3. Dubinin-Radushkevich (D-R) isotherm 10
1.5. Kinetics of adsorption 10
 1.5.1. Lagergren equation 11
 1.5.2. Pseudo-second-order equation 11
 1.5.3. Morris-Weber equation 12
 1.5.4. Reichenberg equation 12

1.6. Thermodynamics of adsorption 13

1.7. Aims and objectives of the project 14

1.8. Impact of the study 14

Chapter – 2 LITERATURE REVIEW 16-38

2.1. Overview of Calixarene Chemistry 16

2.2. Calixarenes as Metal Ion Extractants 21
 2.2.1. Calixarenes with different chelating groups 21
 2.2.2. Biscalixarenes 24
 2.2.3. Bifunctional calixarenes with crown moieties 26
 2.2.4. Telomers with calix-crowns 27
 2.2.5. Calixarenes based polymers 29

2.3. Calixarenes as Anion Extractants 34

Chapter – 3 EXPERIMENTAL 39-57

3.1. Plan of Work 39

3.2. Instrumentation /or Apparatus 39
3.3. Chemicals and Reagents

3.4. Synthesis

25,26,27,28-Tetrahydroxycalix[4]arene (iii)

37,38,39,40,41,42-Hexahydroxycalix[6]arene (iv)

25,26,27,28-Tetraethoxycarbonylmethoxycalix[4]arene (v)

36,37,38,39,40,41,42-Hexaethoxycarbonylmethoxycalix[6]arene (vi)

Nitration of Amberlite XAD-4™ (xiv)

Reduction of x to aminoamberlite XAD–4 amine derivative (xv)

Conversion of xi to Amberlite XAD–4 thio–urea derivative (ATU resin) (xvi)

3.5. Metal Picrates

3.5.1. Alkali metal picrates
3.5.2. Transition metal picrates: 53

3.6. Analytical procedures 53

3.6.1. General Procedure for UV-VIS Complexation Study 53

3.6.2. Stoichiometric ratio of the metal and ligand in the complex 53

3.6.3. Procedure for the determination of Pb$^{2+}$ by polarography. 53

3.6.4. Procedure to determine the interference of other metals by polarography 54

3.6.5. Adsorption Procedures UV/VIS metal picrate 54

3.6.5.1. Batch “static” method 54

3.6.5.2. Column “dynamic” method 55

3.7. Analytical Procedure for the determination of Anions by Ion Chromatography 55

3.7.1. Eluent solution: 55

3.7.2. Anion solution: 55

3.7.3. Working standards 55

3.8. Analytical procedure for the determination fluoride by ion selective electrode (ISE) 56

3.8.1. Total Ionic Strength Adjustment Buffer (TISAB) 56

3.8.2. Analytical Procedure 56

3.8.3. Adsorption Procedures 56

3.8.3.1. Static method for the sorption of fluoride 56

3.8.3.2. Dynamic method for sorption of fluoride 56

3.8.3.3. Procedure to determine the interference of other anions 57
Chapter – 4 RESULTS AND DISCUSSION

PART 1

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.1. Summary of Part 1</td>
<td>64</td>
</tr>
</tbody>
</table>

PART 2

4.2. Synthesis and application of a highly efficient tetraester calix[4]arene based resin for the removal of Pb\(^{2+}\) from aqueous environment

