CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>xxix</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>01</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>03</td>
</tr>
<tr>
<td>2 REVIEW OF LITERATURE</td>
<td>07</td>
</tr>
<tr>
<td>2.1 IMPORTANCE OF FERMENTED DAIRY PRODUCTS</td>
<td>07</td>
</tr>
<tr>
<td>2.2 BIO DIVERSITY AMONG THE MICRO FLORA OF</td>
<td>07</td>
</tr>
<tr>
<td>FERMENTED DAIRY PRODUCTS</td>
<td></td>
</tr>
<tr>
<td>2.3 ISOLATION AND IDENTIFICATION OF LACTIC ACID BACTERIA</td>
<td>09</td>
</tr>
<tr>
<td>2. BACTERIOCIN ISOLATION AND CHARACTERIZATION</td>
<td>11</td>
</tr>
<tr>
<td>2.4.1 Bioassay of Bacteriocin</td>
<td>11</td>
</tr>
<tr>
<td>2.4.2 Kinetics of Bacteriocin Production</td>
<td>12</td>
</tr>
<tr>
<td>2.4.3 Optimization of Factors Affecting the Bacteriocin Production</td>
<td>13</td>
</tr>
<tr>
<td>2.4.4 Purification of Bacteriocins</td>
<td>13</td>
</tr>
<tr>
<td>2.4.5 Molecular Weight of Bacteriocin</td>
<td>15</td>
</tr>
<tr>
<td>2.4.6 Bacteriocin Mode of Action</td>
<td>15</td>
</tr>
<tr>
<td>2.5 PROBIOTIC POTENTIAL OF LACTIC ACID BACTERIA</td>
<td>15</td>
</tr>
<tr>
<td>2.5.1 Heat, pH, Enzyme and Bile Salt Effects on Bacteriocin Productions</td>
<td>16</td>
</tr>
<tr>
<td>2.5.2 Antibiotic Susceptibility Test of Probiotics Strains</td>
<td>17</td>
</tr>
<tr>
<td>2.5.3 Advantages of Probiotics</td>
<td>17</td>
</tr>
<tr>
<td>2.5.4 Potentially Adverse Effects</td>
<td>18</td>
</tr>
<tr>
<td>2.6 MOLECULAR CHARACTERIZATION OF LACTIC ACID BACTERIA</td>
<td>18</td>
</tr>
</tbody>
</table>
2.6.1 SDS-PAGE 18
2.6.2 Plasmid Profiling 20
2.6.3 Polymerase Chain Reaction 21

