CONTENTS

Acknowledgements i
List of Tables iii
List of Figures iv
Summary vii

Introduction 1
Metals, metal toxicity and resistance 1
Molecular identification of ciliates 4
Metal resistance mechanism - Metallothioneins 8
\textit{Tetrahymena} metallothionein (MT) genes 12

Materials and Methods 22
Culture collection 22
Culture maintenance of Protozoa 22
Determination of growth curves 23
Copper resistance and determination of minimum inhibitory concentration 24
Determination of copper uptake ability 24
Isolation and analysis of genomic DNA 25
Molecular identification of metal resistant ciliates / Ribotyping 26
\begin{itemize}
\item Primer designing 26
\item Amplification of SS rRNA gene 27
\item DNA extraction (Gene clean) 27
\item Ligation into cloning vector 28
\item Competent cell preparation and transformation 29
\item Confirmation of positive clones and sequence analysis 30
\item Phylogenetic analysis 31
\end{itemize}
Purification of \textit{Tetrahymena} culture 34
Growth conditions optimization 35
\begin{itemize}
\item Optimum temperature 35
\item Optimum pH 35
\end{itemize}
Metal uptake ability of \textit{Tetrahymena} (RT-1) and control cultures (Tt and Tp) 35
\textit{Tetrahymena} (RT-1) metallothionein gene cloning 36
\begin{itemize}
\item Cloning and sequencing of CuMT gene isoforms from genomic DNA template 36
\item Cloning and sequencing of CuMT gene isoforms using cDNA as template 38
\item Isolation of total RNA 38
\item cDNA library synthesis and RT-PCR 39
\item Amplification, cloning and sequencing of isoforms of CuMT gene 40
\item Sequence alignment and data analysis 41
\item cDNA library synthesis using random hexamer primer 43
\end{itemize}
Isolation of total proteins of \textit{Tetrahymena} (RT-1) and SDS-PAGE analysis 44
Time-course of CuMT expression after copper stress 45
Results

Microscopic observations 46
Ribotyping 46
PCR amplification of ciliate SS rRNA gene 46
Sequence analysis 48
Phylogenetic analysis 49
Secondary structure of SS rRNA 65
Growth of ciliates in different media 69
Effect of copper on growth of ciliates 71
Copper uptake ability 72
Growth and characterization of T. t. lahorensis 76
Growth of Tetrahymena spp. in the presence of copper 78
Copper uptake ability among Tetrahymena spp. 79
Isolation of copper metallothionein (TtlCuMT) gene isoforms of T. t. lahorensis 81
Cloning of TtlCuMT gene isoforms 81
Sequencing of cDNA cloned TtlCuMT gene isoforms 83
Deduced proteins 84
Hydrophobicity of TtlCuMT isoforms 87
Conserved cysteine motifs in TtlCuMT isoforms 88
Structure of TtlCuMT isoforms 88
Disulfide bonds 90
Phylogenetic relationships with CuMTs 91
SDS-PAGE analysis of copper resistant Tetrahymena tropicalis lahorensis 91
Time-course of T. t. lahorensis copper-induced MT expression 93

Discussion

Magnitude / Significance of protozoa 95
Microscopic observation 96
Molecular identification of copper resistant ciliates 97
Phylogenetic analysis 97
Tetrahymena tropicalis lahorensis 97
Euplotes spp. 100
Secondary structure of SS rRNA 103
Growth media used 104
Tolerance of ciliates to copper 105
Bioaccumulation of copper by ciliates 107
Optimum growth conditions 109
Tolerance and resistance of T. t. lahorensis to copper ions 110
Copper uptake ability of T. t. lahorensis compared with standard cultures 110
Copper metallothionein 112
Cloning, sequencing and molecular characterization of T. t. lahorensis 113
CuMT isoforms 113
Comparative structural analysis 114
Phylogenetic analysis 115
Protein analysis 117
Conclusions 119
Appendices

Appendix A
Tetrahymena tropicalis strain *Lahorensis* 18S ribosomal RNA gene, partial sequence
Euplotes muscicola strain SBS-RC 18S ribosomal RNA gene, partial sequence
Euplotes adiculatus strain *Lahorensis* 18S ribosomal RNA gene, complete sequence

Appendix B
Tetrahymena tropicalis copper-inducible metallothionein CuMT1 mRNA, complete cds
Tetrahymena tropicalis copper-inducible metallothionein CuMT2 mRNA, complete cds

Appendix C
Table I. Sequence Identity Matrix used to reconstruct phylogenetic relationships among different species of *Tetrahymena*.
Table II. Sequence Identity Matrix used to reconstruct phylogenetic relationships among different species of *Euplotes muscicola* group.
Table III. Sequence Identity Matrix used to reconstruct phylogenetic relationships among different species of *Euplotes adiculatus* group.
Table IV. Sequence Identity Matrix used to reconstruct phylogenetic relationships among different CuMTs (subfamily 7b) of *Tetrahymena*.