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1. Characterization</td>
<td>66</td>
</tr>
<tr>
<td>4.2.1.1. FT-IR spectra</td>
<td>66</td>
</tr>
<tr>
<td>4.2.1.2. Scanning Electron Microscopy (SEM)</td>
<td>69</td>
</tr>
<tr>
<td>4.2.2. Adsorption studies</td>
<td>69</td>
</tr>
<tr>
<td>4.2.2.1. Effect of adsorbent dosage</td>
<td>69</td>
</tr>
<tr>
<td>4.2.2.2. pH effect on adsorption of Pb(^{2+}) ions</td>
<td>70</td>
</tr>
<tr>
<td>4.2.2.3. Optimum shaking time</td>
<td>70</td>
</tr>
<tr>
<td>4.2.3. Adsorption kinetics of Pb(^{2+})</td>
<td>71</td>
</tr>
<tr>
<td>4.2.4.1. Thermodynamics of adsorption</td>
<td>74</td>
</tr>
<tr>
<td>4.2.4.2. Adsorption isotherms</td>
<td>75</td>
</tr>
<tr>
<td>4.2.5. Dynamic adsorption studies</td>
<td>77</td>
</tr>
<tr>
<td>4.2.5.1. Effect of flow rate</td>
<td>77</td>
</tr>
<tr>
<td>4.2.5.2. Effect of co-existing ions</td>
<td>78</td>
</tr>
<tr>
<td>4.2.6. Summary of Part 2</td>
<td>79</td>
</tr>
</tbody>
</table>
PART 3

4.3. Highly selective spectrophotometric detection of Hg(II) by calix[4]arene derivative

4.3.1. Synthesis and characterization

4.3.2. Solvatochromic effect

4.3.3. Cation binding studies

4.3.4. Stability and response time of ix-Hg(II) complex in DMSO-water

4.3.5. Interference study of competing ions

4.3.6. Summary of the Part 3

PART 4

4.4.1. Characterization

4.4.1.1. FT-IR study

4.4.1.2. Scanning Electron Microscopy (SEM) study

4.4.2. Effect of pH

4.4.3. Adsorption isotherms

4.4.3.1. Freundlich isotherm

4.4.3.2. Langmuir Isotherm

4.4.3.3. Dubinin-Radushkevich Isotherm

4.4.4. Adsorption and desorption phenomenon

4.4.5. Interference of co-existing ions
4.4.6. Field application of p-TAC4 resin 99
4.4.7. Summary of Part 4 99

PART 5 100

4.5.1. Characterizations 101
4.5.1.1. FT-IR study 101
4.5.2. Influence of pH on fluoride adsorption 102
4.5.3. Optimum shaking time 103
4.5.4. Recovery of fluoride 104
4.5.5. Fluoride adsorption kinetics 105
4.5.6. Thermodynamics of adsorption 107
4.5.7. Adsorption isotherms 109
4.5.8. Scanning electron microscope (SEM) study 113
4.5.9. Interference of co-existing ions 114
4.5.10. Field application of resin xii 115
4.5.11. Summary of Part 5 116

PART 6 117

4.6. Removal of fluoride from aqueous environment by modified amberlite resin 117
4.6.1. Characterizations 118
4.6.1.1. Modification, characterization and application of Amberlite resin

4.6.2. Effect of adsorbent dosage

4.6.3. Optimum shaking time

4.6.4. pH effect on adsorption of fluoride ions

4.6.5. Adsorption mechanism

4.6.6. Adsorption isotherms

4.6.7. Dynamic adsorption studies

 4.6.7.1. Effect of flow rate

4.6.8. Interference of other ions

4.6.9. Analytical application of modified resin

4.6.10. Summary of Part 6

PART 7

4.7. An excellent fluoride adsorption behavior of modified amberlite resin

 4.7.1. Characterizations

 4.7.1.1. FT–IR spectra

 4.7.2. pH effect on the adsorption of fluoride ions

 4.7.3. Optimum shaking time

 4.7.4. Recovery of fluoride ion

 4.7.5. Adsorption mechanism

 4.7.6. Adsorption isotherms

 4.7.7. SEM
4.7.8. Dynamic adsorption studies 136
4.7.9. Elution Experiment 136
4.7.10. Interference of other ions 137
4.7.11. Conclusion Summary of Part 7 138

Chapter – 5 CONCLUSION 139-140

Recommendations 141
Future Work 142
References 143
List of Publications 162
Reprints of Publications 164