2.7 BACTERIOCIN BASED STRATEGIES FOR FOOD PRESERVATION 22

2.8 PRODUCT APPLICATION 23

2.9 SAFETY CONSIDERATION OF BACTERIOCIN 23

2.10 LIMITATIONS IN COMMERCIALIZATION OF BIO-PRESERVATIVE 24

3 MATERIALS AND METHODS 25

3.1 COLLECTION OF DAHI SAMPLES 25

3.2 ISOLATION OF BACTERIAL STRAINS 25

3.2.1 MRS, a Selective Medium for Bacillus 26

3.2.2 M-17, a Selective Medium for Cocci 26

3.2.3 Inoculation sample for cultures collection 26

3.3 IDENTIFICATION OF LACTIC ACID BACTERIA 27

3.3.1 Colonies Characteristics of Lactic Acid Bacteria 27

3.3.2 Gram’s Staining of Lactic Acid Bacteria 27

3.3.3 Catalase Test of Lactic Acid Bacteria 28

3.3.4 Motility Test of Lactic Acid Bacteria 28

3.3.5 CO₂ from Glucose of Lactic Acid Bacteria 28

3.3.6 Growth of Lactic Acid Bacteria at Different Temperatures 28

3.3.7 Survival of Lactic Acid Bacteria at Different NaCl Concentrations 29

3.3.8 Survival of of Lactic Acid Bacteria at 63 °C for 30 min. 29
3.9.9 Sugar Fermentation Test for Lactic Acid Bacteria
3.9.10 Storage of Lactic Acid Bacteria
3.4 ANTIBACTERIAL ACTIVITY ASSAY OF LACTIC ACID BACTERIA
3.4.1 Antimicrobial Activity of Lactic acid for by Paper Disc Method
3.4.2 Bacteriocin Bioassay by Agar well diffusion method
3.5 ANALYTICAL PROFILE INDEX OF LACTIC ACID BACTERIA
3.6 OPTIMIZATION OF FACTORS AFFECTING THE BACTERIOCIN PRODUCTION
3.6.1 Growth and Bacteriocin Production Lactic acid Bacteria in Response to Different Sugars
3.6.2 Best Suited Growth Media For Bacteriocin Production
3.6.3 Growth and Bacteriocin Production Lactic Acid Bacteria in Response to incubation temperature
3.6.4 Growth and Bacteriocin Production Lactic Acid Bacteria in Response to Initial pH of Media
3.6.5 Bacteriocin Production of Lactic Acid Bacteria in Response to Inoculum Concentration
3.7 KINETICS OF SELECTED STRAINS OF LACTIC ACID BACTERIA
3.8 PROBIOTIC POTENTIAL OF SELECTED STRAINS LACTIC ACID BACTERIA
3.8.1 Stability of Bacteriocin Produced by Lactic Acid Bacteria in Response to Heat Treatment
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8.2</td>
<td>Stability of Bacteriocin Produced by Lactic Acid Bacteria in Response to Acid Treatment</td>
<td>34</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Stability of Bacteriocin Produced by Lactic Acid Bacteria in Response to Enzymes Treatment</td>
<td>35</td>
</tr>
<tr>
<td>3.8.4</td>
<td>pH and Growth Changes of Lactic Acid Bacteria in Response to Bile Salt Treatment</td>
<td>35</td>
</tr>
<tr>
<td>3.8.5</td>
<td>Antibiotic Susceptibility Test of Lactic Acid Bacteria</td>
<td>35</td>
</tr>
<tr>
<td>3.9</td>
<td>EXTRACTION OF ANTIMICROBIAL COMPOUNDS</td>
<td>36</td>
</tr>
<tr>
<td>3.9.1</td>
<td>Production of Bacteriocin in Liquid Media</td>
<td>36</td>
</tr>
<tr>
<td>3.9.2</td>
<td>Purification of Bacteriocin by Ammonium Sulfate Precipitation</td>
<td>36</td>
</tr>
<tr>
<td>3.9.3</td>
<td>Freeze Drying of Partially Purified Bacteriocin</td>
<td>37</td>
</tr>
<tr>
<td>3.10</td>
<td>CHARACTERIZATION OF BACTERICIN</td>
<td>37</td>
</tr>
<tr>
<td>3.10.1</td>
<td>Mode of Inhibition</td>
<td>37</td>
</tr>
<tr>
<td>3.10.2</td>
<td>Determination of Protein Contents of Bacteriocin</td>
<td>37</td>
</tr>
<tr>
<td>3.10.3</td>
<td>Molecular Weight Determination by SDS-PAGE</td>
<td>38</td>
</tr>
<tr>
<td>3.11</td>
<td>MOLECULAR CHARACTERIZATION OF SELECTED PROBIOTIC STRAINS</td>
<td>38</td>
</tr>
<tr>
<td>3.11.1</td>
<td>Protein Profile Analysis of Selected Probiotic Strains</td>
<td>38</td>
</tr>
<tr>
<td>3.11.2</td>
<td>Plasmid Profile Analysis of Selected Probiotic Strains</td>
<td>39</td>
</tr>
<tr>
<td>3.11.2.1</td>
<td>Restriction digestion of plasmid</td>
<td>40</td>
</tr>
<tr>
<td>3.11.2.2</td>
<td>Agarose gel electrophoresis</td>
<td>40</td>
</tr>
<tr>
<td>3.11.3</td>
<td>Genomic DNA of Selected Probiotic Strains</td>
<td>41</td>
</tr>
<tr>
<td>3.11.4</td>
<td>Polymarase Chain Reaction</td>
<td>41</td>
</tr>
</tbody>
</table>
3.12 BIO-PRESERVATION OF DAIRY PRODUCTS 42
3.12.1 Preparation of Probiotic Yoghurt 42
3.12.1.1 Culture activity test of selected probiotic strains 43
3.12.1.2 Antagonistic activity of lactic acid bacterial strains 43
3.12.2 Probiotic Yoghurt culture combinations 43
3.12.3 Product Tests 44
3.12.3.1 Biochemical tests probiotic yoghurt 44
3.12.3.2 Sensory evaluation tests of probiotic yoghurt 45
3.12.4 Use of Bacteriocin with Packaging Material 45
3.12.4.1 Preparation of anti-microbial sheet 45
3.12.4.2 Application of anti-microbial sheet on butter 46
3.12.5 Products Tests for butter 46
3.13 STATISTICAL ANALYSIS 47
4. RESULTS AND DISCUSSION 48
4.1 ISOLATION AND IDENTIFICATION OF LACTIC ACID BACTERIA 48
4.1.1 Collection of Dahi Samples 48
4.2 GENERA AND SPECIES OF LACTIC ACID BACTERIA 50
4.2.1 Description of Genera of Lactic Acid Bacteria Isolated From Dahi 50
4.2.2 Identification of Lactic Acid Bacteria Species Isolated from Dahi 53
4.2.2.1 Identification of Lactobacillus acidophilus 53
4.2.2.2 Identification of Lactobacillus casei 58
4.2.2.3 Identification of Lactobacillus delbrueckii 59
4.2.2.4 Identification of Lactobacillus helveticus 60
| 4.2.2.5 | Identification of *Lactococcus lactis* | 60 |
| 4.2.2.6 | Identification of *Streptococcus thermophilus* | 61 |
| 4.2.2.7 | Identification of *Streptococcus crimeris and Streptococcus lactis* ssp. *diacetylactis* | 62 |
| 4.2 | ANTI-BACTERIAL ACTIVITY OF LACTIC ACID BACTERIA | 63 |
| 4.2.1 | *L. acidophilus* Strains Activity Against Food Borne Pathogens | 65 |
| 4.2.2 | *L. bulgaricus* Strains Activity Against Food Borne Pathogens | 67 |
| 4.2.3 | *S. thermophilus* Strains Activity Against Food Borne Pathogens | 69 |
| 4.2.4 | *L. casei* Strains Activity Against Food Borne Pathogens | 74 |
| 4.2.5 | *L. lactis* Strains Activity Against Food Borne Pathogens | 74 |
| 4.2.6 | *L. helveticus* Strains Activity Against Food Borne Pathogens | 77 |
| 4.2.7 | *L. lactis* Strains Activity Against Food Borne Pathogens | 79 |
| 4.2.8 | *S. crimoris* and *S. lactis* ssp *diacetylactis* Activity Against Food Borne Pathogens | 79 |
| 4.3 | SELECTION OF THE BEST BACTERIOCIN PRODUCING STRAINS OF LACTIC ACID BACTERIA | 84 |
| 4.4 | DETERMINATION OF ANALYTICAL PROFILE INDEX | 84 |
| 4.4.1 | Analytical Profile Index of Selected Strain of *L. acidophilus* LA06FT | 84 |
| 4.4.2 | Analytical Profile Index of Selected Strain of *L. bulgaricus* TLB06FT | 85 |
| 4.4.3 | Analytical Profile Index of Selected Strain of *S. thermophilus* S02FT | 87 |
| 4.5 | OPTIMIZATION OF FACTORS AFFECTING THE PRODUCTION OF ANTIBACTERIAL COMPOUNDS | 90 |
| 4.5.1 | *L. acidophilus* LA06FT | 90 |
| 4.5.1.1 | Growth and bacteriocin production of *L. acidophilus* LA06FT as affected by different sugars | 90 |
4.5.1.2 Best suited growth media for bacteriocin production by *L. acidophilus* LA06FT
92
4.5.1.3 Growth and bacteriocin production of *L. acidophilus* LA06FT as affected by pH of media
94
4.5.1.4 Bacteriocin production of *L. acidophilus* LA06FT as affected by incubation temperature
96
4.5.1.5 Bacteriocin production of *acidophilus* LA06FT as affected by inoculum concentration
97
4.5.2 *L. bulgaricus* TLB06FT
100
4.5.2.1 Growth and bacteriocin production of *L. bulgaricus* TLB06FT as affected by different sugars
100
4.5.2.2 Best-suited growth media for bacteriocin production by *L. bulgaricus* TLB06FT
100
4.5.2.3 Growth and bacteriocin production of *L. bulgaricus* TLB06FT as affected by pH of media
103
4.5.2.4 Growth and bacteriocin production of *L. bulgaricus* TLB06FT as affected by incubation temperature
104
4.5.2.5 Bacteriocin production of *L. bulgaricus* TLB06FT i as affected by inoculum concentration
108
4.5.3 *S. thermophilus* S02FT
108
4.5.3.1 Growth and bacteriocin production of *S. thermophilus* S02FT as affected by Effect of different sugars
108
4.5.3.2 Bacteriocin production of *S. thermophilus* S02FT as affected by incubation temperature
108
4.5.3.4 Growth and bacteriocin production of *S. thermophilus* S02FT as affected by pH of media
109
4.5.2.5 Bacteriocin production of *S. thermophilus* S02FT as affected by concentration
111
4.6 KINETICS OF SELECTED STRAINS OF LACTIC ACID BACTERIA
114
4.6.1 Kinetics of Bacteriocin Production of *L. acidophilus* LA06FT
114
4.6.2 Kinetics of Bacteriocin Production of *L. bulgaricus* TLB06FT

4.6.3 Kinetics of Bacteriocin Production of *S. thermophilus* ST06FT

4.7 PROBIOTIC POTENTIAL OF SELECTED STRAINS

4.7.1 Probiotic Characterization of *L. acidophilus* LA06FT

4.7.1.1 Stability of bacteriocin produced by *L. acidophilus* LA06FT as affected by heat treatment

4.7.1.2 Stability of bacteriocin produced by *L. acidophilus* LA06FT as affected by heat acid treatment

4.7.1.3 Stability of bacteriocin produced by *L. acidophilus* LA06FT as affected by enzymes treatment

4.7.1.4 PH and growth changes of *L. acidophilus* LA06FT as affected by bile salt

4.7.1.5 Antibiotic susceptibility test of *L. acidophilus* LA06FT

4.7.2 Probiotic Characterization of *L. bulgaricus* TLB06FT

4.7.2.1 Stability of bacteriocin produced by *L. bulgaricus* TLB06FT as affected by heat treatment

4.7.2.2 Stability of bacteriocin produced by *L. bulgaricus* TLB06FT as affected by acid treatment

4.7.2.3 Stability of bacteriocin produced by *L. bulgaricus* TLB06FT as affected by enzymes treatment

4.7.2.4 pH and growth changes of *L. bulgaricus* TLB06FT as affected by in response to bile salt

4.7.2.5 Antibiotic susceptibility test *L. bulgaricus* TLB06FT

4.7.3 Probiotic Characterization of *S. thermophilus* S02FT

4.7.3.1 Stability of bacteriocin produced by *S. thermophilus* S02FT as affected by heat treatment

4.7.3.2 Stability of bacteriocin produced by *S. thermophilus* S02FT as affected by acid treatment
4.7.3.3 Stability of bacteriocin produced by *S. thermophilus* S02FT as affected by enzymes treatments

4.7.2.4 PH and growth of *S. thermophilus* S02FT as affected by bile salt

4.7.3.5 Antibiotic susceptibility test of *S. thermophilus* S02FT

4.8 EXTRACTION AND CHARACTERIZATION OF BACTERIOCIN PRODUCED BY *L. acidophilus* LA06FT

4.8.1 Purification of Bacteriocin

4.8.1.1 Production of bacteriocin in liquid media

4.8.1.2 Ammonium sulfate precipitation

4.8.1.3 Partial bacteriocin purification and its freeze drying

4.8.1.4 Molecular weight determination of bacteriocin produced by *L. acidophilus* LA06FT

4.9 WHOLE CELL SDS-PAGE PROTEINS ANALYSIS

4.9.1 Protein Profiling of Selected Strain of *L. acidophilus*

4.9.2 Protein Profiling of Selected Strain of *L. bulgaricus*

4.9.3 Protein Profiling of Selected Strain of *S. thermophilus*

4.9.4 Comparison of Protein profile of Different Species of lactic acid bacteria

4.10 PLASMID OF BACTERIOCIN PRODUCING STAINS LACTIC ACID BACTERIA

4.10.1 Plasmid of Selected Strain of *L. acidophilus*

4.10.2 Plasmid Analysis of Selected Strain of *L. bulgaricus*

4.10.3 Plasmid Analysis of Selected of Strain *S. thermophilus*

4.10.4 Restriction Digestion of Plasmid of Selected strain LAB

4.11 ISOLATION OF GENOMIC DNA AND PCR ANALYSIS OF SELECTED STRAINS OF LACTIC ACID BACTERIA
4.11.1 Genomic DNA and PCR Analysis of 16S rRNA of Selected Strains of \textit{L. acidophilus} 186
4.11.2 Genomic DNA and PCR Analysis of 16S rRNA of Selected Strains of \textit{L. bulgaricus} 186
4.11.3 Genomic DNA and PCR Analysis of 16S rRNA of Selected Strains of \textit{S. thermophilus} 189
4.12 BIO-PRESERVATION OF DAIRY PRODUCTS 191
4.12.1 Preparation of Probiotic Yoghurt 191
4.12.1.1 Culture activity test of bacteriocin producing strains of \textit{L. bulgaricus}, \textit{S. thermophilus} and \textit{L. acidophilus} 191
4.12.1.2 Antagonistic activity of bacteriocin producing strains of \textit{L. bulgaricus}, \textit{S. thermophilus} and \textit{L. acidophilus} 199
4.12.1.3 Probiotic yoghurt production with selected strains 203
4.12.1.4 Chemical tests of probiotic yoghurt 203
4.12.1.4.1 PH of probiotic yoghurt in response to refrigerated storage 203
4.12.1.4.2 Titrateable acidity probiotic yoghurt in response to refrigerated storage 203
4.12.1.4.3 Syneresis probiotic yoghurt in response to refrigerated storage 206
4.12.1.4.4 Viability of lactic acid bacteria during storage 208
4.12.1.4.5 Viscosity of probiotic yoghurt in response to refrigerated storage 208
4.12.1.4.6 Antibacterial activity of whey of probiotic yoghurt in response to refrigerated storage 211
4.12.1.5 Organoleptic tests of probiotic yoghurt 211
4.12.1.5.1 Texture of probiotic yoghurt in response to refrigerated storage 213
4.12.1.5.2 Color of probiotic yoghurt in response to refrigerated storage 213
4.12.1.5.3 Taste of probiotic yoghurt in response to refrigerated storage 216
4.12.1.5.4 Flavor of probiotic yoghurt in response to refrigerated storage 216
4.12.1.5.5 Overall acceptability of probiotic yoghurt in response to refrigerated storage 216

4.12.2 Use of Bacteriocin with Packaging Material 220

4.12.2.1 Preparation of Anti-microbial sheet 220

4.12.2.2 Application of antimicrobial sheet on butter 220

4.12.2.1.1 PH of butter in response to antimicrobial packing 220

4.12.2.1.2 Acidity of butter in response to antimicrobial packing 223

4.12.2.1.3 Viable count of butter in response to antimicrobial packing 223

GENERAL DISCUSSION 226

CONCLUSIVE SUMMARY 232

LITERATURE CITED 236